用户名: 密码: 验证码:
Radio over Fiber宽带无线接入网络的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Radio over Fiber(RoF)宽带无线接入网络是新兴的研究领域,它结合光纤通信和无线通信两大技术,可以实现超过Gb/s无线业务的传输,在未来高速宽带无线通信系统中具有重要的应用。本论文研究了RoF宽带无线接入网络中的若干关键技术,提出并设计新颖的RoF系统结构,主要进行如下几方面的研究:
     1.光子产生射频信号技术
     在RoF系统中,需要使用高频信号携载高速数据以提高无线通信系统的容量,但是目前采用电产生高频信号的方法难度大、成本高、技术复杂。而光子产生高速射频信号具有显著的优点,是实现RoF的关键技术之一。本论文提出三种新颖的光子产生射频信号的技术方案:
     1)光子产生六倍频的高速毫米波:基于两个级联的单驱动马赫曾德调制器(MZM),采用10-GHz的微波信号,光子产生60-GHz的毫米波。传统的方案如果要得到超过四倍频的射频信号,需要结合四波混频非线性效应和光域的滤波。该方案不需要非线性处理,以及光域和电域上的滤波;而且在频率上具有可扩展性,如果采用当前成熟的40-GHz光电器件,可以得到240-GHz的亚毫米波。
     2)光子产生四倍频的高速毫米波:基于单个集成的双平行马赫曾德调制器(DPMZM),采用10-GHz的微波信号,光子产生40-GHz的毫米波。该方案在频率上具有扩展性;电信号处理简单,不需要严格的电信号相位匹配;也不需要光域和电域的滤波;采用单个的集成调制器,插入损耗低、结构简单、容易控制。
     3)24-GHz超宽带(UWB)脉冲射频信号:基于DPMZM和级联的单驱动MZM,集成光子产生和光子上变频技术,得到24-GHz超宽带(UWB)脉冲射频信号。我们还首次对24-GHz的超宽带信号在光纤传输中的性能进行了测试和分析。
     2.应用于双向RoF系统的OCS-DPSK调制格式研究
     在RoF系统中,需要同时传输下行和上行信号,以满足交互式业务的需求,因此,双向RoF系统设计也是关注的热点。本论文首次提出采用新颖的光载波抑制-差分相移键控(OCS-DPSK)信号,实现双向RoF系统中三个关键的功能:将基带信号上变换到射频频段,产生远端本振信号以及上行数据重调制,从而最小化RoF接入网络的配置成本。我们提出两种新颖的OCS-DPSK信号产生技术:
     1)基于幅移键控(ASK)到差分相移键控(DPSK)调制格式的转换,采用单个集成的DPMZM,通过抑制OCS-ASK信号的两个边带中离散的直流成分,得到OCS-DPSK调制格式。相比较传统的OCS-DPSK发射机,提出的方案具有结构紧凑、插入损耗低等显著优点。
     2)基于单驱动MZM,通过产生双极性的电副载波信号,以及利用光载波抑制技术,得到OCS-DPSK信号。提出的方案只采用单个调制器,并且实现了双向RoF系统的三个关键功能,最小化整个RoF系统的配置成本。
     3)我们还延伸了单驱动MZM产生OCS-DPSK调制格式的原理,采用单个的DPMZM,首次提出并实验演示了在RoF系统中产生和传输新颖的OCS-DQPSK信号。在RoF传输系统,OCS-DQPSK调制格式可以实现在公共的射频载波上传输多个无线业务,提高射频频谱效率。
     3.融合RoF和PON技术的混合多业务传输系统的设计
     在未来的光通信中,既需要提供光纤到户的宽带有线接入服务,也需要用光纤传输宽带无线业务。因此,融合RoF和无源光网络(PON)技术,将无线和有线业务集中整合到同一个网络结构中,成为当前RoF研究领域的又一个热点。我们提出三种新型的、在单载波上提供混合多业务的系统设计方案:
     1)多波段RoF系统设计:采用DPMZM和级联的单驱动MZM,基于光载波抑制和频谱搬移技术,同时产生和传输有线基带数据、两倍频的无线微波信号,和四倍频的无线毫米波信号。
     2)集成RoF技术的WDM-PON双广播业务分发系统:通过设计正交相位/强度调制码型和光副载波格式,首次实现了在单载波上同时传输点对点的高速下行数据信号和点对多点的双广播业务。
     3)融合RoF技术分发三重混合业务的WDM-PON系统:采用集成的DPMZM,实现了在单载波上同时传输单个有线业务和两种无线业务的三重混合业务的功能。该方案只需要单个集成的调制器,具有结构紧凑、成本有效、信号容易控制、插入损耗低等优点。
     4. RoF系统中的光子射频信号处理技术
     光子射频信号处理突破了传统的电处理方法的带宽瓶颈,而且具有处理速度快、精度高、不受电磁干扰、传输损耗低等优点,在RoF系统中具有重要的地位。我们首次将硅波导器件应用于RoF系统中,具有开创性的意义。基于硅波导环形谐振腔的非线性效应,设计出新颖的光子上变频器和光子射频移相器:
     1)利用硅波导环形谐振腔的自由载流子色散效应,设计并实验演示了微米刻度的光子上变频器,将1-Gb/s的基带数据成功上变频到40-GHz的毫米波,提出的方案可以实现毫米波频率可扩展的光子上变频器。
     2)采用硅波导环形谐振腔器件的非线性热效应,设计并实验演示了40-GHz的高速光子射频移相器,相移的范围达到4.6弧度,这是目前实验报道的最高频率的光子射频移相器。同时还实验验证了该光子射频移相器的相移响应速度。
Radio over Fiber (RoF) broadband wireless access network, the integration of optical fiber and wireless technology, is an emerging research field. It entails the use of optical fiber links to deliver radio frequency (RF) signal, with the advantages including huge bandwidth、low attenuation loss and immunity to RF interference. RoF technique is a powerful solution to provide broadband wireless access services with increased mobility and reduced cost. Our thesis focuses on the researches of the key technologies and system design as follows:
     1. Photonic generation of high-speed RF signal
     The use of high-speed RF signal in the RoF systems is receiving increasing interests since it can be used as RF carrier or local oscillator signal for providing broadband wireless access services. To save costly electrical hardware, all-optical generations of milimeter-wave signals have attracted much attention. We propose three novel schemes for photonic generation of RF signal:
