用户名: 密码: 验证码:
玻色—爱因斯坦凝聚中量子化涡旋与量子反射的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻色-爱因斯坦凝聚体作为一种崭新的物质状态,从1995年在稀薄气体中实现以来,掀起了研究的热潮。由于玻色-爱因斯坦凝聚具有非常奇妙的性质,对其进行研究有助于人们理解和揭示量子力学中的重要基本问题。因此,在近十年内,人们在玻色-爱因斯坦凝聚的理论和实验研究方面取得了巨大的进展。本论文具体研究了玻色-爱因斯坦凝聚中量子化的涡旋以及量子反射等问题,主要工作体现在以下几个方面:
     1.提出了玻色-爱因斯坦凝聚中涡旋-反涡旋相干叠加态的概念,并证明了涡旋-反涡旋相干叠加态能稳定存在于系统中。同时也研究了涡旋-反涡旋相干叠加态的相关性质及其产生方法,比如在轴对称的谐振子束缚势下涡旋-反涡旋相干叠加态呈现规则的花瓣结构,通过按照一定的时序压缩以及恢复单个涡旋的束缚势,可以产生稳定的单量子化涡旋-反涡旋相干叠加态。
     2.研究了玻色-爱因斯坦凝聚中单量子化涡旋与硅固体表面之间的量子反射过程。由于涡旋的特殊性质,其量子反射有更丰富的量子特性。我们的研究表明:ⅰ)由于相干性质的存在,在涡旋与固体表面相互作用的过程中,被固体表面反射回去的部分与正在入射的部分在空间叠加后一定会产生清晰的干涉条纹;ⅱ)由于各向异性的速度分布,涡旋的反射率也呈各向异性,因此反射回来的部分与入射部分形成的干涉条纹宽度以及疏密程度与入射速度以及速度各向异性的程度有关;ⅲ)由于玻色凝聚体中原子间相互作用的存在,反射过程中凝聚体会产生激发,破坏涡旋的结构,使得反射后的涡旋不再是中心对称。我们还根据反射后涡旋的稳定性给出了相应的稳定相图,并利用膨胀比作为稳定与非稳定区域的边界,为实验上观察这一现象提供了指导。
     3.研究了玻色-爱因斯坦凝聚体与蓝失谐激光形成的势垒之间的相互作用,在凝聚体速度一定的情况下通过改变蓝失谐激光的强度(即势垒的高度)得到了相应的反射率。根据反射率的大小,我们提出了:ⅰ)无限深方势阱中观察物质波包的运动及碰撞的实验方案;ⅱ)调节激光强度,得到可控的相干分束器(尤其是半反半透分束器),对物质波包实现分裂及囚禁等操作。
Bose-Einstein condensates (BECs) is a relatively newly discovered form of matter that was observed in dilute atomic gases for the first time in 1995, and is now a subject of intensive theoretical and experimental study. Because of its unique properties, the investigation of BECs has unanticipated impact for people to understand and exploit the important and fundamental issue in quantum mechanics. The past decade has seen a dramatic progress in the research of BECs both theoretically and experimentally. In this dissertation, we focus our investigation on the quantized vortex and the quantum reflection in BECs. The main contents are as follows:
     1. We have proposed the concept of vortex-antivortex coherently superposed state (VAVCSS) in BECs and verified that the VAVCSS can be stable in a harmonic potential. And we also have investigated the fundamental properties of VAVCSS. The density distribution of the VAVCSS has a petal structure which is determined by the quantum circulations and proportion of the vortex and antivortex. Furthermore, we have proposed a feasible scheme to generate a single quantized coherently superposed vortex and antivortex state with arbitrary proportion by compressing and rehabilitating the harmonic trap with specific time order, which is proven by numerical simulations.
     2. We have investigated the two-dimensional quantum reflection with vortices in Bose-Einstein condensates incident on a solid surface of silicon. This is a unique quantum reflection process considering the fundamental properties of quantized vortex. Our investigation has shown that:ⅰ) there was an interference effect between the incident and reflected matter waves as all the atoms in BECs were coherent;ⅱ) considering the rotation of a vortex, the nonuniform velocity distribution along the surface would play an important role in the quantum reflection process. For example, they would change the characteristics of the interference fringes between the incident and reflected matter waves;ⅲ) the reflected vortex became unstable for sufficiently low incident velocity or strong interaction. This sort of instability physically originated from dynamics excitations induced by the atomic interaction in the quantum reflection process. The stability diagram was given and we have found that a simple expansion ratio described the boundary between the stable and unstable regions.
     3. We have investigated the interaction between BECs and the potential barrier formed by the far-off resonant blue-detuned laser. According to the interaction between BECs and the potential, we have proposed:ⅰ) an experimental scheme to observe the collision between two wave packets in in an infinitely deep well formed by two far-off resonance laser beams (which are used to avoid exciting of the atom) of sufficiently high intensity.ⅱ) an experimental scheme to achieve a controllable coherent beam-splitter (especially the beam-splitter with 50/50 splitting ratio) by tuning the intensity of the laser beams and then trapping the wave packets after being split with far-off resonance laser beams of sufficiently high intensity.
