用户名: 密码: 验证码:
降值设计理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三值光计算机是一种全新概念的光电混合型计算机,它将光强度与偏振方向结合起来表示三值信息,具有光运算、光传送、电控制和光电混合存储等特点。三值光计算机理论正在逐步完善并走向实践。三值光计算机研究者们一直致力于三值光计算机样机的研制,希望这种具有众多数据位的计算机早日带给我们新的计算技术。
     三值逻辑光学运算器是三值光计算机的心脏部件,它的设计与实现是三值光计算机样机研制成功的关键,其性能与硬件规模都是三值光计算机样机的主要衡量指标,并对未来三值光计算机的硬件结构形式和应用影响深远。作者在研究三值逻辑光学运算器的工作中发现了多值逻辑运算器的降值设计规律;并由此建立了多值逻辑运算器的降值设计理论、设立了降值设计规范;依据这个规范,n值逻辑的nn×n种运算器都可以循着程式化的步骤,从n×n×(n-1)种最简单的基本运算单元中组合几个而成。作者运用这个规范成功地设计了三值逻辑光学运算器的结构,取得满意结果。随后,作者进一步推证出了三值逻辑光学运算器设计的公式化简法和合并图化简法。主要贡献有:
     1.建立了多值逻辑运算器设计的降值设计理论与降值设计规范。该理论建立在D状态、迭合操作、分解定理以及处理基元等基础上,是一种全新的运算器设计与实现方法,按此设计的运算器易于物理实现。
     2.建立了三值逻辑光学运算器的通用降值设计规范,并提出了一种易于集成和实现的光学硬件典型结构。这是将降值设计理论与降值设计规范应用到三值逻辑光学运算器研究上得到的成果,这项成果为这种运算器的重构性奠定了基础。
     3.建立了三值逻辑光学运算器的公式化简法和合并图化简法。依据这两种方法可以对三值逻辑光学运算器做最优化改善。
     4.实现了一个重构型三值逻辑光学运算器的实验系统,完成了相关的软硬件设计。该实验系统可以构造出全部19683种二元三值逻辑光学运算器。它显示了这种运算器的可重构性和降值设计理论的正确性。
     除此之外,作者还对经典逻辑代数理论中的部分定律和定理做出了降值设计理论的新解释,初步揭示了两种理论的内在关联;同时初步探讨了降值设计理论与多值逻辑理论的联系。
Ternary Optical Computer (TOC) is a new type of optoelectronic hybrid computer. Using the intensity and polarizations of light to express ternary information, TOC is of the characteristics of light processing, light transmission, electric control, optoelectronic hybrid memory, et al. The theory of TOC is being improved gradually and stepped into practice. The researchers have committed themselves to the manufacture of TOC prototype at all times, and hope that the new type of computers with numerous data bits can provide us with new computing technology as soon as possible.
     The Ternary Logic Optical Calculator (TLOC) is the core of TOC, so its designation and realization are the keys for the successful manufacture of TOC prototype. The property and hardware scale of TLOC are the main indexes to TOC prototype, and can deeply influence the hardware architecture and application of the future TOC. In the study of TLOC, the author found the Decrease-Radix Design (DRD) rule applying to the design of Multi-Valued Logic Calculator (MVLC), and founded the DRD principle and corresponding DRD criterion of MVLC. With the DRD criterion, any n-valued logic calculator (nn×n in total) can be constructed by combining n×n×(n-1) simple basic operation units according to procedural steps. Next, the author designed the architecture of TLOC based on the DRD criterion, and obtained the satisfied results. Subsequently, two simplification methods, formula simplification and union map simplification, are deduced for the optimization of design of TLOC. The main results and achievements can be summarized as follows:
     Firstly, the DRD principle and DRD criterion, which are used to design the MVLC, are established. Based on physical state D, Diehe (pronounce in Chinese) manipulation, Decomposition Theorems and operation unit, et al., the DRD principle is a fire-new method that is used to design and realize logic calculator. The architecture of logic calculator designed by DRD is easy to be realized physically.
