用户名: 密码: 验证码:
直到耗散尺度的湍流与复杂化学相互作用数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实际火灾是湍流燃烧过程,而在湍流燃烧中湍流流动与复杂化学是时空多尺度耦合作用的。研究湍流与复杂化学的相互作用是一项既有挑战也十分有意义的课题。湍流的空间尺度可以分为含能尺度、惯性子区尺度和耗散尺度三个层次。湍流涡旋从最小的耗散尺度开始就与火焰有着强烈的相互作用。
     数值模拟研究湍流与复杂化学的相互作用需要解决耦合详细化学反应机理的耗散尺度湍流反应流模拟,和海量模拟结果诊断分析的两个难题。本文采用一维湍流模型(one-dimensional turbulence, ODT)和化学反应爆炸模式分析方法(chemical explosive mode analysis, CEMA)解决了这两个难题,建立了ODT+CEMA分析湍流与复杂化学相互作用的数值分析平台,并对典型灭火剂与氢气射流火焰的相互作用进行了数值模拟和深入分析。
     复杂化学研究中,详细化学反应机理的分析及简化对实现湍流耦合复杂化学的数值模拟十分重要。本文中采用关系图法对典型碳氢燃料反应机理进行了简化研究。不但研究了在保持一定计算精度情况下简化机理能达到的最小规模,还深入分析了方法参数对简化结果的影响,并且引入强关系组分群的概念,分析了复杂化学反应机理中强关系组分群的聚集、分布情况。为了加快反应机理的计算,本文还做了利用图形显卡并行计算求解大型化学反应机理的研究,在大型机理情况下计算加速效果明显。
     一维湍流模型ODT,可以实现耦合复杂化学的耗散尺度湍流反应流模拟。本文介绍了ODT模型的计算框架、湍流模拟机制和数值求解方法。并用此方法模拟分析了氢气射流火焰,以及添加典型灭火剂后的射流火焰基本特性。
     高精度的湍流反应流模拟会产生海量的计算数据,传统采用典型系统参数如温度、关键组分的浓度,甚至一阶导数的分析方法已经不适合处理如此庞大、精细的计算结果。化学反应爆炸模式分析方法是一种分析湍流反应流局部系统特征值的方法。本文系统介绍了化学反应爆炸模式分析方法的数学基础和基于ODT模拟数据的湍流反应流信息分析方法。
     通过对添加灭火剂的氢气空气预混热自燃模型的化学反应爆炸模式分析发现,系统反应进行最剧烈的时候也是最大正特征值发生明显变化的时刻。添加了灭火剂后,热自燃时间不但明显推迟,其反应进程和最大正特征值的突变性更加明显。化学反应爆炸模式分析可以直观的观察到湍流反应流局部系统状态的变化,对诊断湍流火焰中的热自燃、熄火、重燃等行为十分有效。
     局部Damkohler数是控制火焰结构,研究湍流与复杂化学相互作用的重要参数。在本文分析中重新定义了Damkohler数。通过分析湍流火焰在新Da数空间的散点分布发现:新定义的Da数是判定局部熄火的良好标准,而灭火剂的作用途径主要是通过增大局部反应系统的热自燃时间,进而减小Da数,增加熄火概率。
     通过分析,本文还解释了Re数增加时灭火剂灭火效果增加的原因。研究结果明确指出了主要组分和主要基元反应在射流火焰中的作用区域,以及在火焰抑制效果不同时,火焰中心区域主要作用组分和基元反应的差异。
     本文的主要创新点和贡献在于:为研究湍流与复杂化学相互作用,建立了ODT+CEMA的数值分析平台,提供了一种分析湍流与复杂化学相互作用的新方法。
The real fire is turbulent combustion process. The turbulence interacts with complex chemistry on multi-scale space. The research about interactions between turbulence and complex chemistry is a task of great importance and challenge. The spatial scales of turbulence can be divided into energetic scale, inertial sub-range scale and dissipation scale. The strong interaction between the turbulence and complex chemistry starts from the smallest scale of the turbulence, the dissipation scale.
     There are two important issues to deal with to discuss the interactions between turbulence and complex chemistry:the high accuracy simulation of turbulent flame coupled with detailed chemical reaction mechanism and the challenge of systematically and comprehensively extracting salient information from the massive output using rigorous computational utilities. In this paper, one-dimensional turbulence model and chemical explosive mode analysis, CEMA, were used to solve these two problems. The new computation platform built in this paper is useful to discuss the interactions between turbulence and complex chemistry. Simulations of the typical hydrogen jet flame and the effect of extinguishing agent is made to introduce the validation of the new computation platform.