引文
[1] S. N. Bose, “Plancks gesetz und lichtquantenhypothese”, Z. Phys. 26, 178 (1924).
    [2] A. Einstein, “The quantum theory of the monatomic perfect gas”, Preuss. Akad. Wiss. Berlin, 1924 page 261; A. Einstein, “Quantentheorie des einatomigen idealen gases: Zweite abhandlung”, Sitzungber. Preuss. Akad. Wiss. 1, 3 (1925).
    [3] P.Kapitza,“Viscosity of liquid Helium below the λ-point”, Nature 141, 74 (1938); J. F. Allen, and A. D. Misener, “Flow of liquid helium II”, Nature 141, 75 (1938).
    [4] F. London, “The λ-phenomenon of liquid helium and the Bose-Einstein degeneracy”, Nature 141, 643 (1938).
    [5] L. D. Landau, “The theory of superfluidity of Helium II”, J. Phys. USSR 5, 71 (1941).
    [6] N. N. Bogoliubov, “On the theory of superfluidity”, J. Phys. USSR 11, 23 (1947).
    [7] O. Penrose and L. Onsager, “Bose-Einstein condensation and liquid Helium”, Phys. Rev. 104, 576 (1956).
    [8] H. K. Onnes, “The superconductivity of mercury”,Comm. Phys. Lab. Univ. Leiden, No. 122 and 124, (1911).
    [9] J. Bardeen, L.N. Cooper, J.R. Schrieffer, “Theory of superconductivity.” Phys. Rev. 108, 1175 (1957).
    [10] http://nobelprize.org/physics/laureates/1997/press.html
    [11] W. C. Stwalley and L. H. Nosanow, “Possible V "new" quantum systems”, Phys. Rev. Lett. 36, 910 (1976).
    [12] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor”, Science 269,198 (1995).
    [13] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodiumatoms”, Phys. Rev. Lett. 75, 3969 (1995).
    [14] http://nobelprize.org/physics/laureates/2001/press.html.
    [15] http://amo.phy.gasou.edu/bec.html/; J. Weiner, V. S. Bagnato, S. Zilio, P. S. Julienne, “Experiments and theory in cold and ultracold collisions”, Rev. Mod. Phys. 71, 1 (1999).
    [16] K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas, “Observation of a strongly interacting degenerate Fermi gas of atoms”, Science 298, 2179 (2002).
    [17] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules”, Science 302, 2101 (2003).
    [18] M. Greiner, C. A. Regal, D. S. Jin, “Emergence of a molecular Bose-Einstein condensate from a Fermi gas”, Nature 426, 537 (2003).
    [19] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, “Observation of Bose-Einstein condensation of molecules”, Phys. Rev. Lett. 91, 250401 (2003).
    [20] C. A. Regal, M. Greiner, and D. S. Jin, “Observation of resonance condensation of fermionic atom pairs”, Phys. Rev. Lett. 92, 040403 (2004).
    [21] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, and R. Grimm, “Crossover from a molecular Bose-Einstein condensate to a degenerate Fermi gas”, Phys. Rev. Lett. 92, 120401 (2004).
    [22] J. O. Andersen, “Theory of the weakly interacting Bose gas”, Rev. Mod. Phys. 76, 599 (2004).
    [23] 熊宏伟,吕宝龙,刘淑娟,詹明生,超冷费米子气体研究的新进展,物理学进展,25,296 (2005).
    [24] J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman and E. A. Cornell, “Bose-Einstein condensation in a dilute gas: measurement of energy and ground-state occupation”, Phys. Rev. Lett. 77, 4984 (1996).
    [25] W. Krauth, “Quantum Monte Carlo calculations for a large number of bosons in a harmonic trap”, Phys. Rev. Lett. 77, 3695 (1996).
    [26] A. J. Leggett, “Bose-Einstein condensation in the alkali gases: Some fundamental concepts”, Rev. Mod. Phys. 73,307 (2001).
    [27] E. P. Gross, Nuovo Cimento 20, 454 (1961); J. Math. Phys. 4, 195 (1963); L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys.-JETP 13, 451 (1961)].
    [28] 李朝红,耦合Bose-Einstein凝聚体系与强激光场中原子分子体系的非线性现象,博士论文,中国科学院武汉物理与数学研究所,2003
    [29] 文灵华,自旋相关光晶格中Bose-Einstein凝聚体的干涉机制与独立凝聚体的遂穿动力学研究,博士论文,中国科学院武汉物理与数学研究所,2006
    [30] J. E. Williams, “The preparation of topological modes in a strongly-coupled two-component Bose-Einstein condensate”, Ph.D. Thesis, University of Colorado, 1999.