     1)Photonic generation of six-fold frequency millimetre-wave(MMW): We propose and experimentally demonstrate to generate 60-GHz MMW based on two cascaded 10-GHz single drive Mach-Zehnder modulators (MZMs). The scheme is scalable in frequency band if faster devices are employed, thus up to 240-GHz high speed MMW can be obtained using currently available 40-GHz components.
     2)Photonic generation of quadruple frequency MMW: We propose and experimentally demonstrate a novel scheme to generate frequency-quadrupled MMW using an integrated dual-parallel Mach-Zehnder modulator (DPMZM). A 40-GHz high-speed MMW is obtained based on a 10-GHz RF signal.
     3)24-GHz Ultra-Wideband over Fiber System: We propose and experimentally demonstrate a 24-GHz UWB over fiber system with a simple structure using photonic generation and frequency up-conversion technique. The performance of the up- converted UWB pulses after the fiber transmission is also studied.
     2. OCS-DPSK modulation format in bi-directional RoF systems
     Optical carrier suppression-differiential phase-shift keying (OCS-DPSK) is an effective modulation format in bi-directional RoF systems to realize flexible applications in future broadband access networks. We propose two novel methods to generate OCS-DPSK using single intensity modulator:
     1)Generation of OCS-DPSK using ASK to DPSK format conversion: We experimentally demonstrate to produce an OCS-DPSK format using one DPMZM. The proposed scheme is based on ASK to DPSK format conversion by suppressing the spectral tones of an optical carrier suppression-amplitude shift keying (OCS-ASK) signal.
     2)Generation of OCS-DPSK using one single drive MZM: This scheme realizes three key functions in full-duplex RoF systems: up-conversion of baseband data for downlink wireless service delivery, generation of remote local oscillator (LO) signal for down-conversion of uplink wireless signal, and re-modulation of down-converted uplink data, thus greatly lowering the cost of base stations.
     3)In addition, based on the OCS-DPSK generation principle, an optical carrier suppression-differiential quadruple phase-shift keying (OCS-DQPSK) signal is also obtained using a DPMZM for simultaneously delivering multiple RoF services at the common RF carrier.
     3. Convergence of RoF and PON to provide hybide multiple sevices
     The future broadband access networks demand large bandwidths and high data rate for data-intensive multimedia and real-time applications. It is desirable to simultaneously deliver wireline and wireless signals using the same fiber infrastructure with cost-effective configurations. We present three novel schemes to provide hybrid multiple services by convergeing RoF and passive optical network (PON) techniques with centralized wavelength:
     1)Multiband RoF transmission systems: We propose a novel multi-band RoF system and experimentally demonstrate the simultaneous generation and transmission of the downstream1.25-Gb/s baseband, 20-GHz microwave and 40-GHz millimiter-wave signals and upstream symmetric data. The system uses 10-GHz components to achieve frequency doubling and quadrupling, and without the need of additional light source and wavelength management at the base station.
     2)Convergence of RoF to deliver high-speed point-to-point downlink data and double broadcast services in wavelength division multiplexing-passive optical network (WDM-PON) systems: We propose and experimentally demonstrate that double broadcast services can be overlaid over high-speed point-to-point downlink data with centralized light sources and shared fiber infrastructure in a WDM-PON system.
     3)Intergration with RoF to provide one wireless and double wireline services in WDM-PON systems: We propose and experimentally demonstrate a WDM-PON system simulataneously providing triple different services with centralized light source and shared optical-fiber infrastructure based on a single DPMZM.
     4. Photonic RF signal processing based on silicon micro-ring resonator
     Photonic RF signal processing has particular advantages since it is more efficient, less complex, and less costly than conventional electronic systems, especially at high- speed millimeter wave frequencies. We present and experimentally demonstrate two important photonic RF devices including photonic up-converter and photonic RF phase shifter based on silicon micro-ring resonator:
     1)Photonic RF up-converter: Based on the free-carrier dispersion effect in a resonance-split silicon microring resonator, we experimentally demonstrate a novel micrometer-scale optical up-converter for up-converting a 1-Gb/s baseband data to 40-GHz millimeter-wave in RoF systems.
     2) Photonic RF phase shifter: Based on the thermal nonlinear effect of the silicon microring, a prototype of the phase shifter is experimentally demonstrated for a 40-GHz signal with a 4.6-rad tuning range. We also experimenally verify the phase shift response speed of the designed photonic RF phase shifter.
引文
[1] T. S. Rappaport, A. Annamalai, R. M. Buehrer, et al,“Wireless communications-past events and a future perspective,”IEEE Communications Magazine 50th Anniversary Commemorative, vol 40, issue 5, pp.148-161, May 2002.
    [2] J. Yu,“Novel enabling technologies for convergence of optical and wireless access networks,”in Proc. CLEO Pacific 2007, pp. 1-2, Aug. 2007.
    [3] A. Sano, E. Yamada, H. Masuda, et al,“13.4-Tb/s (134 x 111-Gb/s/ch) No-guard-interval coherent OFDM transmission over 3,600 km of SMF with 19-ps average PMD,”in Proc. ECOC 2008, paper PDP Th.3.E.1.
    [4] J. Yu, X. Zhou, M. Huang, et al,“17-Tb/s (161×114 Gb/s) PolMux-RZ-8PSK transmission over 662 km of ultra-low loss fiber using C-band EDFA amplification and digital coherent detection,”in Proc. ECOC 2008, paper PDP Th.3.E.2.
    [5] G. Charlet, J. Renaudier, H. Mardoyan, et al,“Transmission of 16.4-bit/s capacity over 2,550km using PDM QPSK modulation format and coherent receiver,”in Proc. OFC. 2007, paper PDP3.
    [6] H. Ogawa, D. Polifko, and S. Banba,“Millimeter-wave fiber optics systems for personal radio communication,”IEEE Trans. Microwave Theory Tech., vol. 40, no. 12 pp. 2285-2292, Dec. 1992.
    [7] D. Wake, M. Webster, G. Wimpenny, et al,“Radio over fiber for mobile communications,”in IEEE Int. Topical Meeting Microwave Photonics (MWP 2004), pp. 157-160, Oct. 2004.
    [8] A. Wiberg, P. P. Millán, M. V. Andrés, et al,“Fiber-optic 40 GHz mm-wave link with 2.5 Gb/s data transmission,”IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1938-1940, Sep. 2005.
    [9] D. Wake,“Radio over fiber systems for mobile applications”in Radio over fiber technologies for mobile communications networks”, edited by H. Al-Raweshidy, and S. Komaki. Artech House, Inc, USA, 2002.
    [10] A. Kim, Y. Hun Joo, and Y. Kim,“60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,”IEEE Transactions on Consumer Electronics, vol. 50, no. 2, pp. 517-520, May 2004.
    [11] J. O'Reilly and P. Lane,“Remote delivery of video services using mm-waves and optics,”J. Lightw. Technol., vol. 12, no. 2, pp. 369-375, Feb.1994.
    [12] H. Bong, K. Emmelmann, M. Rathke, et al,“A radio over fiber network architecture for road vehicle communication systems,”in Proc. Vehicular Technology Conference, vol. 5, pp. 2920-2924, Jun. 2005.
    [13] M. Fujise,“Radio over fiber transmission technology for ITS and mobile communications,”IEICE Trans. Fundamentals, vol. E84-A, no. 8, pp. 1808-1814, Aug. 2001.
    [14] J. F. Coward, T. K. Yee, C. H. Chalfant, et al,“A photonic integrated-optic RF phase-shifter forphased-array antenna beam-forming applications,”J. Lightw. Technol., vol. 11, no. 12, pp. 2201-2205, Dec. 1993.
    [15] J. Yu, Z. Jia, and G. K. Chang,“Super-broadband access services delivery in optical-wireless Networks,”in Proc. OFC 2007, paper NThB5.
    [16] A. J. Seeds, and K. J. Williams,“Microwave photonics,”J. Lightw. Technol., vol. 24, no. 12, pp. 4628-4641, Dec. 2006.
    [17] S. Sarkar, S. Dixit, and B. Mukherjee,“Hybrid wireless-optical broadband-access network (WOBAN): A review of relevant challenges,”J. Lightw. Technol., vol. 25, no. 11, pp. 3329-3340, Nov. 2007.
    [18] Z. Jia, J. Yu, G. Ellinas, et al,“Key enabling technologies for optical–wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,”J. Lightw. Technol., vol. 25, no. 11, pp. 3542-3741, Nov. 2007.
    [19] R. C. Williamson, and R. D. Esman,“RF Photonics,”J. Lightw. Technol., vol. 26, no. 9, pp. 1145-1153, May. 2008.
    [20] E. H. W. Chan,“Double coupler amplified recirculating delay line microwave photonic bandpass filter,”IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 918-920, Jun. 2008.
    [21] Qing Wang and Jianping Yao,“Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,”IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 78-80, Jun. 2008.
    [22] E. H. W. Chan,“Novel continuously tunable microwave photonic bandpass filter,”IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 357-359, Mar. 2008.
    [23] S. R. Blais, and J. Yao,“Tunable photonic microwave filter using a superstructured FBG with two reflection bands having complementary chirps,”IEEE Photon. Technol. Lett., vol. 20, no. 3, pp. 199-201, Feb. 2008.
    [24] E. H. W. Chan and R. A. Minasian,“Widely tunable, high-FSR, coherence-free microwave photonic notch filter,”J. Lightw. Technol., vol. 26, no. 8, pp. 922-927, Apr. 2008.
    [25] Y. Yan, S. R. Blais, and J. Yao,“Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings,”J. Lightw.e Technol., vol. 25, no. 11, pp. 3283-3288, Nov. 2007.
    [26] J-Hyuk Seo, S-Young-Kwang, C- Woo-Young,“1.244-Gb/s data distribution in 60-GHz remote optical frequency up-conversion systems,”IEEE Photon.Technol. Lett., vol. 18, no. 12, pp. 1389-1391, Jun. 2006.
    [27] K. I. Kitayama and R. A. Grifin,“Optical downconversion from millimeter-wave to IF-band over 50-km-long optical fiber link using an electroabsorption modulator,”IEEE Photon. Technol. Lett.,vol. 11, no. 2, pp. 287–289, Feb. 1999.
    [28] H-Jun Kim, J-In Song, and H-Jin Song,“An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over fiber applications,”Opt. Express, vol. 15, issue 6, pp. 3384-3389, 2007.
    [29] J Yu, J. Gu, Z. Jia, et al,“Seamless integration of an 8 x2.5 Gb/s WDM-PON and radio-over -fiber using all-optical up-conversion based on raman-assisted FWM,”IEEE Photon.Technol. Lett., vol. 17, no. 9, pp. 1986-1988, Sept. 2005.
    [30] H.-J. Song, J.-S. Lee, and J.-I. Song,“Signal up-conversion by using a cross-phase -modulation in all-optical SOA-MZI wavelength converter,”IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 593-595, Feb. 2004.
    [31] C. S. Park, C. G. Leeand C-Soo Park,“Photonic Frequency Upconversion Based on Stimulated Brillouin Scattering,”IEEE Photon. Technol. Lett., vol. 19, no. 10, pp. 777-779, May. 2007.
    [32] Ho-Jin Song, and J-In Song,“Simultaneous all-optical frequency downconversion technique utilizing an SOA-MZI for WDM radio over fiber (RoF) applications,”J. Lightw. Technol., vol. 24, no. 8, pp. 3028-3034, Aug. 2006.
    [33] A. Loayssa and F. J. Lahoz,“Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,”IEEE Photon. Technol. Lett., vol.18, pp. 208-230, Jan. 2006.
    [34] K. Ghorbani, A. Mitchell, R. B. Waterhouse, et al,“A Novel wide-band tunable RF phase shifter using a variable optical directional coupler,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 5, pp. 645-648, May. 1999.
    [35] M. R. Fisher and S. L. Chuang,“A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,”IEEE Photon. Technol. Lett., vol.18, pp. 1714-1716, Aug. 2006.
    [36] Y. Dong, Z. Li, Q. Wang, et al,“Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach-Zehnder interferometer,”Opt. Lett., vol. 32, issue 7, pp. 745-747, 2007.
    [37] S. S. Lee, A. H. Udupa, H. Erlig, et al,“Demonstration of a photonically controlled RF phase shifter,”IEEE Microw. Guided Wave Lett., vol. 9, no. 3, pp. 357-359, Sep. 1999.
    [38] J. F. Coward, T. K. Yee, C. H. Chalfant, et al,“A photonic integrated-optic RF phase-shifter for phased-array antenna beam-forming applications,”J. Lightw. Technol., vol. 11, no. 12, pp. 2201-2205, Dec. 1993.
    [39] J. J. Vegas Olmos, T. Kuri, and K. Kitayama,“Dynamic reconfigurable WDM 60-GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment,”J. Lightw. Technol. vol. 25, no. 11, pp. 3374-3380, Nov. 2007.
    [40] W. Shaw, S.-Wa Wong, N. Cheng, et al,“Hybrid architecture and integrated routing in a scalable optical–wireless access network,”J. Lightw. Technol. vol. 25, no. 11, pp. 3343-3351, Nov. 2007.
    [41] M. Sauer, A. Kobyakov, and J. George,“Radio over fiber for picocellular network architectures,”J. Lightw. Technol. vol. 25, no. 11, pp. 3301-3320, Nov. 2007.
    [42] L. Chen, Y. Shao, X. Lei, et al,“A novel radio-over fiber system with wavelength reuse for upstream data connection,”IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 387-389, Mar. 2007.
    [43] A. Nirmalathas, D. Novak, C. Lim, et al,“Wavelength reuse in the WDM optical interface of a millimeter-wave fiber-wireless antenna base station,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 2006-2009, Oct. 2001.
    [44] J. Yu, Z. Jia, T. Wang, et al,“A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,”IEEE Photon. Technol. Lett., vol. 19, no. 3, pp. 140-142, Feb. 2007.
    [45] A. Kaszubowska, L. Hu, and L. P. Barry,“Remote downconversion with wavelength reuse for the radio/fiber uplink connection,”IEEE Photon. Technol. Lett., vol. 18, no. 4, pp. 562-564, Feb. 15, 2006.
    [46] J. Yu, O. Akanbi, Y. Luo, et al,“Demonstration of a novel WDM passive optical network architecture with source-free optical network units,”IEEE Photon. Technol. Lett. vol. 19, no. 8, pp. 571-573, Apr. 2007.
    [47] J. Yu, Z. Jia, T. Wang, G.-K. Chang,et al,“Demonstration of a novel WDM-PON access network compatible with RoF system to provide 2.5Gb/s per channel symmetric data services,”in Proc. OFC 2007, paper OThM5.
    [48] Z. Jia, J. Yu, Y.-K. Yeo, et al,“Design and implementation of a low cost, integrated platform for delivering super-broadband dual services simultaneously,”in Proc. ECOC 2006, paper Tu1.6.6.
    [49] A. Martinez, V. Polo, and J. Marti,“Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 2018-2024, Oct. 2001.
    [50] H. Pfrommer, M. A. Piqueras, J. Herrera, et al,“Full-duplex DOCSIS/Wireless DOCSIS fiber-radio network employing packaged AFPM-based base-Stations,”IEEE Photon. Technol. Lett., vol. 18, no. 2, pp.406-408, Jan. 2006.
    [51] J. Zhang, A. N. Hone, and T. E. Darcie,“Limitation due to signal-clipping in linearized microwave-photonic links,”IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1033-1035, Jul. 2007.
    [52] A. Karim, and J. Devenport,“Noise figure reduction in externally modulated analog fiber-optic links,”IEEE Photon. Technol. Lett., vol. 19, no. 5, pp. 312-314, Jul. 2007.
    [53] M. Sauer, A. Kobyakov, and A. Boh Ruffin,“Radio-over-fiber transmission with mitigatedstimulated brillouin scattering,”IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1487-1489, Oct.2007.
    [54] Z. Li, A. Nirmalathas, M. Bakaul, et al,“Performance of WDM fiber-radio Network using distributed raman amplifier,”IEEE Photon. