用户名: 密码: 验证码:
色散平坦微结构光纤理论设计及四波混频特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微结构光纤,也叫光子晶体光纤或多孔光纤,具有许多传统光纤难以实现的优良特性,是目前光纤光学领域的一个研究热点。特别是具有色散平坦特性的微结构光纤,在密集波分复用系统、超连续谱产生和波长转换等方面有着重要的应用,是微结构光纤研究的重点方向之一。本文针对色散平坦微结构光纤设计参数多,设计步骤复杂;色散特性对结构参数依赖性强,对制备工艺要求高;特定应用中需要将色散平坦特性和其它特性相结合等问题进行了理论研究,并设计了多种性能优良、易于制备的色散平坦微结构光纤。本文主要研究内容如下:
     第一,研究了使用无量纲化方法计算微结构光纤的色散,即将总色散看作波导色散与材料色散之和时,产生的误差随光纤结构参数变化的规律。以5%和5 ps/km/nm分别作为相对误差界限和绝对误差界限,探索了用无量纲化方法计算色散时所适用的微结构光纤的参数边界。并以麦克斯韦方程组为基础,推导了微结构光纤无量纲化模式面积计算的表达式。
     第二,针对包层大空气孔在拉制过程中容易产生形变的问题,提出了色散特性随外包层空气孔形变不敏感的色散平坦双包层微结构光纤。采用多极法,对内包层空气孔层数不同时,微结构光纤色散特性对外包层空气孔形变的依赖程度;光纤二阶模与基模损耗的比值随外包层空气孔间距改变而变化的规律等进行了研究。通过优化结构参数,设计了色散特性对外包层空气孔形变依赖性低的色散平坦双包层微结构光纤。适当调整外包层空气孔间距,还可以得到同时支持单模传输的色散平坦双包层微结构光纤。
     第三,采用无量纲化模场面积方法,研究了纤芯分别忽略1个空气孔和7个空气孔的微结构光纤,其有效模场面积大小随包层空气填充率和波长变化而变化的规律,比较了两种结构的微结构光纤在降低有效模场面积方面的优劣。根据所得规律,分别忽略7个和19个空气孔而形成光纤纤芯,设计了在通信波段集高非线性特性和色散平坦特性于一身的微结构光纤。
     第四,提出了800 nm波段的色散平坦高非线性微结构光纤的设计方案。石英的材料色散在该波段绝对值大,色散曲线随波长变化呈非线性关系,为了使波导色散平衡材料色散的影响,必须在包层中引入多种大小不同的空气孔,以增加光纤的设计自由度。通过增大第一层空气孔孔径或者减小空气孔间距等方法,设计了在800 nm波段集单模传输、色散平坦特性和高非线性特性于一身的微结构光纤。
     第五,利用钛-蓝宝石飞秒激光器产生的飞秒脉冲作为泵浦源,对具有双零色散点的微结构光纤和色散位移微结构光纤的四波混频现象进行了实验研究。通过理论模拟,对实验现象进行了解释,理论分析与实验结果相吻合。
Microstructure fiber, also called photonic cystal fiber or holey fiber, possesses many intriguing properties that are hardly achievable in traditional fiber. It is a research hotspot in the area of fiber optics. Microstructure fiber with flattened dispersion shows lots of application potentials in dense wavelength division multiplexing, supercontinuum generation and wavelength conversion, etc. Thus, dispersion falttened microstructure fiber is one of the most important research directions in microstructure fiber optics. However, due to a large number of design parameters and the dispersion's strong dependence on precision of the fiber structure, it is a difficult task to design and fabricate dispersion flattened microstucture fiber. In addition, other properties are usually needed to incorporate with the flattened dispersion property to enhance the system performance. In view of this situation, in this thesis, structural parameters' influrences on the optical properties of microstructure fiber are analyzed. Fabrication fridenly dispersion flattened microstructure fibers incorporated with other intriguing properties are designd. The main contents are described as follows:
     First, the error of treating group velocity dispersion of microstructure fiber as sum of material and waveguide component is computed, its relation with structural parameters is analyzed. Taken 5% and 5 ps/km/nm as relative and absolute error limit, the valid micorstrcture fiber structural boundries of employing the normalized method in dispersion calculation are proposed. Based on Maxwell equation, normalized effective mode area expression of microstructure fiber is also deduced. By employing the expression, simulation complexity of mode area is reduced.
     Second, large cladding air holes are prone to deformation in fiber fabrication and the dispersion of the realized fiber would be influrenced. To deal with this problem, double cladding microstructure fibers, whose dispersions are insensitive to the deformation of large outer cladding air holes, are proposed. By employing multipole method, the diseprsioon and loss property of double cladding microstucture fiber is analyzed with an emphasis on two issues listed below: first, disperison's dependence on deformation of outer cladding air holes with different number of inner air-hole layers; second, the ratio of the loss of fundamental mode to that of second order mode with different outer cladding air-hole pitch. Several dispersion flattened double cladding microstructure fibers are designed. By further adjusting the outer air-hole pitch, the fibers can also support sinlge mode transmission.
     Third, effective mode areas of two different kinds of microstructure fibers, whose core are formed by omitting one or seven air holes, respectively, are computed by normalized mode area expression. Their relations to the cladding air filling fraction and wavelength are analyzed. It is found that efefective mode area can be reduced tremendously if the air-hole number in the first inner ring is increased and the channel between two air holes is narrowed. According to the analysis, dispersion flattended highly nonlinear microstructure fibers in telecommunication band are designed. Their cores are either formed by omitting seven or by nineteen air holes.
     Fourth, dispersion flattended highly nonlinear microstructure fiber in 800 nm band is proposed. Due to large absolute value of silica's dispersion and its nonlinear relation to wavelength around 800 nm, it is difficult to counterbalance the material dispersion of silica by waveguide dispersion. More air-hole diameters have to be employed to enhance the design freedom. Highly nonlinear microstructure fiber with flattened dispersion and single-mode transmission in 800 nm band can be achieved by enlarging the air holes in first inner ring, decreasing the cladding air-hole pitch, etc.
     Fifth, four-wave mixing is observed both in microstructure fiber with two zero dispersion wavelengths and in dispersion shifted microstructure fiber by using Ti: sapphire fs pulse as pump. The experimental results are explained by theoretical analyses and the theoretical analyses agree well with experimental results.