    [31] A. Arnold, “Preparation and manipulation of an 87Rb Bose-Einstein condensate”, Ph.D. Thesis, University of Sussex, 1999.
    [32] 张礼,葛墨林,量子力学的前沿问题,北京,清华大学出版社,1999.
    [33] M. Inguscio, S. Stringari, and C. E. Wieman, “Bose-Einstein condensation in atomic gases”, Amsterdam, IOS Press (1999).
    [34] L. Pitaevskii and S. Stringari, “Bose-Einstein condensation”, Oxford, Oxford University Press (2003).
    [35] A. Griffin, D. W. Snoke, and S. Stringari, “Bose-Einstein condensation”, Cambridge, Cambridge University Press ( 1995).
    [36] Ph. W. Courteille, V. S. Bagnato, and V. I. Yukalov, “Bose-Einstein condensation of trapped atomic gases,” Laser Phys. 11, 659–800 (2001).
    [37] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich, “Squeezed states in a Bose-Einstein condensate”, Science 291, 2386 (2001).
    [38] M. J. Holland, D. S. Jin, M. L. Chiofalo, and J. Cooper,“Emergence of interaction effects in Bose-Einstein condensation”, Phys. Rev. Lett. 78, 3801 (1997).
    [39] A. G?rlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W.Ketterle,“Realization of Bose-Einstein condensates in lower dimensions”,Phys. Rev. Lett. 87, 130402 (2001).
    [40] M. Olshanii,“Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons”, Phys. Rev. Lett. 81, 938 (1998).
    [41] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, “Regimes of quantum degeneracy in trapped 1D gases”, Phys. Rev. Lett. 85, 3745 (2000).
    [42] B. Paredes, A. Widera, V. Murg, O. Mandel, S. F?lling, J. I. Cirac, G. V. Shlyapnikov, T. W. H?nsch and I. Bloch, “Tonks-Girardeau gas of ultracold atoms in an optical lattice”, Nature 429, 277 (2004).
    [43] T. Kinoshita, T. Wenger and D. S. Weiss, “Observation of a one-dimensional Tonks-Girardeau gas”, Science 305, 1125 (2004).
    [44] D. Blume, M. Lewerenz, P. Niyaz, and K. B. Whaley, “Excited states by quantum Monte Carlo methods: Imaginary time evolution with projection operators”, Phys. Rev. E 55, 3664 (1997).
    [45] H. Gould and J. Tobochnik, “Introduction to computer simulation methods” (Addison Wesley, New-York, 1995).
    [46] A. Minguzzi, S. Succi, F. Toschi, M. P. Tosi, and P. Vignolo, “Numerical methods for atomic quantum gases with applications to Bose-Einstein condensates and to ultracold fermions”, Phys. Rep. 395, 223 (2004).
    [47] E. Cornell, “Very cold indeed: the nanokelvin physics of Bose-Einstein condensation”. J. Res. Natl. Inst. Stand. Technol. 101, 419 (1996).
    [48] E. A. Cornell and C. E. Wieman, “Nobel Lecture: Bose-Einstein condensation in a dilute gas,the first 70 years and some recent experiments”, Rev. Mod. Phys. 74, 875 (2001).
    [49] W. Ketterle, D. S. Durfee and D. M. Stamper-Kurn, “Making, Probing and Understanding BEC”, in “Proc. Intern. school of physics—Enrico Fermi”, M. Inguscio, S. Stringari and C. Wieman eds. (1999).
    [50] C. C. Bradley, C. A. Sackett, and R. G. Hulet,“Bose-Einstein condensation of Lithium: observation of limited condensate number”, Phys. Rev. Lett. 78, 985 (1997).
    [51] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman,“Stable 85Rb Bose-Einstein condensates with widely tunable interactions”, Phys. Rev. Lett. 85, 1795 (2000).
    [52] G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio,“Bose-Einstein condensation of potassium atoms by sympathetic cooling”,Science 294, 1320 (2001).
    [53] T. Weber, J. Herbig, M. Mark, H.-C. N?gerl, and R. Grimm,“Bose-Einstein condensation of cesium”,Science 299, 232 (2003).
    [54] D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak,“Bose-Einstein condensation of atomic hydrogen”, Phys. Rev. Lett. 81, 3811 (1998).
    [55] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect,“A Bose-Einstein condensate of metastable atoms”,Science 292, 461 (2001).
    [56] F. Pereira Dos Santos, J. Léonard, Junmin Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation of metastable helium”, Phys. Rev. Lett. 86, 3459 (2001).
    [57] Y. Takasu, K. Honda, K. Komori, T. Kuwamoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki,“High-density trapping of cold ytterbium atoms by an optical dipole force”, Phys. Rev. Lett. 90, 023003 (2003).
    [58] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, F. Grimm, “Bose-Einstein condensation of molecules”, Science 13, 1706 (2003).
    [59] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A .J. Kerman, and W. Ketterle, “Condensation of pairs of fermionic atoms near a feshbach resonance”, Phys. Rev. Lett. 92, 120403 (2004).