     The analysis and reduction of the detailed reaction mechanism is very important for the rigorous turbulence combustion simulation. The robustness and usefulness of the two mechanism reduction methods, direct relation graph method and directed relation graph with error propagation method, was analyzed in this paper. A new concept of "strong ties species group" was introduced in this paper. The analysis of the numbers of the strong ties species group clearly showed the aggregation behavior of the species in the detailed mechanism. In this paper, the research about the parallel computing for detailed mechanism with the Graphics Processing Unit (GPU) was also introduced.
     One dimensional turbulence model, or ODT for short, can achieve dissipation scale turbulence simulation coupled with detailed chemical mechanism. In this paper, the computing framework, turbulence mechanism and numerical solution method of the ODT model were introduced.
     Scientific method is needed to process the huge datasets that was produced by the turbulence simulation with detailed chemical kinetic mechanisms. The chemical explosive mode analysis (CEMA) is a systematical method to detect ignition, extinction, premixed flame fronts and the control species and reactions in the flame. The math theory and application methods coupled with ODT model was illustrated in this paper.
     The CEMA of auto-ignition and ODT simulations with fire extinguishment agent showed that the CEMA is a useful method to identify the change point of auto-ignition and extinction. The results showed that the agents can significantly delay the ignition time and reduce the chemical explosive mode. The fire extinguishment agent can lower the Da number of the local system. When the Da number is lower than1.0, the flame will extinguish.
     The CEMA of the hydrogen jet flame clearly showed the major control variables and reactions in different acting areas.
     The main contribution and innovation can be summarized as follows:a new numerical analysis platform named ODT+CEMA was built to analyze the interactions between turbulence and complex chemistry.
引文
[1]潘一平,周岚,倪天晓,2012.我国的火灾形势统计分析.消防技术与产品信息2,p.63-66
    [2]马崇科,2012.我国火灾形势与消防科学技术的发展.科技创新导报15,p.230-230
    [3]蔡晶菁,2012.火灾与社会经济环境的多元回归分析.消防科学与技术31,p.1124-1127
    [4]张兆顺,崔桂香,许春晓,2008.湍流大涡数值模拟的理论和应用.清华大学出版社,北京.
    [5]Cao, R.R., Pope, S.B.,2005. The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames. Combustion and Flame 143, p.450-470.
    [6]http://kinetics.nist.gov/kinetics/index.jsp.
    [7]https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion.
    [8]http://www.ca.sandia.gov/HiTempThermo.
    [9]http://ame-www.usc.edu/research/combustion/combustionkinetics/.
    [10]http://www.chem.leeds.ac.uk/Combustion/Combustion.html.
    [11]Peters, N.,2009. Multiscale combustion and turbulence. Proceedings of the Combustion Institute 32, p.1-25.
    [12]安江涛,蒋勇,邱榕,李山岭,胡勇,2011.CO_2稀释及合成气构成对预混燃烧特性的影响.燃烧科学与技术17,p.437442
    [13]www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-n_heptane_version_3.
    [14]Vajda, S., Valko, P., Turanyi, T.,1985. Principal Component Analysis of Kinetic-Models. International Journal of Chemical Kinetics 17, p.55-81.
    [15]Lam, S.H.,1993. Using Csp to Understand Complex Chemical-Kinetics. Combustion Science and Technology 89, p.375-404.
    [16]Lam, S.H.,1994. Reduced Chemistry Modeling in Reacting Flows. International Journal of Modern Physics C-Physics and Computers 5, p.225-227.
    [17]Lam, S.H., Goussis, D.A.,1994. The Csp Method for Simplifying Kinetics. International Journal of Chemical Kinetics 26, p.461-486.
    [18]Maas, U., Pope, S.B.,1992. Simplifying Chemical-Kinetics-Intrinsic Low-Dimensional Manifolds in Composition Space. Combustion and Flame 88, p.239-264.
    [19]Schmidt, D., Blasenbrey, T., Maas, U.,1998. Intrinsic low-dimensional manifolds of strained and unstrained flames. Combustion Theory and Modelling 2, p.135-152.
    [20]Blasenbrey, T., Maas, U.,2000. ILDMs of higher hydrocarbons and the hierarchy of chemical kinetics. Proceedings of the Combustion Institute 28, p.1623-1630.
    [21]Yan, X., Maas, U.,2000. Intrinsic low-dimensional manifolds of heterogeneous combustion processes. Proceedings of the Combustion Institute 28, p.1615-1621.
    [22]Konig, K., Maas, U.,2005. Sensitivity of intrinsic low-dimensional manifolds with respect to kinetic data. Proceedings of the Combustion Institute 30, p.1317-1323.
    [23]Bykov, V., Maas, U.,2007. Extension of the ILDM method to the domain of slow chemistry. Proceedings of the Combustion Institute 31, p.465-472.
    [24]Maas, U., Bykov, V.,2011. The extension of the reaction/diffusion manifold concept to systems with detailed transport models. Proceedings of the Combustion Institute 33, p.1253-1259.
    [25]Luo, Z.Y., Plomer, M., Lu, T.F., Som, S., Longman, D.E., Sarathy, S.M., Pitz, W.J.,2012. A reduced mechanism for biodiesel surrogates for compression ignition engine applications. Fuel 99, p. 143-153.
    [26]Luo, Z.Y., Plomer, M., Lu, T.F., Som, S., Longman, D.E.,2012. A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications. Combustion Theory and Modelling 16, p.369-385.
    [27]Lu, T.F., Law, C.K.,2008. Strategies for mechanism reduction for large hydrocarbons:n-heptane. Combustion and Flame 154, p.153-163.
    [28]Lu, T.F., Law, C.K.,2005. A directed relation graph method for mechanism reduction. Proceedings of the Combustion Institute 30, p.1333-1341.
    [29]张兆顺,崔桂香,许春晓,2005.湍流理论与模拟.清华大学出版社,北京.
    [30]Mueller, M.E., Iaccarino, G., Pitsch, H.,2013. Chemical kinetic uncertainty quantification for Large Eddy Simulation of turbulent nonpremixed combustion. Proceedings of the Combustion Institute 34, p.1299-1306.
    [31]Lecocq, G., Richard, S., Colin, O., Vervisch, L.,2011. Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion. Part 2:Early flame development after sparking. Combustion and Flame 158, p.1215-1226.
    [32]Andrade, F.O., Mura, A.,2011. Large Eddy Simulation of Turbulent Premixed Combustion at Moderate Damkohler Numbers Stabilized in a High Speed Flow (vol 183, pg 645,2011). Combustion Science and Technology 183, p.967-967.
    [33]Zhou, L.X., Hu, L.Y., Wang, F.,2008. Large-eddy simulation of turbulent combustion using different combustion models. Fuel 87, p.3123-3131.
    [34]Pitsch, H.,2006. Large-eddy simulation of turbulent combustion. Annual Review of Fluid Mechanics 38, p.453-482.
    [35]Oefelein, J.C.,2006. Large eddy simulation of turbulent combustion processes in propulsion and power systems. Progress in Aerospace Sciences 42, p.2-37.
    [36]Janicka, J., Sadiki, A.,2005. Large eddy simulation of turbulent combustion systems. Proceedings of the Combustion Institute 30, p.537-547.
    [37]Pope, S.B.,2004. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics 6, p.1-24.
    [38]Zhou, X.Y., Mahalingam, S.,2002. A flame surface density based model for large eddy simulation of turbulent nonpremixed combustion. Physics of Fluids 14, p. L77-L80.
    [39]Yang, D., Hu, L.H., Jiang, Y.Q., Huo, R., Zhu, S., Zhao, X.Y.,2010. Comparison of FDS predictions by different combustion models with measured data for enclosure fires. Fire Safety Journal 45, p.298-313.
    [40]Wen, J.X., Kang, K., Donchev, T., Karwatzki, J.M.,2007. Validation of FDS for the prediction of medium-scale pool fires. Fire Safety Journal 42, p.127-138.
    [41]Pope, N.D., Bailey, C.G.,2006. Quantitative comparison of FDS and parametric fire curves with post-flashover compartment fire test data. Fire Safety Journal 41, p.99-110.
    [42]Stephen, B.P.,2000. Turbulent Flow. Cambridge University Press, the United Kingdom.
    [43]Kerstein, A.R.,1999. One-dimensional turbulence Part 2. Staircases in double-diffusive convection. Dynamics of Atmospheres and Oceans 30, p.25-46.
    [44]Kerstein, A.R.,1999. One-dimensional turbulence:model formulation and application to homogeneous turbulence, sheer flows, and buoyant stratified flows. Journal of Fluid Mechanics 392, p. 277-334.