引文
1 E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett.,1987,58:2059-2062
    2 S. Johon. Strong Location of Photons in Certain Disordered Dielectric Superlattices. Phys. Rev. Lett.,1987,58:2486-2489
    3 P. Rigby. A Photonic Crystal Fiber. Nature,1998,396:415-416
    4 J. C. Knight. Photonic Crystal Fibres. Nature,2003,424:847-851
    5刘兆伦,刘建民,马彪,等.光子晶体光纤的制备和应用进展.大连民族学院学报,2005,7(1):39-43
    6郭巍,周桂耀,侯蓝田,等.微结构光纤的制备及其技术进展.光通信技术,2006, 1(20):61-63
    7 P. J. Bennett, T. M. Monro and D. J. Richardson. Toward Practical Holey Fiber Technology: Fabrication, Splicing, Modeling, and Characterization. Opt. Lett.,1999,24(17):1203-1205
    8 A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, et al. Holey Fibers with 0.4-32μm-Lattice-Constant Photonic Band-Gap Cladding: Fabrication, Characterization, and Nonlinear-Optical Measurements. Laser Phys.,2001,11:138-145
    9 J. C. Knight, T. A. Birks, P. S. J. Russell, et al. All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding. Opt. Lett.,1996,21(19):1547-1549
    10 P. Russell. Photonic Crystal Fibers. Science,2003,299:358-362
    11欧阳征标,李景镇.光子晶体及其应用.物理,1999,128(7):393-398
    12 S. Y. Lin, G. Arjavalingam. Photonic Bound States in 2-D PCs Probed by Coherent-Microwave Transient Spectroscopy. J. Opt. Soc. Am. B,1994,11:2124-2127
    13 S. Jun, Y. S. Cho and S. Im. Moving Least-Square Method for the Band-Structure Calculation of
    2D Photonic Crystals. Opt. Express,2003,11(6):541-551
    14 T. F. Krauss. 2-D PBG Structures Operating at Near-Infrared Wavelengths. Nature,1996, 383:699-702
    15 J. G. Fleming, S. Y Lin. 3-Dphotonic Crystral with a Stop Band from 1.35 to 1.95μm. Opt. Lett.,1999,24:49-51
    16 D. Richard. Photonic Crystals Microassembly in 3D. Nature,2003,2:74-76
    17 S. Noda, K. Tomoda and N. Yamamoto. Full Three-Dimensional Photonic Bandgap Crystals atNear-Infrared Wavelengths. Science,2000,289:604-606
    18 X. D. Liu, L. T. Hou, H. T. Wang, et al. Mid-Infrared Photon Localization Using Two Kinds of Mid-infrared Materials as Random Scatterers. Chin. Phys. Lett.,2002,19(9):1353-1355
    19刘晓东,侯蓝田.无序光学介质中的光子局域化.材料导报,2001,15(11):29-32
    20 C. Peucheret, B. Zsigri, P. A. Andersen, et al. 40 Gbits Transmission over Photonic Crystal Fibre Using Mid-Span Spectral Inversion in Highly Nonlinear Photonic Crystal Fibre. Electron. Lett.,2003,39(12):919-921
    21 A. Mafi, J. V. Moloney, D. Kouznetsov, et al. A Large-Core Compact High-Power Single-Mode Photonic Crystal Fiber Laser. IEEE Photon. Technol. Lett.,2004,16(12):2595-2957
    22 J. Broeng, D. Mogilevstev, S. E. Barkou, et al. Photonic Crystal Fibers a New Class of Optical Waveguides. Opt. Fiber Technol.,1999,5:305-330
    23 S. E. Barkou, J. Broeng. Silica-Air Photonic Crystal Fiber Design that Permits Waveguiding by a True Photonic Band Gap Effect. Opt. Lett.,1999,24(1):46-48
    24 T. A. Birks. Endlessly Single-mode Photonic Crystal Fiber. Opt. lett.,1997,22(13):961-963
    25 J. K. Ranka. Optical Properties of High-delta Microstructure Optical Fibers. Opt. Lett.,2000, 25(11):796-798
    26 P. M. Noaker. FiberOptics-Fabrication of Long Holey Fibers Gets Practical. Laser Focus World,1999,35:20-25
    27 T. A. Birks, J. C. Knight, B. J. Mangan, et al. Photonic Crystal Fibres: An Endless Variety. IEICE Trans. Electron,2001,E84C:585-592
    28 K. W. Koch. Focus issue: Photonic Crystal Fiber– Introduction. Opt. Express,2001,9:675-675
    29 W. H. Reeves, D. V. Skryabin, F. Biancalana, et al. Transformation and Control of Ultra-Short Pulses in Dispersion-Engineered Photonic Crystal Fibres. Nature,2003,424:511-515
    30 G. Renversez, B. Kuhlmey. Dispersion Management with Microstructured Optical Fibers: Ultra-Flattened Chromatic Dispersion with Low Losses. Opt. Lett.,2003,28(12):989-991
    31 Y. Ni, L. Zhang and J. Peng. Optimization of Holey Fiber for Dispersion Compensation. Chin. Opt. Lett.,2003,1(7):385-387
    32栗岩锋,胡明列,王清月.光子晶体光纤的超连续光谱及其应用.光电子·激光,2003,14(11):1240-1243
    33李曙光,冀玉领,周桂耀,等.多孔微结构光纤中飞秒激光脉冲超连续谱的产生.物理学报,2004,53(2):478-483
    34王清月,栗岩锋.飞秒激光在多孔光纤中传输特性的研究.激光与光电子学进展,2002,39(12):9-13
    35 J. H. Chong, M. K. Rao. Development of a System for Laser Splicing Photonic Crystal Fiber. Opt. Express,2003,11(12):1365-1370
    36池灏,蒋铭,赵焕东,等.光子晶体光纤的非线性效应及其应用研究进展.半导体光电,2003,24(5):297-301
    37 D. V. Skryabin, F. Luan, J. C. Knight, et al. Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers. Science,2003,301:1705-1708
    38王文杰,郭林,张宁,等.空气导光型光子晶体光纤特性及研究进展.光通信技术,2005,(1):55-57
    39 F. Couny, H. Sabert, P. J. Roberts, et al. Visualizing the Photonic Band Gap in Hollow Core Photonic Crystal Fibers. Opt. Express,2005,13(2):558-563
    40 Y. Wang, L. Xiao, D. N. Wang, et al. In-Fiber Polarizer Based on a Long-Period Fiber Grating Written on Photonic Crystal Fiber. Opt. Lett.,2007,32(9):1035-1037
    41 A. Argyros, I. Bassett, M. Eijkelenborg, et al. Ring Structures in Microstructured Polymer Optical Fibres. Opt. Express,2001,9(13):813-820
    42 A. Podlipensky, P. Szarniak and N. Y. Joly. Bound Soliton Pairs in Photonic Crystal Fiber. Opt. Express,2007,15(4):1653-1662
    43 L. Xiao, W. Jin and M. S. Demokan. Fusion Splicing Small-Core Photonic Crystal Fibers and Single-Mode Fibers by Repeated Arc Discharges. Opt. Lett.,2007,32(2):115-117
    44 L. V. Derbov, L. V. Melnikov and E. V. Bekker. Optimization of Parameters of Microstructured Glass Optical Fiber for Efficient Use in Different Nonlinear Applications. IEEE,2002,ICTON:66-69
    45 G. Y. Zhou, Z. Y. Hou, S. G. Li, et al. Fabrication of Glass Photonic Crystal Fibers with a Die-Cast Process. Appl. Opt.,2006,45(18):4433-4436
    46 G. Humbert, J. C. Knight, G. Bouwmans, et al. Hollow Core Photonic Crystal Fibers for Beam Delivery. Opt. Express,2004,12(8):1477-1848
    47 Jeff Hech.光纤光学.贾东方,余震虹,王肇颖,等.第四版.北京:人民邮电出版社,2004:2-13
    48 M. Nielsen, J. Folkenberg, N. Mortensen, et al. Bandwidth Comparison of Photonic Crystal Fibers and Conventional Single-Mode Fibers. Opt. Express,2004,12(3):430-435
    49 N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, et al. Modal Cutoff and the V Parameter in Photonic Crystal Fibers. Opt. Lett.,2003,28(20):1879-1881
    50 J. C. Knight, T. A. Birks, R .F. Cregan, et al. Large Mode Area Photonic Crystal Fibre. Electron. Lett., 1998,34(13):1347-1348
    51 N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, et al. Improved Large-Mode-Area Endlessly Single-Mode Photonic Crystal Fibers. Opt. Lett.,2003,28(6):393-395
    52 J. Limpert, A. Liem, M. Reich, et al. Low-Nonlinearity Single-Transverse-Mode Ytterbium-Doped Photonic Crystal Fiber Amplifier. Opt. Express.,2004,12(7):1313-1319
    53 W. S. Wong, X. Peng, J. M. McLaughlin, et al. Breaking The Limit of Maximum Effective Area for Robust Single-Mode Propagation in Optical Fibers. Opt. Lett.,2005,30(21):2855-2857
    54 L. Li, A. Schülzgen, V. L. Temyanko, et al. Short-Length Microstructured Phosphate Glass Fiber Lasers with Large Mode Areas. Opt. Lett.,2005,30(10):1141-1143
    55 Y. Tsuchida, K. Saitoh and M. Koshiba. Design of Single-Moded Holey Fibers with Large-Mode-Area and Low Bending Losses: The Significance of the Ring-Core Region. Opt. Express, 2007,15(4):1794-1803
    56 M. D. Nielsen, J. R. Folkenberg and N.A. Mortensen. Singlemode Photonic Crystal Fibre with Effective Area of 600μm2 and Low Bending Loss. Electron. Lett.,2003,39(25):1802-1803
    57 J. Limpert, N. Deguil-Robin, I. Manek-H?nninger, et al. High-Power Rod-Type Photonic Crystal Fiber Laser. Opt. Express,2005,13(4):1055-1058
    58 J. Limpert, O. Schmidt, J. Rothhardt, et al. Extended Single-Mode Photonic Crystal Fiber Lasers. Opt. Express,2006,14(7):2715-2720
    59 V. Finazzi, T. M. Monro and D. J. Richardson. The Role of Confinement Loss in Highly Nonlinear Silica Holey Fibers. IEEE Photon. Technol. Lett,2003,15(9):1246-1248
    60 H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, et al. Bismuth Glass Holey Fibers with High Nonlinearity. Opt. Express,2004,12(21):5082-5087
    61 J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, et al. Experimental Investigation of Cutoff Phenomena in Nonlinear Photonic Crystal Fibers. Opt. Lett.,2003,28(20):1882-1884
    62 K. Saitoh, M. K. Highly Nonlinear Dispersion-Flattened Photonic Crystal Fibers for Supercontinuum Generation in a Telecommunication Window. Opt. Express, 2004,12(10): 2027-2032
    63 V. V. R. K. Kumar, A. K. George, W. H. Reeves, et al. Extruded Soft Glass Photonic Crystal Fiber for Ultrabroad Supercontinuum Generation. Opt. Express,2002,10(25):1520-1525
    64 K. P. Hansen. Dispersion Flattened Hybrid-Core Nonlinear Photonic Crystal Fiber. Opt.Express, 2003,11(13):1503-1509
    65 X. Feng, T. M. Monro, V. Finazzi, et al. Extruded Singlemode, High-Nonlinearity, Tellurite Glass Holey Fibre. Electron. Lett,2005,41(15):835-836
    66 P. Petropoulos, H. E. Heidepriem, V. Finazzi, et al. Highly Nonlinear and Anomalously Dispersive Lead Silicate Glass Holey Fibers. Opt. Express,2003,11(26):3568-3573
    67 A. B. Fedotov, E. E. Serebryannikov, A. A. Ivanov, et al. Highly Nonlinear Photonic-Crystal Fibers for the Spectral Transformation of Cr: Forsterite Laser Pulses. Opt.Commun., 2006,267:505-510
    68 J. Laegsgaard, A. Bjarklev. Photonic Crystal Fibres with Large Nonlinear Coefficients. J. Opt. A: Pure Appl. Opt.,2004,6:1-5
    69 F. Poli, A. Cucinotta, S. Selleri, et al. Tailoring of Flattened Dispersion in Highly Nonlinear Photonic Crystal Fibers. IEEE Photon. Technol. Lett.,2004,16(4):1065-1067
    70 T. Hori, N. Nishizawa, T. Goto, et al. Experimental and Numerical Analysis of Widely Broadened Supercontinuum Generation in Highly Nonlinear Dispersion-Shifted Fiber with a Femtosecond Pulse. J. Opt. Soc. Am. B,2004,21(11):1969-1980
    71 L. Tartara, I. Cristiani, V. Degiorgio, et al. Nonlinear Propagation of Ultrashort Laser Pulses in a Microstructured Fiber. J. Nonlinear Opt. Phys.,2002,11(4):409-419.
    72 C. Liberale, L. Tartara, I. Cristiani, et al. Measurement of the Nonlinear Coefficient of Optical Fibers by Femtosecond Pulses and Spectral Interferometry. IEEE Photon. Technol. Lett., 2003,15(8):1123-1125
    73 A. M. Zheltikov. Nonlinear Optics of Microstructure Fibers. Physics-Uspekhi,2004,47(1):69-98
    74 Y. Li, M. Hu, L. Chai, et al. Enhanced Nonlinear Effects in Photonic Crystal Fibers. Front. Phys. China,2006,1(2):160-170
    75 C. J. S. de Matos, S. V. Popov and J. R. Taylor, Temporal and Noise Characteristics of Continuous-Wave-Pumped Continuum Generation in Holey Fibers around 1300 nm. Appl. Phys. Lett., 2004, 85(14):2706-2707
    76 J. C. Travers, R. E. Kennedy, S. V. Popov, et al. Extended Continuous-Wave SupercontinuumGeneration in a Low-Water-Loss Holey Fiber. Opt. Lett.,2005,30(15):1938-1940
    77 A. Kudlinski, A. K. George, J. C. Knight, et al. Zero-Dispersion Wavelength Decreasing Photonic Crystal Fibers for Ultraviolet-Extended Supercontinuum Generation. Opt. Express,2006, 14(12):5715-5722
    78 F. G. Omenetto, N. A. Wolchover, M. R. Wehner, et al. Spectrally Smooth Supercontinuum from 350nm to 3μm in sub-Centimeter Lengths of Soft-Glass Photonic Crystal Fibers. Opt. Express,2006,14(11):4928-4934
    79 A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, et al. Continuum Generation in a Novel Photonic Crystal Fiber for Ultrahigh Resolution Optical Coherence Tomography at 800nm and 1300nm. Opt. Express,2006,14(3):1145-1160
    80 Y. Wang, Y. Zhao, J. S. Nelson, et al. Ultrahigh-Resolution Optical Coherence Tomography by Broadband Continuum Generation from a Photonic Crystal Fiber. Opt. Lett,2003,28(3):182-184
    81 G. Humbert, W. J. Wadsworth, S. G. L. Saval, et al. Supercontinuum Generation System for Optical Coherence Tomography Based on Tapered Photonic Crystal Fibre. Opt. Express,2006, 14(4):1596-1603
    82 I. Hartl, X. D. Li, C. Chudoba, et al. Ultrahigh-Resolution Optical Coherence Tomography Using Continuum Generation in an Air–Silica Microstructure Optical Fiber. Opt.Lett.,2001, 26(9):608-610
    83 T. Yang, C. Shu and C. Lin. Depolarization Technique for Wavelength Conversion Using Four-Wave Mixing in a Dispersion-Flattened Photonic Crystal Fiber. Opt.Express,2005, 13(14):5409-5415
    84 J. E. Sharping, M. Fiorentino, A. Coker, et al. Four-Wave Mixing in Microstructure Fiber. Opt. Lett.,2001,26(14):1048-1050
    85 S. Asimakis, P. Petropoulos, F. Poletti, et al. Towards Efficient and Broadband Four-Wave-Mixing Using Short-Length Dispersion Tailored Lead Silicate Holey Fibers. Opt.Express, 2007,15(2):596-601
    86 J. E. Sharping, M. Fiorentino, P. Kumar, et al. Optical Parametric Oscillator Based on Four-Wave Mixing in Microstructure Fiber. Opt. Lett.,2002,27(19):1675-1677
    87 R. Thapa, K. Knabe, K. L. Corwin, et al. Arc Fusion Splicing of Hollow-Core Photonic Bandgap Fibers for Gas-Filled Fiber Cells. Opt. Express,2006,14(21):9576-9583
    88 F. Benabid, F. Couny, J. C. Knight, et al. Compact, Stable and Efficient All-Fibre Gas Cells Using Hollow-Core Photonic Crystal Fibres. Nature,2005,434(24):488-491
    89 C. J. Hensley, D. H. Broaddus, C. B. Schaffer, et al. Photonic Band-Gap Fiber Gas Cell Fabricated Using Femtosecond Micromachining. Opt. Express,2007,15(11):6690-6695
    90 J. E. Sharping, M. A. Foster and A. L. Gaeta. Octave-Spanning, High-Power Microstructure Fiber-Based Optical Parametric Oscillators. Opt. Express,2007,15(4):1474-1479
    91 S. O. Konorov, A. M. Zheltikov and P. Zhou. Self-Channeling of Subgigawatt Femtosecond Laser Pulses in a Ground-State Waveguide Induced in the Hollow Core of a Photonic Crystal Fiber. Opt. Lett,2004,29(13):1521-1523
    92 I. G. Cormack, D.T. Reid, W. J. Wadsworth, et al. Observation of Solition Self-Frequency Shift in Photonic Crystal Fibre. Electron. Lett,2002,38(4):167-169
    93 X. Liu, C. Xu, W. H. Knox, et al. Soliton Self-Frequency Shift in a Short Tapered Air-Silica Microstructure Fiber. Opt. Lett.,2001,26(6):358-360
    94 M. Fiorentino, J. E. Sharping, P. Kumar, et al. Soliton Squeezing in Microstructure Fiber. Opt. Lett.,2002,27(8):649-651
    95 A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, et al. Coherent Anti-Stokes Raman Scattering in Isolated Air-Guided Modes of a Hollow-Core Photonic-Crystal Fiber. Phys. Rev. A,2004, 70:045802
    96 F. Benabid, J. C. Knight, G. Antonopoulos, et al. Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber. Science,2002,298(11):399-402
    97 D. G. Ouzounov, F. R. Ahmad, D. Muller, et al. Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers. Science,2003,301:1702-1704
    98 E. Takahashi, S. Kato, Y. Matsumoto, et al. Ultra Broadband UV Generation by Stimulated Raman Scattering of Two-Color KrF Laser in Deuterium Confined in a Hollow Fiber. Opt. Express,2007, 15(5):2535-2540
    99 R. K. Sinha, S. K. Varshney. Dispersion Properties of Photonic Crystal Fibers. Microw. Opt. Technol. Lett.,2003,37(2):129-132
    100 P. J. Roberts, B. J. Mangan, H. Sabert, et al. Control of Dispersion in Photonic Crystal Fibers. J. Opt. Fiber Comm. Rep., 2005, 2(5):435-461.
    101 M. Nielsen, C. Jacobsen, N. Mortensen, et al. Low-Loss Photonic Crystal Fibers for TransmissionSystems and Their Dispersion Properties. Opt. Express,2004,12(7):1372-1376
    102 A. Bouk, A. Cucinotta, F. Poli, et al. Dispersion Properties of Square-Lattice Photonic Crystal Fibers. Opt. Express,2004,12(5):941-946
    103 P. D. Rasmussen, J. Laegsgaard and O. Bang. Chromatic Dispersion of Liquid Crystal Infiltrated Capillary Tubes and Photonic Crystal Fibers. J. Opt. Soc. Am. B,2006,23(10):2241-2248
    104 G. K. Wong, A. Y. Chen, S. Ha, et al. Characterization of Chromatic Dispersion in Photonic Crystal Fibers Using Scalar Modulation Instability. Opt. Express,2005,13(21):8662-8670
    105 R. K. Sinha, A. D. Varshney. Dispersion Properties of Photonic Crystal Fiber: Comparison by Scalar and Fully Vectorial Effective Index Methods. Opt. and Quantum Electron.,2005, 37(8):711-722
    106 J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous Dispersion in Photonic Crystal Fiber. IEEE Photon. Technol. Lett.,2000,12(7):807-809
    107 T. A. Birks, D. Mogilevtsev, J. C. Knight, et al. Dispersion Compensation Using Single-Material Fibers. IEEE Photon. Technol. Lett.,1999,11(6):674-676
    108 Y. Ni, Z. Lei, J. Shu, et al. Dispersion of Square Solid-Core Photonic Bandgap Fibers. Opt. Express,2004,12(13):2825-2830
    109 Y. Ni, L. Zhang, L. An, et al. Dual-Core Photonic Crystal Fiber for Dispersion Compensation. IEEE Photon. Technol. Lett.,2004,16(6):1516-1518
    110 F. Gerome, J. L. Auguste and J. M. Blondy. Design of Dispersion-Compensating Fibers Based on a Dual-Concentric-Core Photonic Crystal Fiber. Opt. Lett.,2004,29(23):2725-2727
    111 A. Huttunen, P. Torma. Optimization of Dual-Core and Microstructure Fiber Geometries for Dispersion Compensation and Large Mode Area, Opt. Express,2005,13(2):627-635
    112 T. Matsui, K. Nakajima and I. Sankawa. Dispersion Compensation over All the Telecommunication Bands with Double-Cladding Photonic-Crystal Fiber. J. Lightwave Technol.,2007,25(3):757-762
    113 Z. Wang, X. Ren, X. Zhang, et al. Design of a Microstructure Fibre for Slope-Matched Dispersion Compensation. J. Opt. A: Pure: Appl. Opt.,2007,9(5):435-440
    114 S. K. Varshney, T. Fujisawa, K. Saitoh, et al. Novel Design of Inherently Gain-Flattened Discrete Highly Nonlinear Photonic Crystal Fiber Raman Amplifier and Dispersion Compensation Using a Single Pump in C-Band. Opt. Express,2005,13(23):9516-9526
    115 S. K. Varshney, T. Fujisawa, K. Saitoh, et al. Design and Analysis of a Broadband Dispersion Compensating Photonic Crystal Fiber Raman Amplifier Operating in S-Band. Opt. Express,2006, 14(8):3528-3540
    116 K. Sasaki, S. K. Varshney, K. Wada, et al. Optimization of Pump Spectra for Gain-Flattened Photonic Crystal Fiber Raman Amplifiers Operating in C-Band. Opt. Express,2007,15(5): 2654-2668
    117 S. K. Varshney, K. Saitoh and M. Koshiba. A Novel Design for Dispersion Compensating Photonic Crystal Fiber Raman Amplifier. IEEE Photon. Technol. Lett.,2005,17(10):2062-2064
    118 T. Fujisawa, K. Saitoh, K. Wada, et al. Chromatic Dispersion Profile Optimization of Dual-Concentric-Core Photonic Crystal Fibers for Broadband Dispersion Compensation. Opt. Express,2006,14(2):893-900
    119 K. Saitoh, M. Koshiba, T. Hasegawa, et al. Chromatic Dispersion Control in Photonic Crystal Fibers: Application to Ultra-Flattened Dispersion. Opt. Express,2003,11(8):843-852
    120 W. H. Reeves, J. C. Knight, P. S. J. Russell, et al. Demonstration of Ultra-Flattened Dispersion in Photonic Crystal Fibers. Opt. Express,2002,10(4):609-613
    121 A. Ferrando, E. Silvestre, J. J. Miret, et al. Nearly Zero Ultraflattened Dispersion in Photonic Crystal Fibers. Opt. Lett.,2000,25(11):790-792
    122 T. L. Wu, C. H. Chao. A Novel Ultraflattened Dispersion Photonic Crystal Fiber. IEEE Photon. Technol. Lett.,2005,17(1):67-69
    123 J. Wang, C. Jiang, W. Hu, et al. Modified Design of Photonic Crystal Fibers with Flattened Dispersion. Opt. Laser Technol.,2006,38:169-172
    124 A. O. Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly Birefringent Photonic Crystal Fibers. Opt. Lett,2000,25(18):1325-1327
    125 Y. Yue, G. Kai, Z. Wang, et al. Broadband Single-Polarization Single-Mode Photonic Crystal Fiber Coupler. IEEE Photon. Technol. Lett.,2006,18(19):2032-2034
    126 K. Suzuki, H. Kubota, S. Kawanishi, et al. Optical Properties of a Low-Loss Polarization-Maintaining Photonic Crystal Fiber. Opt. Express,2001,9(13):676-680
    127 K. Saitoh, and M. Koshiba, Single-Polarization Single-Mode Photonic Crystal Fibers. IEEE Photon. Technol. Lett.,2003,15(10):1384-1386
    128 H. Kubota, S. Kawanishi, S. Koyanagi, et al. Absolutely Single Polarization Photonic CrystalFiber. IEEE Photon. Techno. Lett.,2004,16(1):182-184
    129 T. P. Hansen, J. Broeng, S. E. B. Libori, et al. Highly Birefringent Index-Guiding Photonic Crystal Fibers. IEEE Photon. Technol. Lett.,2001,13(6):588-590
    130 P. R. Chaudhuri, V. Paulose, C. Zhao, et al. Near-Elliptic Core Polarization-Maintaining Photonic Crystal Fiber: Modeling Birefringence Characteristics and Realization. IEEE Photon. Technol. Lett .,2004,16(5):1301-1303
    131 M. Antkowiak, R. Kotynski, T. Nasilowski, et al. Phase and Group Modal Birefringence of Triple-Defect Photonic Crystal Fibres. J. Opt. A: Pure Appl. Opt.,2005,7:763-766
    132 D. Mogilevtsev, J. Broeng, S. Ebarkou, et al. Design of Polarization-Preserving Photonic Crystal Fibres with Elliptical Pores. J. Opt. A: Pure Appl.Opt.,2001,3:S141-S143
    133 A. O. Blanch, A. Díez, M. D. Pinar, et al. Ultrahigh Birefringent Nonlinear Microstructured Fiber. IEEE. Photon. Technol. Lett.,2004,16(7):1667-1669
    134 R. F. Cregan. Single-Mode Photonic Band Gap Guidance of Light in Air. Science,1999, 285:1537-1539
    135 A. Betourne, V. Pureur, G. Bouwmans, et al. Solid Photonic Bandgap Fiber Assisted by an Extra Air-Clad Structure for Low-Loss Operation around 1.5μm. Opt. Express,2007,15(2):316-324.
    136 J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic Band Gap Guidance in Optical Fibers. Science,1998,282:1476-1478
    137 J. Broeng, T. Sondergaard, S. E. Barkou, et al. Waveguidance by the Photonic Bandgap Effect in Optical Fibres. J. Opt. A: Pure Appl. Opt.,1999,1:477-482
    138 J. Sun, C. C. Chan and N. Ni. Analysis of Photonic Crystal Fibers Infiltrated With Nematic Liquid Crystal. Opt. Commun.,2007,278(1):66-70
    139 J. West, C. Smith, N. Borrelli, et al. Surface Modes in Air-Core Photonic Band-Gap Fibers. Opt. Express,2004,12(8):1485-1496
    140 M. Soljacic, E. Lidorikis, M. Ibanescu, et al. Optical Bistability and Cutoff Solitons in Photonic Bandgap Fibers. Opt. Express,2004,12(8):1518-1527
    141 Z. Wang, T. Taru, T. A. Birks, et al. Coupling in Dual-Core Photonic Bandgap Fibers: Theory and Experiment. Opt. Express,2007,15(8):4795-4803
    142 I. A. Khromova, L. A. Melnikov. Dispersion Characteristics of Hollow-Core Photonic Crystal Fibers. Phys. Particles Nuclei Lett.,2007,4(2):176-179
    143 M. Y. Chen, R. J. Yu. Analysis of Photonic Bandgaps in Modified Honeycomb Structures. IEEE Photon. Technol. Lett.,2004,16(3):819-821
    144 H. K. Kim, J. Shin, S. Fan, et al. Designing Air-Core Photonic-Bandgap Fibers Free of Surface Modes. IEEE J. Quantum Electron.,2004,40(5):551-556
    145 N. A. Mortensen, M. D. Nielsen. Modeling of Realistic Cladding Structures for Air-Core Photonic Bandgap Fibers. Opt. Express,2004,29(4):349-351
    146 T. Ritari, J. Tuominen, H. Ludvigsen, et al. Gas Sensing Using Air-Guiding Photonic Bandgap Fibers. Opt. Express,2004,12(17):4080-4087
    147 M. P. Hiscocks, M. A. van Eijkelenborg, A. Argyros, et al. Stable Imprinting of Long-Period Gratings in Microstructured Polymer Optical Fibre. Opt. Express,2006,14(11):4644-4649
    148 M. van Eijkelenborg. Imaging with Microstructured Polymer Fibre. Opt. Express,2004,12(2): 342-346
    149 M. van Eijkelenborg, M. Large, A. Argyros, et al. Microstructured Polymer Optical Fibre. Opt. Express,2001,9(7):319-327
    150 A. Cucinotta, F. Poli, S. Selleri, et al. Amplification Properties of Er3+-Doped Photonic Crystal Fibers. J. Lightwave Technol.,2003,21(3):782-788
    151 A. Shirakawa, J. Ota, M. Musha, et al. Large-Mode-Area Erbium-Ytterbium-Doped Photonic Crystal Fiber Amplifier for High-Energy Femtosecond Pulses at 1.55μm. Opt. Express,2005, 13(4):1221-1227
    152 X. M. Liu, X. F. Yang, F. Y. Lu, et al. Stable and Uniform Dual-Wavelength Erbium-Doped Fiber Laser Based on Fiber Bragg Gratings and Photonic Crystal Fiber. Opt. Express,2005,13(1): 142-147
    153 V. V. Ravi, K. Kumar, A. K. George, et al. Modified Group-Velcoity Dispersion in Extruded Photonic Crystal Fiber. OFC,2003,1:300-301
    154 V. L. Kalashnikov, E. Sorokin1, S. Naumov, et al. Low-Threshold Supercontinuum Generation from an Extruded SF6 PCF Using a Compact Cr4+:YAG Laser. Appl. Phys. B,2004,340: 1593-1596
    155 A. Bendada. A Two-Colour Optical System for the on-line Characterization of Extruded-Blown Polymer MicroFibres. J. Opt. A: Pure Appl. Opt.,2004,6:180–186
    156 F. Prudenzano. Erbium-Doped Hole-Assisted Optical Fiber Amplifier: Design and Optimization. J.Lightwave Technol.,2005,23(1):330-340
    157 G. Barton, M. A. van Eijkelenborg, G. Henry, et al. Fabrication of Microstructured Polymer Optical Fibres. Opt. Fiber Technol.,2004,10:325–335
    158 J. Zagari, A. Argyros, N. A. Issa, et al. Small-Core Single-Mode Microstructured Polymer Optical Fiber with Large External Diameter: Erratum. Opt. Lett.,2004,29(13):1560-162
    159 K. M. King, K. Frampton, T. M. Monro, et al. Extruded Singlemode Non-Silica Glass Holey Optical Fibres. Electron. Lett.,2002,38(12):546-547
    160 X. Feng, A. K. Mairaj, D. W. Hewak, et al. Nonsilica Glasses for Holey Fibers. J. Lightwave Technol.,2005,23(6):2046-2054
    161 P. Falkenstein, C. D. Merritt, B. L. Justus. Fused Preforms for the Fabrication of Photonic Crystal Fibers. Opt. Lett.,2004,29(16):1858-1860
    162 G. R. Pickrell, D. Kominsky, R. Stolen, et al. Novel Techniques for the Fabrication of Holey Optical Fibers. SPIE,2002,4578:271-282
    163 J. Mrazek, V. Matejec, I. Kasik, et al. Application of the Sol-Gel Method at the Fabrication of Microstructure Fibers. J. Sol. Gel. Sci. Technol.,2004,31:175–178
    164张亚妮,王丽莉,王学忠,等.高保偏聚合物光子晶体光纤的化学制备技术研究.光子学报,2006, 35(9):1349-1353
    165 Y. N. Zhang, K. Li, L. L. Wang, et al. Casting Preforms for Microstructured Polymer Optical Fibre Fabrication. Opt. Express,2006,14(12):5541-5547
    166 A. Ferrando, E. Silvestre, P. Andres, et al. Designing the Properties of Dispersion-Flattened Photonic Crystal Fibers. Opt. Express,2001,9(13):687-696
    167 F. Poletti, V. Finazzi, T. M. Monro, et al. Inverse Design and Fabrication Tolerances of Ultra-Flattened Dispersion Holey Fibers. Opt. Express,2005,13(10):3728-3736
    168 K. Saitoh, N. Florous and M. Koshiba. Ultra-Flattened Chromatic Dispersion Controllability Using a Defected-Core Photonic Crystal Fiber with Low Confinement Losses. Opt. Express, 2005,13(21):8365-8371
    169 S. M. A. Razzak, Y. Namihira and F. Begum. Ultra-Flattened Dispersion Photonic Crystal Fibre. Electron. Lett.,2007,43(11):615-617
    170 S. Haxha, H. Ademgil. Novel Design of Photonic Crystal Fibres with Low Confinement Losses, Nearly Zero Ultra-Flatted Chromatic Dispersion, Negative Chromatic Dispersion and ImprovedEffective Mode Area. Opt. Commun.,2008,281:278-286
    171 S. M. A. Razzak, Y. Namihira. Proposal for Highly Nonlinear Dispersion-Flattened Octagonal Photonic Crystal Fibers IEEE Photon. Tchhnol. Lett.,2008,20(4):249-251
    172 F. Begum, Y. Namihira, S. M. A. Razzak, et al. Design and Analysis of Novel Highly Nonlinear Photonic Crystal Fibers with Ultra-Flattened Chromatic Dispersion. Opt. Commun., 2009,282:1416-1421
    173 Y. L. Hoo, W. Jin, J. Ju, et al. Design of Photonic Crystal Fibers with Ultra-Low, Ultra-Flattened Chromatic Dispersion. Opt. Commun.,2004,242:327-332
    174 J. Wang, N.G. Lei and C. X. Yu. Design of Microstructured Optical Fibres with Elliptical Air Holes for Propere Single-Polarization Single-Mode and Nearly Zero Ultra-Flattened Dispersion. Chin. Phys. Lett.,2007,24(8):2255-2258
    175 Z. Liu, X. Liu, S. Li, et al. A broadband Ultra Flattened Chromatic Dispersion Microstructured Fiber for Optical Communications. Opt. Commun.,2007,272:92-96
    176 M. Chen, S. Xie. New Nonlinear and Dispersion Flattened Photonic Crystal Fiber with Low Confinement Loss. Opt. Commun.,2008,281:2073-2076
    177苑金辉,侯蓝田,魏东宾,等.三种低损耗低平坦色散光子晶体光纤的设计.半导体光电,2008, 29(4):535-539
    178苑金辉,侯蓝田,周桂耀,等.一种阶梯结构的色散平坦光子晶体光纤的研究.光学学报,2008,28(6):1167-1171
    179刘兆伦,王伟,赵兴涛,等.宽带色散平坦光子晶体光纤的优化设计与特性分析.半导体光电,2007,28(1):104-107
    180 E. R. Martins, D. H. Spadoti, M. A. Romero, et al. Theoretical Analysis of Supercontinuum Generation in a Highly Birefringent D-Shaped Microstructured Optical Fiber. Opt. Express, 2007,15(22):14335-14347
    181 A.V. Husakou, J. Herrmann. Supercontinuum Generation in Photonic Crystal Fibers Made From Highly Nonlinear Glasses. Appl. Phys. B,2003,77:227-234
    182 K. L. Corwin, N. R. Newbury, J. M. Dudley, et al. Fundamental Amplitude Noise Limitations to Supercontinuum Spectra Generated in a Microstructured Fiber. Appl. Phys. B, 2003,77:269-277
    183 J. N. Ames, S. Ghosh, R. S. Windeler, et al. Excess Noise Generation during SpectralBroadening in a Microstructured Fiber. Appl. Phys. B,2003,77:279-284
    184 L. Tartara, I. Cristiani and V. Degiorgio. Blue Light and Infrared Continuum Generation by Soliton Fission in a Microstructured Fiber. Appl. Phys. B,2003,77:307-311
    185 D. Lorenc, D. Velic, A.N. Markevitch, et al. Adaptive Femtosecond Pulse Shaping to Control Supercontinuum Generation in a Microstructure Fiber. Opt. Commun.,2007,276:288-292
    186 E. E. Serebryannikov, A.M. Zheltikov. Supercontinuum Generation Through Cascaded Four-Wave Mixing in Photonic-Crystal Fibers: When Picoseconds Do It Better. Opt. Commun.,2007,274:433-440
    187 J. T. Moeser, N. A. Wolchover, J. C. Knight, et al. Initial Dynamics of Supercontinuum Generation in Highly Nonlinear Photonic Crystal Fiber. Opt. Lett.,2007,32(8):952-954
    188 V. Tombelaine, C. Lesvigne, P. Leproux, et al. Ultra Wide Band Supercontinuum Generation in Air-Silica Holey Fibers by SHG-Induced Modulation Instabilities. Opt. Express,2005,13(19): 7399-7404
    189 H. Tu, D. L. Marks, Z. Jiang, et al. Photoscattering Effect in Supercontinuum-Generating Photonic Crystal Fiber. Appl. Phys. Lett.,2008,92(6):061104
    190 J. Liu, T. H. Cheng, Y. K. Yeo, et al. Degenerate Four-Wave Mixing Based All-Optical Wavelength Conversion in a Semiconductor Optical Amplifier and Highly-Nonlinear Photonic Crystal Fiber Parametric Loop Mirror. Opt. Commun.,2008,281:5415-5419
    191 K. K. Chow, K. Kikuchi, T. Nagashima, et al. Four-Wave Mixing Based Widely Tunable Wavelength Conversion Using 1-m Dispersionshifted Bismuth-Oxide Photonic Crystal Fiber. Opt. Express,2007,15(23):15418-15423
    192 M. P. Fok and C. Shu. Multipump Four-Wave Mixing in a Photonic Crystal Fiber for 6×10 Gb/s Wavelength Multicasting of DPSK Signals. IEEE Photon. Technol. Lett.,2007,19(15): 1166-1168
    193 P. A. Andersen, T. Tokle, Y. Geng, et al. Wavelength Conversion of a 40-Gb/s RZ-DPSK Signal Using Four-Wave Mixing in a Dispersion-Flattened Highly Nonlinear Photonic Crystal Fiber. IEEE Photon. Technol. Lett.,2005,17(9):1908-1910
    194 H. V. Price, T. M. Monro, K. Furusawa, et al. UV Generation in a Pure-Silica Holey Fiber. Appl. Phys. B,2003,77:291-298
    195 G. E. Town, T. Funaba, T. Ryan, et al. Optical Supercontinuum Generation from NanosecondPump Pulses in an Irregularly Microstructured Air-Silica Optical Fibe. Phys. B,2003,77: 235-238
    196 A. Boucon, A. Fotiadi, P. Megret, et al. Low-Threshold All-Fiber 1000nm Supercontinuum Source Based on Highly Non-linear fiber. Opt. Commun.,2008,281:4095-4098