    [60] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn and W. Ketterle, “Observation of interference between two bose condensates”, Science 275, 637 (1997).
    [61] M. Lewenstein and L. You,“Quantum phase diffusion of a Bose-Einstein condensate”,Phys. Rev. Lett. 77, 3489 (1996).
    [62] M. Naraschewski, H. Wallis, A. Schenzle,J. I. Cirac and P. Zoller, “Interference of Bose condensates”, Phys. Rev. A 54, 2185 (1996).
    [63] J. I. Cirac, C. W. Gardiner, M. Naraschewski, and P. Zoller, “Continuous observation of interference fringes from Bose condensates”, Phys. Rev.A 54, R3714 (1996).
    [64] T. Wong, M. J. Collett, and D. F. Walls , “Interference of two Bose-Einstein condensates with collisions”, Phys. Rev. A 54, R3718 (1996).
    [65] J. Javanainen and S. M. Yoo, “Quantum phase of a Bose-Einstein condensate with an arbitrary number of atoms”, Phys. Rev. Lett. 76, 161 (1996).
    [66] Y. Castin and J. Dalibard, “Relative phase of two Bose-Einstein condensates”, Phys. Rev. A 55, 4330 (1997).
    [67] X. X. Yang and Y. Wu, “Interference of two Bose-Einstein condensates with collision and dissipation”, Phys. Lett. A 253,219 (1999).
    [68] H. Hanbury-Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius”, Nature 178, 1046 (1956).
    [69] H. W. Xiong, S. J. Liu and M. S. Zhan, “Josephson effect and quantum merging of two Bose superfluids”, Phys. Rev. B 73, 224505 (2006).
    [70] H. W. Xiong, S. J. Liu and M. S. Zhan, “Density expectation value of two independent interacting Bose-Einstein condensates”, cond-mat/0507354 (2005).
    [71] H. W. Xiong and S. J. Liu, “Interference effects between two initially independent Bose-condensed gases”, cond-mat/0507509 (2005).
    [72] H. W. Xiong, S. J. Liu and M. S. Zhan, “Interaction-induced interference for two independent Bose–Einstein condensates”, New. J. Phys. 8, 245 (2006).
    [73] 熊宏伟,超冷玻色和费米气体的相干性质研究,博士论文,中国科学院武汉物理与数学研究所,2006.
    [74] L. S. Cederbaum, A. I. Streltsov, Y. B. Band, O. E. Alon, “Interferences in the density of two initially independent Bose-Einstein condensates”,cond-mat/0607556 (2006).
    [75] I. Bloch, “Ultracold quantum gases in optical lattice”, Nature Physics 1, 23 (2005).
    [76] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, “Boson localization and the superfluid-insulator transition”,Phys. Rev. B 40, 546 (1989); D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices”, Phys. Rev. Lett. 81, 3108 (1998).
    [77] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms”,Nature 415, 39 (2002).
    [78] H. T. C. Stoof, “Bose-Einstein condensationBreaking up a superfluid”, Nature 415, 25 (2002).
    [79] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, “Vortex formation in a stirred Bose-Einstein condensate”, Phys. Rev. Lett. 84, 806 (2000).
    [80] R. J. Donnelly, “Quantized vortices in helium II ”, Cambridge University Press, Cambridge, (1991).
    [81] J. E. Williams and M. J. Holland, “Preparing topological states of a Bose-Einstein condensate”, Nature 401, 568 (1999).
    [82] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, “Vortices in a Bose-Einstein condensate”,Phys. Rev. Lett. 83, 2498 (1999).
    [83] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, “Observation of vortex lattices in Bose-Einstein condensates”, Science 292, 476 (2001).
    [84] F. Dalfovo and S. Stringari, “Shape deformations and angular-momentum transfer in trapped Bose-Einstein condensates”, Phys. Rev. A 63, 011601 (2000).
    [85] A. Recati, F. Zambelli, and S. Stringari, “Overcritical rotation of a trapped Bose-Einstein condensate”, Phys. Rev. Lett. 86, 377 (2001).
    [86] K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard, “Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation”, Phys. Rev. Lett. 86, 4443 (2001).
    [87] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, W. Ketterle,“Vortices and superfluidity in a strongly interacting Fermi gas”, Nature 435, 1047 (2005).
    [88] N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn,“Quantum phases of vortices in rotating Bose-Einstein condensates”,Phys. Rev. Lett. 87, 120405 (2001).
    [89] Tin-Lun Ho, “Bose-Einstein condensates with large number of vortices”, Phys. Rev. Lett. 87, 060403 (2001).
    [90] G. Baym and C. J. Pethick, “Vortex core structure and global properties of rapidly rotating Bose-Einstein condensates”, Phys. Rev. A 69, 043619 (2004).
    [91]G. Watanabe, G. Baym, and C. J. Pethick, “Landau levels and the Thomas-Fermi structure of rapidly rotating Bose-Einstein condensates”, Phys. Rev. Lett. 93, 190401 (2004).