    [45]Kerstein, A.R.,1988. A Linear-Eddy Model of Turbulent Scalar Transport and Mixing. Combustion Science and Technology 60, p.391-421.
    [46]McDermott, R.J., Kerstein, A.R., Schmidt, R.C., Smith, P.J.,2005. The ensemble mean limit of the one-dimensional turbulence model and application to residual stress closure in finite volume large-eddy simulation. Journal of Turbulence 6, p.1-33
    [47]Kerstein, A.R., Ashurst, W.T., Wunsch, S., Nilsen, V.,2001. One-dimensional turbulence:vector formulation and application to free shear flows. Journal of Fluid Mechanics 447, p.85-109.
    [48]Gonzalez-Juez, E.D., Kerstein, A.R., Shih, L.H.,2011. Vertical mixing in homogeneous sheared stratified turbulence:A one-dimensional-turbulence study. Physics of Fluids 23, p.055106(1-12)
    [49]Gonzalez-Juez, E., Kerstein, A.R., Lignell, D.O.,2011. Fluxes across double-diffusive interfaces: a one-dimensional-turbulence study. Journal of Fluid Mechanics 677, p.218-254.
    [50]Kerstein, A.R., Wunsch, S.,2006. Simulation of a stably stratified atmospheric boundary layer using one-dimensional turbulence. Boundary-Layer Meteorology 118, p.325-356.
    [51]Wunsch, S., Kerstein, A.R.,2005. A stochastic model for high-Rayleigh-number convection. Journal of Fluid Mechanics 528, p.173-205.
    [52]Ricks, A.J., Hewson, J.C., Kerstein, A.R., Gore, J.P., Tieszen, S.R., Ashurst, W.T.,2010. A Spatially Developing One-Dimensional Turbulence (Odt) Study of Soot and Enthalpy Evolution in Meter-Scale Buoyant Turbulent Flames. Combustion Science and Technology 182, p.60-101.
    [53]Lignell, D.O., Rappleye, D.S.,2012. One-dimensional-turbulence simulation of flame extinction and reignition in planar ethylene jet flames. Combustion and Flame 159, p.2930-2943.
    [54]Punati, N., Sutherland, J.C., Kerstein, A.R., Hawkes, E.R., Chen, J.H.,2011. An evaluation of the one-dimensional turbulence model:Comparison with direct numerical simulations of CO/H-2 jets with extinction and reignition. Proceedings of the Combustion Institute 33, p.1515-1522.
    [55]Hewson, J.C., Kerstein, A.R.,2002. Local extinction and reignition in nonpremixed turbulent CO/H-2/N-2 jet flames. Combustion Science and Technology 174, p.35-66.
    [56]Yoo, C.S., Sankaran, R., Chen, J.H.,2009. Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow:flame stabilization and structure. Journal of Fluid Mechanics 640, p.453-481.
    [57]Jiang, Y., An, J.T., Qiu, R., Hu, Y., Zhu, N.,2013. Improved understanding of fire suppression mechanism with an idealized extinguishing agent. International Journal of Thermal Sciences 64, p. 22-28.
    [58]An, J.T., Jiang, Y., Ye, M.J., Qiu, R.,2013. One-dimensional turbulence simulations and chemical explosive mode analysis for flame suppression mechanism of hydrogen/air flames. International Journal of Hydrogen Energy 38, p.7528-7538.
    [59]Lu, T.F., Yoo, C.S., Chen, J.H., Law, C.K.,2010. Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow:a chemical explosive mode analysis. Journal of Fluid Mechanics 652, p.45-64.
    [60]Yoo, C.S., Lu, T.F., Chen, J.H., Law, C.K.,2011. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume:Parametric study. Combustion and Flame 158, p.1727-1741.
    [61]Luo, Z.Y., Yoo, C.S., Richardson, E.S., Chen, J.H., Law, C.K., Lu, T.F.,2012. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combustion and Flame 159, p.265-274.
    [1]岑可法,姚强,骆仲泱,李绚天,2002.高等燃烧学.浙江大学出版社.
    [2]Cao, R.R., Pope, S.B.,2005. The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames. Combustion and Flame 143, p.450-470.
    [3]http://www.ca.sandia.gov/HiTempThermo.
    [4]https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion.
    [5]http://ame-www.usc.edu/research/combustion/combustionkinetics/.
    [6]http://www.chem.leeds.ac.uk/Combustion/Combustion.html.
    [7]Gregory P. Smith, D.M.G., Michael Frenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei Qin http://www.me.berkeley.edu/gri_mech/.