     Secondly, general DRD criterion of TLOC is set up, and a typical architecture of optical hardware, which is easy for integration and realization, is proposed. This is the achievement of the design of TLOC by applying the DRD principle and criterion, and it establishes the foundation on the reconfigurablity of the calculator architecture.
     Thirdly, formula simplification and union map simplification are founded. Based on the two simplifications, the optimization of design of TLOC can be realized.
     Lastly, a reconstruction experimental system of TLOC is established, and corresponding software and hardware are developed. The entire TLOCs with two inputs, 19683 types, can be reconstructed from the experimental system; this reveals the reconfigurablity of TLOC and the validity of DRD principle.
     In addition, part of law and theorem in classical theory of logical algebra are given a new physical implications in DRD principle, this preliminarily reveals the essential relevancy of the two theories. Meanwhile, the relevancy of DRD principle and multi-valued logical theory is also discussed preliminarily in this paper.
引文
[1]王之江.光计算技术进展.中国科学院院刊, 1987, 2(3): 198-205
    [2]金翊.三值光计算机原理和结构.博士学位论文.西安:西北工业大学, 2002
    [3]张锐.光学向量-矩阵乘法器实验研究.硕士学位论文.长沙:国防科技大学, 2006
    [4] Caulfield H J, Vikram C S, Zavalin A. Optical logic redux. Optik, 2006, 117: 199-209
    [5]金翊,何华灿,吕养天.三值光计算机基本原理.中国科学, E辑, 2003, 33(1): 111-115
    [6] Jin Y, He H C, LüY T. Ternary Optical Computer principle. Sci China Ser F-Inf Sci, 2003, 46(2): 145-150
    [7]任广军,姚建铨,李国华,等.液晶的磁旋光特性.天津大学学报, 2006, 39(8): 973-977
    [8]金翊,何华灿,艾丽蓉.一种未来的计算机——三值光计算机.科技广场, 2005, 1: 4-6
    [9]金翊,何华灿,艾丽蓉.进位直达并行三值光加法器原理.中国科学, E辑, 2004, 34(8): 930-938
    [10] Jin Y, He H C, Ai L R. Lane of parallel through carry in ternary optical adder. Sci China Ser F-Inf Sci, 2005, 48(1): 107-116
    [11]孙浩,金翊,严军勇.三值光计算机编码器与解码器原理的实验研究.计算机工程与应用, 2004, 40(16): 82—83, 136
    [12]严军勇,金翊,孙浩.三值光计算机多位编码器与解码器的可行性实验研究.计算机工程, 2004, 30(14): 175—177
    [13]蔡超,金翊.对称三进制光学加法器的进位直达通道设计.微电子学与计算机, 2007, 24(6): 150-152, 155
    [14]黄伟刚,金翊,艾丽蓉,等.三值光计算机百位编码器的设计与构造.计算机工程与科学, 2006, 28(4): 139—142
    [15]包九龙,金翊,蔡超.三值光计算机百位量级编码器的实现.计算机技术与发展, 2007, 17(2): 19—22
    [16]蔡超,金翊,包九龙,等.三值光计算机的对称三进制半加器原理设计.计算机工程, 2007, 33(17): 278-279
    [17]尹逊玮,金翊,李军.三值光计算机半加器结构的简化.计算机工程与设计, 2008, 29(14): 3773-3775
    [18]李军,金翊,尹逊玮. C51单片机在三值光计算机编码器中的应用.计算机技术与发展, 2008, 18(9): 180-182, 186
    [19]左开中,金翊,薛涛,等.三值光计算机解码模拟器的图像采集系统[J].半导体光电, 2008, 29(6): 135-138
    [20] Zuo K Z, Jin Y, Xue T, et al. Tri-state Light Decoder of Ternary Optical Computer [C]. The 3rd International Conference on Computer Science & Education,厦门:厦门大学出版社,2008: 442—444
    [21]左开中.基于细菌视紫红质薄膜的三值光学数据存储研究.计算机技术与发展, 2008, 18(3): 132-134
    [22]左开中.吲哚俘精酸酐实现三值偏振全息光学存储器.光电工程, 2008, 35(7): 121-125
    [23]金翊.三值光计算机高数据宽度的管理策略.上海大学学报, 2007, 13(5): 519-523
    [24]左开中,金翊,严军勇.基于S3C44B0X的双目立体数码照相机.微计算机信息, 2007, 23(7-2): 107-109
    [25]左开中,金翊,严军勇.三值光计算机的数值表示及其基本算法[J].计算机技术与发展, 2007, 17(9):8-10
    [26]严军勇,金翊,左开中.三态光纤通信收发器的设计与实现.计算机工程, 2008, 34(2): 237-239