    [92] G. Watanabe, S. Andrew Gifford, G. Baym, and C. J. Pethick, “Structure of vortices in rotating Bose-Einstein condensates” , Phys. Rev. A 74, 063621 (2006).
    [93] G. Baym, C. J. Pethick, S. Andrew Gifford, and G. Watanabe, “Nonuniform vortex lattices in inhomogeneous rotating Bose-Einstein condensates”, Phys. Rev. A 75, 013602 (2007).
    [94] M. Cozzini, L. P. Pitaevskii, and S. Stringari, “Tkachenko oscillations and the compressibility of a rotating Bose-Einstein condensate”, Phys. Rev. Lett. 92, 220401 (2004)
    [95] J. Sinova, C. B. Hanna, and A. H. MacDonald, “Quantum melting and absence of Bose-Einstein condensation in two-dimensional vortex matter”,Phys. Rev. Lett. 89, 030403 (2002).
    [96] M. Snoek and H. T. C. Stoof,“Vortex-lattice melting in a one-dimensional optical lattice”,Phys. Rev. Lett. 96, 230402 (2006).
    [97] J. -P. Martikainen and H. T. Stoof, “Quantum fluctuations of a vortex in an optical lattice”, Phys. Rev. Lett. 91, 240403 (2003).
    [98] C. Lee, T. J. Alexander, and Y. S. Kivshar. “Melting of discrete vortices via quantum fluctuations”, Phys. Rev. Lett. 97, 180408 (2006).
    [99] L.-C. Crasovan, V. Vekslerchik, V. M. Pérez-García, J. P. Torres, D. Mihalache,and L. Torner, “Stable vortex dipoles in nonrotating Bose-Einstein condensates”, Phys. Rev. A 68, 063609 (2003).
    [100] Q. Zhou and H. Zhai, “Vortex dipole in a trapped atomic Bose-Einstein condensate”, Phys. Rev. A 70, 043619 (2004).
    [101] J. W. Reijnders and R. A. Duine, “Pinning of vortices in a Bose-Einstein condensate by an optical lattice”, Phys. Rev. Lett. 93, 060401 (2004).
    [102] A. A. Burkov and Eugene Demler, “Vortex-peierls states in optical lattices”, Phys. Rev. Lett. 96, 180406 (2006).
    [103] R. Bhat, B. M. Peden, B. T. Seaman, M. Kr?mer, L. D. Carr, and M. J. Holland, “Quantized vortex states of strongly interacting bosons in a rotating optical lattice”, Phys. Rev. A 74, 063606 (2006).
    [104] U. R. Fischer and G. Baym, “Vortex states of rapidly rotating dilute Bose-Einstein condensates ”, Phys. Rev. Lett. 90, 140402 (2003).
    [105] P. Engels, I. Coddington, P. C. Haljan, V. Schweikhard, and E. A. Cornell, “Observation of long-lived vortex aggregates in rapidly rotating Bose-Einstein condensates ”, Phys. Rev. Lett. 90, 170405 (2003).
    [106] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, “Fast rotation of a Bose-Einstein condensate”, Phys. Rev. Lett. 92, 050403 (2004).
    [107] A. L. Fetter, “Lowest-Landau-level description of a Bose-Einstein condensate in a rapidly rotating anisotropic trap”, Phys. Rev. A 75, 013620 (2007).
    [108] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S. L. Rolston, and W. D. Phillips,“Coherent splitting of Bose-Einstein condensed atoms with optically induced Bragg diffraction”, Phys. Rev. Lett. 82, 871 (1999).
    [109] L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, W. D. Phillips, “Four-wave mixing with matter waves”, Nature 398, 218 (1999).
    [1] L. Onsager, Suppl. Nuovo cimento 2, 249 (1949).
    [2] L. Onsager, Suppl. Nuovo cimento 2, 281 (1949).
    [3] R. P. Feynman, Progress in Low Temperature Physics,Vol. 1, ed. C. G. Gorter, North-Holland, Amsterdam (1955) pp. 17-51.
    [4] C. J. Pethick and H. Smith, “Bose-Einstein condensation in dilute gases”, Cambridge, Cambridge University Press, 2002.
    [5] R. J. Donnelly, “Quantized vortices in Helium II”, Cambridge University Press, Cambridge, (1991).
    [6] V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksp. Teor.Fiz. 34,1240 (1958) [ Sov. Phys. JEPT 7, 858 (1958)].
    [7] E. P. Gross, “Hydrodynamics of a superfluid condensate”, J. Math. Phys. 4, 195 (1963).
    [8] D. S. Rokhsar, “Vortex stability and persistent currents in trapped Bose gases”, Phys. Rev. Lett. 79, 2164 (1997).
    [9] E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Maragò, and C. J. Foot, “Vortex nucleation in Bose-Einstein condensates in an oblate, purely magnetic potential”, Phys. Rev. Lett. 88, 010405 (2001).
    [10] P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, “Driving Bose-Einstein-condensate vorticity with a rotating normal cloud”, Phys. Rev. Lett. 87, 210403 (2001).
    [11] B. Jackson, J. F. McCann, and C. S. Adams, “Vortex formation in dilute inhomogeneous Bose-Einstein condensates”, Phys. Rev. Lett. 80, 3903 (1998).
    [12] L. Dobrek, M. Gajda, M. Lewenstein, K. Sengstock, G. Birkl, and W. Ertmer, “Optical generation of vortices in trapped Bose-Einstein condensates”, Phys. Rev. A 60, R3381 (1999).
    [13] J. E. Williams, M. J. Holland, “Preparing topological states of a Bose-Einstein condensate”, Nature 401, 568 (1999).
    [14] K.-P. Marzlin and W. Zhang and E. M. Wright, “Vortex coupler for atomic Bose-Einstein condensates”, Phys. Rev. Lett. 79, 4728 (1997).
    [15] R. Dum, J. I. Cirac, M. Lewenstein, and P. Zoller, “Creation of dark solitons and vortices in Bose-Einstein condensates”, Phys. Rev. Lett. 80, 2972 (1998).
    [16] B. P. Anderson , P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W. Clark, and E. A. Cornell, “Watching dark solitons decay into vortex rings in a Bose-Einstein condensate”,Phys. Rev. Lett. 86, 2926 (2001).
    [17] Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, “Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose-Einstein condensate”, Science 293, 663 (2001).
    [18] M. Olshanii and M. Naraschewski, “Berry's phase induced Bose-Einstein condensation into a vortex state” Preprint cond-mat/9811314 (1998).
    [19] K. G. Petrosyan and L. You, “Topological phases and circulating states of Bose-Einstein condensates”, Phys. Rev. A 59, 639 (1999).
    [20] J. R. Anglin and W. H. Zurek, “Vortices in the wake of rapid Bose-Einstein condensation”, Phys. Rev. Lett. 83, 1707 (1999).
    [21] P. D. Drummond and J. F. Corney, “Quantum dynamics of evaporatively cooled Bose-Einstein condensates”, Phys. Rev. A 60, R2661 (1999).
    [22] J. Ruostekoski, “Topological phase preparation in a pair of atomic Bose-Einstein condensates”, Phys. Rev. A 61, 041603 (2000).
    [23] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, “Vortices in a Bose-Einstein condensate”,Phys. Rev. Lett. 83, 2498 (1999).
    [24] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, “Vortex formation in a stirred Bose-Einstein condensate”, Phys. Rev. Lett. 84, 806 (2000).
    [25] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, “Observation of vortex lattices in Bose-Einstein condensates”, Science 292, 476 (2001).
    [26] J.-P. Martikainen, K.-A. Suominen, L. Santos, T. Schulte, and A. Sanpera, “Generation and evolution of vortex-antivortex pairs in Bose-Einstein condensates”, Phys. Rev. A 64, 063602 (2001).
    [27] B. Jackson, J. F. McCann, and C. S. Adams, “Vortex formation in dilute inhomogeneous Bose-Einstein condensates”, Phys. Rev. Lett. 80, 3903 (1998).
    [28] T. Winiecki, J. F. McCann, and C. S. Adams, “Pressure drag in linear and nonlinear quantum fluids”, Phys. Rev. Lett. 82, 5186 (1999)
    [29] B. M. Caradoc-Davies, R. J. Ballagh, and K. Burnett, “Coherent dynamics of vortex formation in trapped Bose-Einstein condensates”, Phys. Rev. Lett. 83, 895 (1999).
    [30] L.-C. Crasovan, V. Vekslerchik, V. M. Pérez-García, J. P. Torres, D. Mihalache, and L. Torner, “Stable vortex dipoles in nonrotating Bose-Einstein condensates”, Phys. Rev. A 68, 063609 (2003).
    [31] Q. Zhou and H. Zhai, “Vortex dipole in a trapped atomic Bose-Einstein condensate”, Phys. Rev. A 70, 043619 (2004).
    [32] M. M?tt?nen, S. M. M. Virtanen, T. Isoshima, and M. M. Salomaa, “Stationary vortex clusters in nonrotating Bose-Einstein condensates”, Phys. Rev. A , 71, 033626 (2005).
    [33] I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. ?liwa, “Motion of vortex lines in quantum mechanics”, Phys. Rev. A, 61, 032110 (2000).
    [34] M. Tsubota, K. Kasamatsu, and M. Ueda, “Vortex lattice formation in a rotating Bose-Einstein condensate”, Phys. Rev. A 65, 023603 (2002).
    [35] L.-C. Crasovan, G. Molina-Terriza, J. P. Torres, L. Torner, V. M. Pérez-García, and D. Mihalache, “Globally linked vortex clusters in trapped wave fields”, Phys. Rev. E 66, 036612 (2002).
    [36] L.-C. Crasovan, V. M. Pérez-García, I. Danaila, D. Mihalache, and L. Torner, “Three-dimensional parallel vortex rings in Bose-Einstein condensates”, Phys. Rev. A 70, 033605 (2004).
    [37] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases”, Rev. Mod. Phys. 71, 463 (1999).
    [38] D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Collective excitations of a Bose-Einstein condensate in a dilute gas”, Phys. Rev. Lett. 77, 420 (1996).
    [39] F. Chevy, V. Bretin, P. Rosenbusch, K. W. Madison, and J. Dalibard, “Transverse breathing mode of an elongated Bose-Einstein condensate”, Phys. Rev. Lett. 88, 250402 (2002).
    [40] S. A. Morgan, M. Rusch, D. A. W. Hutchinson, and K. Burnett, “Quantitative test of thermal field theory for Bose-Einstein condensates”, Phys. Rev. Lett. 91, 250403 (2003).
    [41] K. T. Kapale and J. P. Dowling, “Vortex Phase Qubit: Generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condensates via optical angular momentum beams”, Phys. Rev. Lett. 95, 173601 (2005).
    [1] R. C?té, H. Friedrich, and J. Trost, “Reflection above potential steps”, Phys. Rev. A 56, 1781 (1997).
    [2] H. Friedrich, G. Jacoby, and C. Meister, “Quantum reflection by Casimir–van der Waals potential tails”, Phys. Rev. A 65, 032902 (2002).
    [3] V. U. Nayak, D. O. Edwards, and N. Masuhara, “Scattering of 4He atoms grazing the liquid-4He surface”, Phys. Rev. Lett. 50, 990 (1983).
    [4] J. J. Berkhout, O. J. Luiten, I. D. Setija, T. W. Hijmans, T. Mizusaki, and J. T. M. Walraven, “Quantum reflection: Focusing of hydrogen atoms with a concave mirror”, Phys. Rev. Lett. 63, 1689 (1989).
    [5] J. M. Doyle, J. C. Sandberg, I. A. Yu, Claudio L. Cesar, D. Kleppner, and T. J. Greytak, “Hydrogen in the submillikelvin regime: Sticking probability on superfluid 4He”, Phys. Rev. Lett. 67, 603 (1991).
    [6] I. A. Yu, J. M. Doyle, J. C. Sandberg, C. L. Cesar, D. Kleppner, and T. J. Greytak, “Evidence for universal quantum reflection of hydrogen from liquid 4He”, Phys. Rev. Lett. 71, 1589 (1993).
    [7] A. Anderson, S. Haroche, E. A. Hinds, W. Jhe, D. Meschede, and L. Moi, “Reflection of thermal Cs atoms grazing a polished glass surface”, Phys. Rev. A 34, 3513(R) (1986).
    [8] F. Shimizu, “Specular reflection of very slow metastable neon atoms from a solid surface”, Phys. Rev. Lett. 86, 987 (2001).
    [9] F. Shimizu and J. Fujita, “Giant quantum reflection of neon atoms from a ridged silicon surface”, J. Phys. Soc. Jpn. 71, 5 (2002).
    [10] F. Shimizu and J. I. Fujita, “Reflection-type hologram for atoms”, Phys. Rev. Lett. 88, 123201 (2002).
    [11] V. Druzhinina and M. DeKieviet, “Experimental observation of quantum reflection far from threshold”, Phys. Rev. Lett. 91, 193202 (2003).
    [12] T. A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. E. Pritchard, and W. Ketterle“Quantum reflection from a solid surface at normal incidence”, Phys. Rev. Lett. 93, 223201 (2004).
    [13] H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces”, Phys. Rev. 73, 360 (1948).
    [14] T. A. Pasquini, M. Saba, G.. -B. Jo, Y. Shin, W. Ketterle, and D. E. Pritchard, T. A. Savas, N. Mulders, “Low velocity quantum reflection of Bose-Einstein condensates”, Phys. Rev. Lett. 97, 093201 (2006).
    [15] S. Kallush, B. Segev, and R. C?té, “Evanescent-wave mirror for ultracold diatomic polar molecules”, Phys. Rev. Lett. 95, 163005 (2005).
    [16] B. Segev, R. C?té, and M. G. Raizen, “Quantum reflection from an atomic mirror”, Phys. Rev. A 56, R3350 (1997).
    [17] R. C?té, B. Segev, and M. G. Raizen, “Retardation effects on quantum reflection from an evanescent-wave atomic mirror”, Phys. Rev. A 58, 3999 (1998).
    [18] I. Villó-Pérez, I. Abril, R. Garcia-Molina, and N. R. Arista, “Dynamical interaction effects on an electric dipole moving parallel to a flat solid surface”, Phys. Rev. A 71, 052902 (2005).
    [19] A. Y. Voronin, P. Froelich, and B. Zygelman, “Interaction of ultracold antihydrogen with a conducting wall” Phys. Rev. A 72, 062903 (2005).