    [8]Vajda, S., Valko, P., Turanyi, T.,1985. Principal Component Analysis of Kinetic-Models. International Journal of Chemical Kinetics 17, p.55-81.
    [9]Lam, S.H.,1993. Using Csp to Understand Complex Chemical-Kinetics. Combustion Science and Technology 89, p.375-404.
    [10]Lam, S.H.,1994. Reduced Chemistry Modeling in Reacting Flows. International Journal of Modern Physics C-Physics and Computers 5, p.225-227.
    [11]Lam, S.H., Goussis, D.A.,1994. The Csp Method for Simplifying Kinetics. International Journal of Chemical Kinetics 26, p.461-486.
    [12]Maas, U., Pope, S.B.,1992. Simplifying Chemical-Kinetics-Intrinsic Low-Dimensional Manifolds in Composition Space. Combustion and Flame 88, p.239-264.
    [13]Schmidt, D., Blasenbrey, T., Maas, U.,1998. Intrinsic low-dimensional manifolds of strained and unstrained flames. Combustion Theory and Modelling 2, p.135-152.
    [14]Blasenbrey, T., Maas, U.,2000. ILDMs of higher hydrocarbons and the hierarchy of chemical kinetics. Proceedings of the Combustion Institute 28, p.1623-1630.
    [15]Yan, X., Maas, U.,2000. Intrinsic low-dimensional manifolds of heterogeneous combustion processes. Proceedings of the Combustion Institute 28, p.1615-1621.
    [16]Konig, K., Maas, U.,2005. Sensitivity of intrinsic low-dimensional manifolds with respect to kinetic data. Proceedings of the Combustion Institute 30, p.1317-1323.
    [17]Bykov, V., Maas, U.,2007. Extension of the ILDM method to the domain of slow chemistry. Proceedings of the Combustion Institute 31, p.465-472.
    [18]Maas, U., Bykov, V.,2011. The extension of the reaction/diffusion manifold concept to systems with detailed transport models. Proceedings of the Combustion Institute 33, p.1253-1259.
    [19]Luo, Z.Y., Plomer, M., Lu, T.F., Som, S., Longman, D.E., Sarathy, S.M., Pitz, W.J.,2012. A reduced mechanism for biodiesel surrogates for compression ignition engine applications. Fuel 99, p. 143-153.
    [20]Luo, Z.Y., Plomer, M., Lu, T.F., Som, S., Longman, D.E.,2012. A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications. Combustion Theory and Modelling 16, p.369-385.
    [21]Lu, T.F., Law, C.K.,2008. Strategies for mechanism reduction for large hydrocarbons:n-heptane. Combustion and Flame 154, p.153-163.
    [22]Lu, T.F., Law, C.K.,2005. A directed relation graph method for mechanism reduction. Proceedings of the Combustion Institute 30, p.1333-1341.
    [23]Niemeyer, K.E., Sung, C.J., Raju, M.P.,2010. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis. Combustion and Flame 157, p.1760-1770.
    [24]www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-n_heptane_version_3.
    [25]www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-iso_octane_version_3.
    [26]Appleyard, J., Drikakis, D.,2011. Higher-order CFD and interface tracking methods on highly-Parallel MPI and GPU systems. Computers & Fluids 46, p.101-105.
    [27]Zoltan, H., Manfred, L.,2010. Performance of CFD Codes on CPU/GPU Clusters. Numerical Analysis and Applied Mathematics, Vols I-Iii 1281, p.1789-1792.
    [28]Jespersen, D.C.,2010. Acceleration of a CFD code with a GPU. Scientific Programming 18, p. 193-201.
    [29]Horvath, Z., Liebmann, M.,2010. Performance of CFD Codes on CPU/GPU Clusters. Numerical Analysis and Applied Mathematics, Vols I-Iii 1281, p.1789-1792.
    [30]Blazewicz, M., Kurowski, K., Ludwiczak, B., Napierala, K.,2010. Problems Related to Parallelization of CFD Algorithms on GPU, Multi-GPU and Hybrid Architectures. Numerical Analysis and Applied Mathematics, Vols I-Iii 1281, p.1301-1304.
    [31]Byrne, G.D., Dean, A.M.,1993. The Numerical-Solution of Some Kinetics Models with Vode and Chemkin-Ii. Computers & Chemistry 17, p.297-302.
    [32]Brown, P.N., Byrne, G.D., Hindmarsh, A.C.,1989. Vode-a Variable-Coefficient Ode Solver. Siam Journal on Scientific and Statistical Computing 10, p.1038-1051.
    [33]Shi, Y., Green, W.H., Wong, H.W., Oluwole, O.O.,2011. Redesigning combustion modeling algorithms for the Graphics Processing Unit (GPU):Chemical kinetic rate evaluation and ordinary differential equation integration. Combustion and Flame 158, p.836-847.
    [1]Peters, N.,2009. Multiscale combustion and turbulence. Proceedings of the Combustion Institute 32, p.1-25.
    [2]Mueller, M.E., Iaccarino, G., Pitsch, H.,2013. Chemical kinetic uncertainty quantification for Large Eddy Simulation of turbulent nonpremixed combustion. Proceedings of the Combustion Institute 34, p. 1299-1306.
    [3]Pouransari, Z., Vervisch, L., Johansson, A.V.,2013. Heat release effects on mixing scales of non-premixed turbulent wall-jets:A direct numerical simulation study. International Journal of Heat and Fluid Flow 40, p.65-80.
    [4]张兆顺,崔桂香,许春晓,2005.湍流理论与模拟.清华大学出版社,北京.
    [5]Pope, S.B.,2004. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics 6, p.1-24.
    [6]Zhou, L.X., Hu, L.Y., Wang, F.,2008. Large-eddy simulation of turbulent combustion using different combustion models. Fuel 87, p.3123-3131.
    [7]Pitsch, H.,2006. Large-eddy simulation of turbulent combustion. Annual Review of Fluid Mechanics 38, p.453-482.
    [8]Andrade, F.O., Mura, A.,2011. Large Eddy Simulation of Turbulent Premixed Combustion at Moderate Damkohler Numbers Stabilized in a High Speed Flow (vol 183, pg 645,2011). Combustion Science and Technology 183, p.967-967.
    [9]Lignell, D.O., Chen, J.H., Schmutz, H.A.,2011. Effects of Damkohler number on flame extinction and reignition in turbulent non-premixed flames using DNS. Combustion and Flame 158, p.949-963.
    [10]Venugopal, R., Abraham, J.,2008. A 2-D DNS investigation of extinction and reignition dynamics in nonpremixed flame-vortex interactions. Combustion and Flame 153, p.442-464.
    [11]Bedat, B., Egolfopoulos, F.N., Poinsot, T,1999. Direct numerical simulation of heat release and NOx formation in turbulent nonpremixed flames. Combustion and Flame 119, p.69-83.
    [12]Ashurst, W.T., Kerstein, A.R.,2005. One-dimensional turbulence:Variable-density formulation and application to mixing layers. Physics of Fluids 17, p.025107(1-26)
    [13]Kerstein, A.R.,2002. Turbulence in combustion processes:Modeling challenges. Proceedings of the Combustion Institute 29, p.1763-1773.
    [14]Kerstein, A.R., Dreeben, T.D.,2000. Prediction of turbulent free shear flow statistics using a simple stochastic model. Physics of Fluids 12, p.418-424.
    [15]Kerstein, A.R.,1999. One-dimensional turbulence:model formulation and application to homogeneous turbulence, sheer flows, and buoyant stratified flows. Journal of Fluid Mechanics 392, p. 277-334.
    [16]Kerstein, A.R.,1999. One-dimensional turbulence Part 2. Staircases in double-diffusive convection. Dynamics of Atmospheres and Oceans 30, p.25-46.
    [17]Kerstein, A.R.,2001. Kinematics of small scale anisotropy in turbulence. Physical Review E 64, p.
    [18]Hewson, J.C., Kerstein, A.R.,2001. Stochastic simulation of transport and chemical kinetics in turbulent CO/H-2/N-2 flames. Combustion Theory and Modelling 5, p.669-697.
    [19]Echekki, T, Kerstein, A.R., Dreeben, T.D., Chen, J.Y.,2001.'One-dimensional turbulence' simulation of turbulent jet diffusion flames:Model formulation and illustrative applications. Combustion and Flame 125, p.1083-1105.
    [20]Lignell, D.O., Rappleye, D.S.,2012. One-dimensional-turbulence simulation of flame extinction and reignition in planar ethylene jet flames. Combustion and Flame 159, p.2930-2943.
    [21]Punati, N., Sutherland, J.C., Kerstein, A.R., Hawkes, E.R., Chen, J.H.,2011. An evaluation of the one-dimensional turbulence model:Comparison with direct numerical simulations of CO/H-2 jets with extinction and reignition. Proceedings of the Combustion Institute 33, p.1515-1522.
    [22]Hewson, J.C., Kerstein, A.R.,2002. Local extinction and reignition in nonpremixed turbulent CO/H-2/N-2 jet flames. Combustion Science and Technology 174, p.35-66.
    [23]Jiang, Y., An, J.T., Qiu, R., Hu, Y., Zhu, N.,2013. Improved understanding of fire suppression mechanism with an idealized extinguishing agent. International Journal of Thermal Sciences 64, p. 22-28.
    [24]An, J.T., Jiang, Y., Ye, M.J., Qiu, R.,2013. One-dimensional turbulence simulations and chemical explosive mode analysis for flame suppression mechanism of hydrogen/air flames. International Journal of Hydrogen Energy 38, p.7528-7538.
    [25]Mcmurtry, P.A., Menon, S., Kerstein, A.R.,1993. Linear Eddy Modeling of Turbulent Combustion. Energy & Fuels 7, p.817-826.
    [26]Mcmurtry, P.A., Gansauge, T.C., Kerstein, A.R., Krueger, S.K.,1993. Linear Eddy Simulations of Mixing in a Homogeneous Turbulent-Flow. Physics of Fluids a-Fluid Dynamics 5, p.1023-1034.
    [27]吴韶华,2007.应用详细化学反应机理和多分量输运属性的湍流射流扩散火焰模拟研究,中国科学技术大学硕士学位论文.
    [28]Byrne, G.D., Dean, A.M.,1993. The Numerical-Solution of Some Kinetics Models with Vode and Chemkin-Ii. Computers & Chemistry 17, p.297-302. [29] Brown, P.N., Byrne, G.D., Hindmarsh, A.C.,1989. Vode-a Variable-Coefficient Ode Solver. Siam Journal on Scientific and Statistical Computing 10, p.1038-1051.
    [30]R.J. Kee, F.M.R., J.A. Miller, M.E. Coltrin, J.F. Grcar, E. Meeks, H.K. Moffat, A.E. Lutz, G. Dixon-Lewis, M.D. Smooke, J. Warnatz, G.H. Evans, R.S. Larson, R.E. Mitchell, L.R. Petzold, W.C. Reynolds, M. Caracotsios, W.E. Stewart, P. Glarborg, C. Wang, O. Adigun, W.G. Houf, C.P. Chou, S.F. Miller, P. Ho, and D.J. Young, CHEMKIN Release 4.0, Reaction Design, Inc., San Diego, CA (2004).
    [31]Bilger, R.W., Starner, S.H., Kee, R.J.,1990. On Reduced Mechanisms for Methane Air Combustion in Nonpremixed Flames. Combustion and Flame 80, p.135-149.
    [1]Yoo, C.S., Sankaran, R., Chen, J.H.,2009. Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow:flame stabilization and structure. Journal of Fluid Mechanics 640, p.453-481.
    [2]Jiang, Y., An, J.T., Qiu, R., Hu, Y., Zhu, N.,2013. Improved understanding of fire suppression mechanism with an idealized extinguishing agent. International Journal of Thermal Sciences 64, p. 22-28.
    [3]An, J.T., Jiang, Y., Ye, M.J., Qiu, R.,2013. One-dimensional turbulence simulations and chemical explosive mode analysis for flame suppression mechanism of hydrogen/air flames. International Journal of Hydrogen Energy 38, p.7528-7538.
    [4]Lu, T.F., Yoo, C.S., Chen, J.H., Law, C.K.,2010. Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow:a chemical explosive mode analysis. Journal of Fluid Mechanics 652, p.45-64.
    [5]Yoo, C.S., Lu, T.F., Chen, J.H., Law, C.K.,2011. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume:Parametric study. Combustion and Flame 158, p.1727-1741.
    [6]Luo, Z.Y., Yoo, C.S., Richardson, E.S., Chen, J.H., Law, C.K., Lu, T.F.,2012. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combustion and Flame 159, p.265-274.
    [7]Lam, S.H., Goussis, D.A.,1994. The Csp Method for Simplifying Kinetics. International Journal of Chemical Kinetics 26, p.461-486.
    [8]Massias, A., Diamantis, D., Mastorakos, E., Goussis, D.A.,1999. An algorithm for the construction of global reduced mechanisms with CSP data. Combustion and Flame 117, p.685-708.
    [9]Maas, U., Pope, S.B.,1992. Simplifying Chemical-Kinetics-Intrinsic Low-Dimensional Manifolds in Composition Space. Combustion and Flame 88, p.239-264.
    [1]Yoo, C.S., Richardson, E.S., Sankaran, R., Chen, J.H.,2011. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow. Proceedings of the Combustion Institute 33, p.1619-1627.
    [2]Lee, D., Huh, K.Y.,2011. DNS analysis of propagation speed and conditional statistics of turbulent premixed flame in a planar impinging jet. Proceedings of the Combustion Institute 33, p.1301-1307.
    [3]Venugopal, R., Abraham, J.,2008. A 2-D DNS investigation of extinction and reignition dynamics in nonpremixed flame-vortex interactions. Combustion and Flame 153, p.442-464.
    [4]Im, Y.H., Huh, K.Y., Nishiki, S., Hasegawa, T.,2004. Zone conditional assessment of flame-generated turbulence with DNS database of a turbulent premixed flame. Combustion and Flame 137, p.478-488.
    [5]Lignell, D.O., Rappleye, D.S.,2012. One-dimensional-turbulence simulation of flame extinction and reignition in planar ethylene jet flames. Combustion and Flame 159, p.2930-2943.
    [6]Hewson, J.C., Kerstein, A.R.,2002. Local extinction and reignition in nonpremixed turbulent CO/H-2/N-2 jet flames. Combustion Science and Technology 174, p.35-66.
    [7]Punati, N., Sutherland, J.C., Kerstein, A.R., Hawkes, E.R., Chen, J.H.,2011. An evaluation of the one-dimensional turbulence model:Comparison with direct numerical simulations of CO/H-2 jets with extinction and reignition. Proceedings of the Combustion Institute 33, p.1515-1522.
    [8]吴韶华,2007.应用详细化学反应机理和多分量输运属性的湍流射流扩散火焰模拟研究,中国科学技术大学硕士学位论文.
    [9]R.J. Kee, F.M.R., J.A. Miller, M.E. Coltrin, J.F. Grcar, E. Meeks, H.K. Moffat, A.E. Lutz, G. Dixon-Lewis, M.D. Smooke, J. Warnatz, G.H. Evans, R.S. Larson, R.E. Mitchell, L.R. Petzold, W.C. Reynolds, M. Caracotsios, W.E. Stewart, P. Glarborg, C. Wang, O. Adigun, W.G. Houf, C.P. Chou, S.F. Miller, P. Ho, and D.J. Young, CHEMKIN Release 4.0, Reaction Design, Inc., San Diego, CA (2004).
    [10]Parworth, C.L., Tucker, M.K., Holmes, B.E., Heard, G.L.,2011. QTAIM Analysis of the HF, HCl, HBr, and HOH Elimination Reactions of Halohydrocarbons and Halohydroalcohols. Journal of Physical Chemistry A 115, p.13133-13138.
    [11]Babushok, V, Noto, T., Burgess, D.R.F., Hamins, A., Tsang, W.,1996. Influence of CF3I, CF3Br, and CF3H on the high-temperature combustion of methane. Combustion and Flame 107, p.351-367.
    [12]Linteris, G.T., Babushok, V.I.,2009. Promotion or inhibition of hydrogen-air ignition by iron-containing compounds. Proceedings of the Combustion Institute 32, p.2535-2542.
    [13]Rumminger, M.D., Reinelt, D., Babushok, V., Linteris, G.T.,1999. Numerical study of the inhibition of premixed and diffusion flames by iron pentacarbonyl. Combustion and Flame 116, p. 207-219.
    [14]Korobeinichev, O.P., Rybitskaya, I.V., Shmakov, A.G., Chernov, A.A., Bolshova, T.A., Shvartsberg, V.M.,2010. Mechanism of inhibition of hydrogen/oxygen flames of various compositions by trimethyl phosphate. Kinetics and Catalysis 51, p.154-161.
    [15]Bedat, B., Egolfopoulos, F.N., Poinsot, T.,1999. Direct numerical simulation of heat release and NOx formation in turbulent nonpremixed flames. Combustion and Flame 119, p.69-83.
    [16]Thierry Poinsot, D.V.,2005. Theoretical and Numerical Combustion. R.T. Edwards, the United States of America
    [17]Mueller, M.E., Iaccarino, G., Pitsch, H.,2013. Chemical kinetic uncertainty quantification for Large Eddy Simulation of turbulent nonpremixed combustion. Proceedings of the Combustion Institute 34, p.1299-1306.
    [18]Peters, N.,2009. Multiscale combustion and turbulence. Proceedings of the Combustion Institute 32, p.1-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700