    [27]严军勇,金翊,左开中.无进(借)位运算器的降值设计理论及其在三值光计算机中的应用.中国科学E辑:信息科学, 2008, 38 (12): 2112-2122
    [28] Yan J Y, Jin Y, Zuo K Z. Decrease-Radix Design principle for carrying / borrowing free multi-valued calculator and application in Ternary Optical Computer. Sci China Ser F-Inf Sci, 2008, 51 (10): 1415-1426
    [29]钱秋明,李庆熊,王之江.光学一般三值逻辑运算器件的结构.中国激光, 1989, 16(12): 725-728
    [30]姜恩华,姜文彬.三值逻辑函数RDSOP形式的代数理论和T门实现.计算机学报, 2007, 30(7): 1132-1137
    [31]罗铸楷,胡谋,陈廷槐.多值逻辑的理论及应用.科学出版社, 1992
    [32]金晓龙,楼世博.多值逻辑与三值计算机.铁道学报, 1(1): 55-61
    [33]杨之廉,等.超大规模集成电路设计方法学导论.清华大学出版社, 1999
    [34]鲍家元,等.数字逻辑.高等教育出版社, 1997
    [35] France R, Ghosh S, Song E, Kim D K. A metamodeling approach to pattern-based model refactoring. IEEE Software, 2003, 20(5): 52?58
    [36]谭民.可重构制造系统的关键技术.信息与控制, 2001, 30( 7): 622-626
    [37] Khoo I C, Michael R R, Finn G M. Self-phase modulation and optical limiting of a low-power CO2 laser with a nematic liquid-crystal film. Appl Phys Lett, 1988, 52(25): 2108-2110
    [38] Janassy I, Lloyd A D. Low-power optical reorientationin dyed nematics. Mol Cryst L iq Cryst, 1991, 203(5): 77-84
    [39] Janossy I. Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals. Phys Rev E, 1994, 49(4): 2957-2963
    [40]谭春华,黄旭光,殷建玲.填充液晶的光子晶体的光控可调光子带隙.液晶与显示, 2006, 21(4): 291-296
    [41]王会军.基于SOA非线性的全光逻辑门的理论与实验研究.硕士学位论文.北京:北京化工大学, 2007
    [42] Kristian, Stubkjaer E. Semiconductor Optical Amplifier-Based All-Optical Gates for High-Speed Optical Processing [J]. IEEE Journal on selected topics in quantum electronics, 2000, 6(6): 1428-1435
    [43] Robinson B S, Hamilton S A, Savage S J, et al. 40 Gbit/s All-Optical XOR Using a Fiber-Based Folded Ultrafast Nonlinear Interferometer. OFC’02, Anaheim, USA, Mar. 2002, pp: 561-563
    [44] Fjelde T, Kloch A, Wolfson D, et al. Novel Scheme for Simple Label-Swapping Employing XOR Logic in an Integrated Interferometric Wavelength Converter. IEEE Photonics Technology Letters, 2001, 13(7): 750-752
    [45] Kim J H, Jhon Y M, Byun Y T, et al. All-optical XOR Gate Using Semiconductor Optical Amplifiers Without Additional Input Beam [J]. IEEE Photonics Technology Letters, 2002, 14(10): 1436-1438
    [46] Kumar S, Gurkan D, Willner A E, et al. All-optical half adder using a PPLN waveguide and an SOA. OFC’04, Los Angeles, USA, Feb. 2004, pp: WN2
    [47] Chan K, Chan C K, Chen L K, et al. Demonstration of 20-Gb/s All-Optical XOR Gate by Four-Wave Mixing in Semiconductor Optical Amplifier With RZ-DPSK Modulated Inputs. IEEE Photonics Technology Letters, 2004, 16(3): 897-899
    [48] Sun J Q. Relaxation of facet reflection restrictions in XGM wavelength converters [J]. Optics Communication, 2002, 206(1-3): 67-75
    [49] Wang J W, Olesen H, Stubkjaer K E. Recombination gain and bandwidth characteristics of 1.3-um semiconductor laser amplifiers [J]. Journal of light wave technology, 2000, LT-5(1): 184-189
    [50] Jitendra N R, Dilip K G. Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device---alternative approach. Appl Optics, 2007, 46(22): 5304-5310
    [51]张新亮,董建绩,王颖,等.新型全光逻辑与门的理论和实验研究.物理学报, 2005, 54(5): 2066-2071
    [52] Andriolli N, Scaffardi M, Berrettini G, et al. Ultra-fast All-optical Interconnection Network Fully Based on Modular Integrable Photonic Digital Processing [J]. Photonics in Switching, 2007, 19(22): 63-64
    [53] Wang Q, Zhu G H, Chen H M, et al. Study of All-Optical XOR Using Mach-Zehnder Interferometer and Differential Scheme. IEEE Journal of Quantum Electronics, 2004, 40(6):703-710
    [54] Tangdiongga E, Crijins J J, Spiekman L H, et al. Performance analysis of linear optical amplifiers in dynamic WDM systems [J]. IEEE Photonics Technology Letters, 2002, 14(8):1196-1198
    [55] HeeSang C, JinSoo H, SunHyok C, et al. Bidirectional transmissions of 32 channels×10Gb/s over metropolitan networks using linear optical amplifiers [J]. IEEE Photonics Technology Letters, 2004, 16(4): 1194-1196
    [56] Awaji Y, Sotobayashi H, Kubota F. Transmission of 80 Gb/s×6WDM over 100 km using linear optical amplifiers [J]. IEEE Photonics Technology Letters, 2005, 17(3): 699-701
    [57] Leuthold J, Dreyer K. Linear all-optical wavelength conversion based on linear optical amplifier [R]. Optical Fiber Communication Conference and Exhibit 2002, 56:597-598
    [58] Mingshan Z, Merlier J, Morthier G, et al. All-optical 2R regeneration based on polarization rotation in a linear optical amplifier [J]. IEEE Photonics Technology Letters, 2003, 15(2): 305-307
    [59] Tangdiongga E, Turkiewicz J P, Khoe G D, et al. Clock recovery by a fiber ring laser employing a linear optical amplifier [J]. IEEE Photonics Technology Letters, 2004, 16(2): 611-613
    [60]李茜.基于LOA_XGM的全光逻辑门研究.硕士学位论文.成都:西南交通大学, 2008
    [61] Blow K J, Manning R J, Poustie A J. Model of longitudinal effects in semiconductor optical amplifiers in a nonlinear loop mirror configuration [J]. Optics Communications, 1998, 148: 31-35
    [62] Davies D A, Ellis A D, Sherlock G. Regenerative 20Gbit/s wavelength conversion and demultiplexing using a semiconductor laser amplifier nonlinear loop mirror [J]. Electronics Letters, 1995, 31(12): 1000-1001
    [63] Hamie A, Sharaiha A, Guegan M, et al. All-optical Logic NOR Gate Using Two-Cascaded Semiconductor Optical Amplifiers [J]. IEEE Photonics Technology Letters, 2002, 14(10): 1439-1441
    [64] Kim J, Chuang S L. Theoretical and experimental study of optical gain, refractive index change, and line-width enhancement factor of p-doped quantum-dot lasers [J]. IEEE J. Quantum Electron., 2006, 42(9): 942-952
    [65] Houbavlis T, Zoiros K, Vlachos K, et al. All-Optical XOR in a Semiconductor Optical Amplifier-Assisted Fiber Sagnac Gate. IEEE Photonics Technology Letters, 1999, 11(3): 334-336
    [66]周云峰,伍剑,林金桐.利用TOAD实现全光逻辑操作的实验研究.通信学报, 2004, 25(12): 53-58
    [67] Fjelde T, Wolfson D, Kloch A, et al. Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter. Electronics Letters, 2000, 36(22): 1863-1864
    [68] Fjelde T, Wolfson D, Kloch A, et al. 10Gbit/s all-optical logic OR in monolithically integrated interferometric wavelength converter. Electronics Letters, 2000, 36(9): 813-815
    [69] Webb R P, Manning R J, Maxwell G D, et al. 40Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer. Electronics Letters, 2003, 39(1): 79-81
    [70] Zhang X L, Wang Y, Huang D X. All-optical AND gate at 10Gbit/s based on cascaded single-port-coupled SOAs. Optics Express, 2004, 12(3): 361-366
    [71] Soto H, Erasme D, Guekos G. 5 Gb/s XOR Optical Gate Based on Cross-Polarization Modulation in Semiconductor Optical Amplifiers. IEEE Photonics Technology Letters, 2001, 13(4): 335-337
    [72] Soto H, Diaz C A, Topomondzo J, et al. All-optical AND Gate Implementation Using Cross-Polarization Modulation in a Semiconductor Optical Amplifier. IEEE Photonics Technology Letters, 2002, 14(4): 498-500
    [73] Okada-Shudo Y, Yamaguchi I, Tomioka H, et al. Real-time Image processing using polarization discrimination of bacteriorhodopsin [J]. Syn. Meta., 1996, 81: 147-149
    [74] Zhan T H, Zhang C P, Fu G H, et al. All-optical logic gates using bacteriorhodopsin films [J]. Opt. Eng., 2000, 39(2): 527-534
    [75] Li Y D, Sun Q, Tian J G, et al. Optical Boolean logic based on dgenerate multi-wave mixing in bR film [J]. Opt. Meta., 2003, 23: 285-288
    [76] Li Y D, Sun Q, Zhang C P, et al. All-optical Boolean logic using bR film [J]. Chin. J. Lasers, 1999, 26: 1103-1108
    [77] Chandra P S, Sukhdev R. All-optical switching in bacteriorhdopsin based on M state dynamics and its application to photonic logic gates [J]. Opt. Commun., 2003, 218:55-66
    [78] Huang Y H, Wu S T. Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films [J]. Appl. Phys. Lett., 2004, 84: 2028-2030
    [79] Huang Y H, Wu S T, Zhao Y Y. All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics [J]. Opt. Exp., 2004, 12: 895-906
    [80]顾立群,陈桂英,郭宗霞,等.用细菌视紫红质膜实现多进制数字光学运算.物理学报, 2004, 53(12):4236-4242
    [81] Mcleod R, Wagner K, Blair S. (3+1)-dimensional optical soliton dragging logic. Phy. Rev. A., 1995, 52(4): 3254
    [82] Knill E, Laflamme R, Milbur G J. Efficient linear optics quantum computation. Nature(London), 2001, 409: 46
    [83] Sharma P, Roy S. All-Optical Biomolecular Parallel Logic Gates With Bacteriorhodopsin. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2004, 3(2): 129-136
    [84] Sharma P, Roy S. All-optical light modulation in pharaonis phoborhodopsin and its application to parallel logic gates. J. Appl. Phys., 2004, 96(3): 1687-1695
    [85] Singh C P, Roy S. All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates. Optics Communications, 2003, 218: 55-66
    [86] Roy S, Kikukawa T, Sharma P, et al. All-Optical Switching in Pharaonis Phoborhodopsin Protein Molecules. IEEE TRANSACTIONS ON NANOBIOSSCIENCE, 2006, 5(3): 178-187
    [87] Roy S, Kulshrestha K. All-Optical Switching in Plant Blue Light Photoreceptor Phototropin. IEEE TRANSACTIONS ON NANOBIOSSCIENCE, 2006, 5(4): 281-287
    [88] Roy S, Sharma P, Dharmadhikari A K, et al. All-optical switching with bacteriorhodopsin. Optics Communications, 2004, 237: 251-256
    [89] Sharma P, Roy S, Singh C P. Dynamics of all-optical switching in polymethine dye molecules. Thin Solid Films, 2005, 477: 42-47
    [90] Sharma P, Roy S, Singh C P. Low power spatial light modulator with pharaonis phoborhodopsin. Thin Solid Films, 2005, 477: 227-232
    [91] Raychaudhuri B, Bhattacharyya S. Molecular Level all-optical logic with chlorophy11 absorption spectrum and polarization sensitivity. Appl. Phys., 2008, B91: 545-550
    [92] Chen G Y, Zhang C P, Shang X D, et al. Real-time intensity-dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film. Optics Communication, 2005, 249: 563-568
    [93] Yu C, Christen L, Luo T, et al. All-optical XOR gate using polarization rotation in single highly nonlinear fiber. IEEE Photonics Technology Letters, 2005, 17:1232-1233
    [94] Zhao C, Zhang X., Liu H, et al. Tunable all-optical NOR gate at 10Gb/s based on SOA fiber ring laser. Opt. Exp., 2005, 13: 2793-2798
    [95] Kobayashi K, Sangu S, Kawazoe T, et al. Exciton dynamics and logic operations in a near-field optically coupled quantum-dot system.. J. Lumin., 2005, 112: 117-121
    [96] Hurtado A, Gonzalez-Marcos A, Martin-pereda J A. Modeling reflective bistability in vertical-cavity semiconductor optical amplifiers. IEEE J. Quantum Electronics, 2005, 41: 376-383
    [97] Rand D, Steiglitz K, Prucnal P R. Signal standardization in collision-based soliton computing. Int. J. Unconventional Computing, 2005, 1: 31-45
    [98] Cheng C J, Chen M L. Polarization encoding for optical encryption using twisted nematic liquid crystal spatial light modulators. Opt. Commun., 2004, 237: 45-52
    [99] Cowan A R, Rieger G W, Young J F. Nonlinear transmission of 1.5μm pulses through single-mode silicon-on-insulator waveguide structures. Opt. Exp., 2004, 12: 1611-1621
    [100] Tu H Y, Cheng C J, Chen M L. Optical image encryption based on polarization encoding by liquid crystal spatial light modulators. J. Opt. A: Pure Appl. Opt., 2004, 6: 524-528
    [101] Caulfield H J, Westphal J. The logic of optics and the optics of logic. Inform. Sci., 2004, 162: 21-34
    [102] Qian L, Caulfield H J. Abstract passive interferometers with applications to conservative logic. Optik, 2005, 116: 404–408
    [103] Roy S, Kulshrestha K. Theoretical analysis of all-optical spatial light modulation in organometallics based on triplet state absorption dynamics. Opt. Commun., 2005, 252: 275–285
    [104] Chen G Y, Guo Z X, Chen K, et al. Time-dependent all-optical logic-gates with bacteriorhodopsin film. Optik, 2005, 116: 227–231
    [105] Medhekar S, Sarkar R K. All-optical passive transistor. Opt. Lett. 2005, 30: 887–889
    [106] Vilar R, Martinez J M, Ramos F, et al. All-optical DGD monitor for packet-switched networks based on an integrated active Mach-Zehnder interferometer operating as logic XOR gate. Optics Communication, 2008, 281: 5330-5334
    [107] Samanta D, Mukhopadhyay S. All-optical method for maintaining a fixed intensity level of a light signal in optical computation. Optics Communications, 2008, 281: 4851-4853
    [108] Boubas A Y, Bettayeb M. All-optical processing using light intensity and wavelength recognition. Can. J. Elect. Comput. Eng., 2008, 33(3/4): 161-168