    197 J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, et al. High-Nonlinearity Dispersion-Shifted Lead-Silicate Holey Fibers for Efficient 1-μm Pumped Supercontinuum Generation. J. Lightwave Technol., 2006, 24(1):183-190
    198 J. C. Vindas, A. Diez, J. L. Cruz, et al. Tapering Photonic Crystal Fibres for Supercontinuum Generation with Nanosecond Pulses at 532nm. Opt. Commun.,2008,281:433-438
    199 P. Falk, M. H. Frosz, and O. Bang. Supercontinuum Generation in a Photonic Crystal Fiber with Two Zero-Dispersion Wavelengths Tapered to Normal Dispersion at All Wavelengths. Opt. Express,2005,13(19):7535-7540
    200 A. Kudlinski, G. Bouwmans, Y. Quiquempois, et al. Experimental Demonstration of Multiwatt Continuous-Wave Supercontinuum Tailoring in Photonic Crystal Fibers. Appl. Phys. Lett., 2008,92:141103
    201 T. Schreiber, T. V. Andersen, D. Schimpf. Supercontinuum Generation by Femtosecond Single and Dual Wavelength Pumping in Photonic Crystal Fibers with Two Zero Dispersion Wavelengths, et al. Opt. Express,2005,13(23):9556-9569
    202 M. L. V. Tse, P. Horak, F. Poletti, et al. Supercontinuum Generation at 1.06μm in Holey Fibers with Dispersion Flattened Profiles. Opt. Express,2006,14(10):4445-4451
    203 T. Yamamoto, H. Kubota, S. Kawanishi, et al. Supercontinuum Generation at 1.55μm in a Dispersion-Flattened Polarization-Maintaining Photonic Crystal Fiber. Opt. Express,2003,11(13):1537-1540
    204刘卫华,王屹山,刘红军,等.初始啁啾对飞秒脉冲在光子晶体光纤中超连续谱产生的影响物理学报, 2006, 55(4):1815-1820
    205于永芹,阮双琛,曾剑春,等.泵浦波长对光子晶体光纤产生超连续谱的影响.光子学报,2005,34(9):1293-1296
    206韩文,吴锦花,文双春,等.光子晶体光纤中频率啁啾对超连续谱的影响.光电子·激光, 2004,15(12):1452-1455
    207 Y. Xu, X. Ren, Z. Wang, et al. Flat Supercontinuum Generation at 1550nm in aDispersion-flattened Microstructure Fiber Using Picosecond Pulse. Chin. Phys. Lett., 2007,24(3):734-737
    208 Y. Xu, X. Ren, Z. Wang, et al. Flatly Broadened Supercontinuum Generation at 10 Gbit/s Using Dispersion Flattened Photonic Crystal Fibre with Small Normal Dispersion. Electron. Lett.,2007,43(2):87-88
    209 S. Li, L. Hou, Y. Ji, et al. Supercontinuum Generation in Holey Microstructure Fiber with Random Cladding Distribution by Femtosecond Laser Pulse. Chin. Phys. Lett., 2003,20(8):1300-1302
    210王秋国,张虎,张霞,等.光子晶体光纤中的四波混频实验研究.半导体光电,2008,29(3): 415-417
    211张岚,杨伯君,王秋国,等.基于光子晶体光纤的全光波长变换研究.光子学报.2008,37(11):2203-2205
    212周会丽,张霞,高健,等.色散平坦光子晶体光纤中实现光波变换的研究.光电子·激光,2009, 20(1):28-31
    213邵潇杰,杨冬晓,耿丹.基于光子晶体光纤四波混频效应的波长转换研究.光子学报,2009,38 (3):652-655
    214李曙光,周桂耀,侯蓝田.带有无序填充气线石英介质的光子晶体光纤.激光杂志,2003,24 (2):1-4
    215郭巍,周桂耀,倪永婧,等.利用改进的堆积法制备微结构光纤.光电子.激光,2006,17(9): 1035-1038
    216郭巍,周桂耀,倪永婧,等.微结构光纤间隙孔在制备过程中形变的研究.光电工程,2006,33(12):61-64
    217周桂耀,侯峙云,潘普丰,等.微结构光纤预制棒拉制过程的温度场分布.物理学报,2006,55 (3):1271-1275
    218刘艳云,侯蓝田,李秋菊,等.相干背散射法测量微结构光纤中的光子局域化.中国激光,2006, 33(3):343-346
    219 F. Perez-Ocon, A. M. Pozo, J. R. Jimenez, et al. Fast Single-Mode Characterization of Optical Fiber by Finite-Difference Time-Domain Method. J. Lightwave Technol.,2006,24(8):3129-3136
    220 J. J. Hu, P. Shum, C. Lu, et al. Generalized Finite-Difference Time-Domain Method Utilizing Auxiliary Differential Equations for the Full-Vectorial Analysis of Photonic Crystal Fibers. IEEEPhoton. Technol. Lett.,2007,19(24):1970-1972
    221 F. Fogli, L. Saccomandi, P. Bassi, et al. Full Vectorial BPM Modeling of Index-Guiding Photonic Crystal Fibers and Couplers. Opt. Express,2002,10:(1):54-59
    222 A. Cucinotta, S. Selleri, L. Vincetti, et al. Holey Fiber Analysis through the Finite-Element Method. IEEE Photon. Technol. Lett.,2002,14(11):1530-1532
    223 B. M. A. Rahman, A. Kabir, M. Rajarajan, et al. Birefringence Study of Photonic Crystal Fibers by Using the Full-Vectorial Finite Element Method. Appl. Phys. B-Lasers O.,2006,84(1):75-82
    224赵兴涛,侯蓝田,刘兆伦,等.改进的全矢量有效折射率方法分析光子晶体光纤的色散特性.物理学报,2007,56(4):2275-2280
    225李曙光,刘晓东,侯蓝田.一种晶体光纤基模色散特性的矢量法分析.物理学报,2004,53(6): 1873-1879
    226 X. Zhao, L. Hou, Z. Liu, et al. Improved Fully Vectorial Effective Index Method in Photonic Crystal Fiber. Appl. Opt.,2007,46(19):4052-4056
    227 H. Li, A. Mafi, A. Schülzgen, et al. Analysis and Design of Photonic Crystal Fibers Based on an Improved Effective-Index Method. J. Lightwave Technol.,2007,25(5):1224-1230
    228 S. Guo and S. Albin. Simple Plane Wave Implementation for Photonic Crystal Calculations. Opt. Express,2003,11(2):167-175
    229 T. P. White, B. T. Kuhlmey, R. C. McPhedran, et al. Multipole Method for Microstructured Optical Fibers. I. Formulation. J. Opt. Soc. Am. B,2002,19(10):2322-2330
    230 B. T. Kuhlmey, T. P. White, G. Renversez, et al. Multipole Method for Microstructured Optical Fibers. II. Implementation and Results. J. Opt. Soc. Am. B,2002,19(10):2331-2340
    231栗岩锋,王清月,胡明列,等.光子晶体光纤色散的无量纲化计算方法.物理学报,2004,53(5):1396-1400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700