    [20] C. Lee and J. Brand, “Enhanced quantum reflection of matter-wave solitons”, Euro. phys. Lett. 73, 321(2006).
    [21] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, “Vortices in a Bose-Einstein condensate”, Phys. Rev. Lett. 83, 2498 (1999).
    [22] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, “Vortex formation in a stirred Bose-Einstein condensate”, Phys. Rev. Lett. 84, 806 (2000).
    [23] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, “Observation of vortex lattices in Bose-Einstein condensates”, Science 292, 476 (2001).
    [24] R. G. Scott, A. M. Martin, T. M. Fromhold, and F. W. Sheard, “Anomalous quantum reflection of Bose-Einstein condensates from a silicon surface: The role of dynamical excitations”, Phys. Rev. Lett. 95, 073201 (2005).
    [25] M. Liu, L. H. Wen, H. W. Xiong, and M. S. Zhan, “Structure and generation of the vortex-antivortex superposed state in Bose-Einstein condensates”, Phys. Rev. A 73, 063620 (2006).
    [1] F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases”, Rev. Mod. Phys. 71, 463 (1999).
    [2] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn and W. Ketterle, “Observation of Interference between two Bose condensates”, Science 275, 637 (1997).
    [3] B. P. Anderson and M. A. Kasevich, “Macroscopic quantum interference from atomic tunnel arrays”, Science 282, 1686 (1998).
    [4] S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo and M. P. Tosi, “Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential”, Phys. Rev. Lett. 86, 4447 (2001).
    [5] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi and M. Inguscio, “Josephson junction arrays with Bose-Einstein condensates”, Science 293, 843 (2001).
    [6] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda and M. A. Kasevich, “Squeezed states in a Bose-Einstein condensate”, Science 291, 2386 (2001).
    [7] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms”, Nature 415, 39 (2002).
    [8] P. Pedri, L. Pitaevskii, S. Stringari, C. Fort, S. Burger, F. S. Cataliotti, P. Maddaloni, F. Minardi and M. Inguscio, “Expansion of a coherent array of Bose-Einstein condensates”, Phys. Rev. Lett. 87, 220401 (2001).
    [9] H. Xiong, S. Liu, G. Huang and Z. Xu, “Evolution of a coherent array of Bose-Einstein condensates in a magnetic trap”, J. Phys. B 35, 4863 (2002).
    [10] S. Liu, H. Xiong, G. Huang and Z. Xu, “Interference patterns of Bose-condensed gases in a two-dimensional optical lattice”, J. Phys. B 36, 2083 (2003).
    [11] J. H. Muller, O. Morsch, M. Cristiani, D. Ciampini and E. Arimondo, “Hitting Bose-Einstein condensates with a comb: evolution of interference patterns inside amagnetic trap”, J. Opt. B 5, S38 (2003).
    [12] Y. Castin and R. Dum, “Bose-Einstein condensates in time dependent traps”, Phys. Rev. Lett. 77, 5315 (1996).
    [1] K.-A. Suominen, B. M. Garraway, and S. Stenholm, “Wave-packet model for excitation by ultrashort pulses”, Phys. Rev. A 45, 3060 (1992).
    [2] B. M. Garraway and K.-A. Suominen, “Wave packet dynamics: New physics and chemistry in femto-time”, Reports on Progress in Physics 58, 365 (1995).
    [3] B. Jackson, J. F. McCann and C. S. Adams, “Output coupling and flow of a dilute Bose–Einstein condensate”, J. Phys. B: At. Mol. Opt. Phys. 31, 4489 (1998).
    [4] G. M. Muslu and H. A. Erbay, “A split-step Fourier method for the complex modified korteweg-de vries equation”, Computers and Mathematics with Applications 45, 503 (2003).
    [5] W. Z. Bao, D. Jaksch, P. A. Markowich, “Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation”, Journal of Computational Physics 187, 318 (2003).
    [6] J. Javanainen1 and J. Ruostekoski, “Split-step Fourier methods for the Gross-Pitaevskii equation”, arXiv:cond-mat/0411154.
    [7] N. Parker, “Numerical studies of vortices and dark solitons in atomic Bose-Einstein condensates”, Ph.D. Thesis, University of Durham, 2004.
    [8] H. Gould and J. Tobochnik, “Introduction to computer simulation methods” (Addison Wesley, New-York, 1995).
    [9] D. Blume, M. Lewerenz, P. Niyaz, and K. B. Whaley, “Excited states by quantum Monte Carlo methods: Imaginary time evolution with projection operators”, Phys. Rev. E 55, 3664 (1997).
    [10] A. Minguzzi, S. Succi, F. Toschi, M. P. Tosi, and P. Vignolo, “Numerical methods for atomic quantum gases with applications to Bose-Einstein condensates and to ultracold fermions”, Phys. Rep. 395, 223 (2004).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700