    [109] Chattopadhyay T, Roy J N. All-optical conversion scheme: Binary to quaternary and quaternary to binary number. Optics & Laser Technology, 2009, 41: 289-294
    [110] Teimoori H, Apostolopoulos D, Vlachos K G, et al. Optical-Logic-Gate Aided Packed-Switching in Transparent Optical Networks. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26(16): 2848-2856
    [111] Zhang C F, Qiu K, Xu B, et al. A novel all-optical label processing based on multiple optical orthogonal codes sequences for optical packet switching networks. Optics Communications, 2008, 281: 2433-2443
    [112] Dong J J, Zhang X L, XU J, et al. 40 Gb/s all-optical NOR and OR gates using a semiconductor optical amplifier: Experimental demonstration and theoretical analysis. Optics Communications, 2008, 281: 1710-1715
    [113] Sobrinho C S, Ferreira A C, Menezes J W, et al. Analysis of an optical logic gate using a symmetric coupler operating with pulse position modulation (PPM). Optics Communications, 2008, 281: 1056-1064
    [114] Wang J, Sun J Q, Sun Q Z, et al. PPLN-Based Flexible Optical Logic AND Gate. IEEE Photonics Technology Letters, 2008, 20(3):211-213
    [115] Miyoshi Y, Ikeda K, Tobioka H, et al. Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function. Opt. Exp., 2008, 16(4): 2570-2577
    [116] Xu Q F, Lipson M. All-optical logic based on silicon micro-ring resonators. Opt. Exp., 2007, 15(3): 924-929
    [117] Zhang J Y, Wu J, Feng C F, et al. All-Optical Logic OR Gate Exploiting Nonlinear Polarization Rotation in an SOA and Red-Shifted Sideband Filtering. IEEE Photonics Technology Letters, 2007, 19(1): 33-35
    [118] Menezes J W, Fraga W B, et al. Optical switches and all-fiber logical devices based on triangular and planar three-core nonlinear optical fiber couplers. Optics Communications, 2007, 276: 107-115
    [119] Zhang Y L, Zhang Y, Li B J. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Optics Express, 2007, 15(15): 9287-9292
    [120] Hardy J, Shamir J. Optics inspired logic architectur. Optics Express, 2007, 15(1): 150-165
    [121]王健,孙军强,张新亮,等.基于周期极化反转铌酸锂光波导的全光信号处理.中国光学, 2008, 45(2): 12
    [122] Liao Z Y, Pan J Q, Zhou F, et al. A Novel Optical Gate by Integration of a Photodiode and an Electroabsorption Modulator. JOURNAL OF SEMICONDUCTORS, 2008, 29(5): 898-902
    [123]张金磊,王智,疏达.基于SOA交叉增益调制效应的全光组合逻辑.光学与光电技术, 2008, 6(2): 29-31
    [124]周敏娟,马叶新.基于高非线性光纤的40Gbit/s全光与门.舰船电子工程, 2008, 28(12): 193-195
    [125]王会军,伦秀君,何敬锁,等.基于SOA非线性的全光逻辑运算的理论研究.半导体技术, 2007, 32(7): 589-592
    [126]李燕明,陈理想,佘卫龙.光致异构全光逻辑门理论与实验研究.物理学报, 2007, 56(10): 5895-5902
    [127]邵宇挺,罗斌,潘炜,等.基于SOA-XPM的光数据包信息头提取.半导体光电, 2007,28(6):847-850
    [128]邹龙方,潘炜,罗斌,等.基于线性光放大器的全光逻辑异或门理论分析.光学学报, 2006, 26(6): 895-902
    [129]陈桂英,张春平,郭宗霞,等.细菌视紫红质在全光逻辑器件中的研究与应用.物理实验, 2005, 25(2): 13-17
    [130]潘炜,邹龙方,罗斌,等.基于马赫-曾德尔干涉仪的全光逻辑异或门理论研究.光学精密工程, 2005, 13(3): 339-347
    [131]李建华,张正线.基于(3+1)维光孤子驱动作用的光逻辑.光通信技术, 2001, 25(3): 212-216
    [132]郑志强,邱怡申,吕团孙,等.用光折变晶体桥式互泵浦相位共轭实现光逻辑运算.福建师范大学学报(自然科学版), 2001, 17(1): 34-36
    [133]王又法,王子华.基于非线性定向耦合器的光二进制逻辑器件.光子学报, 2000, 29(3): 223-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700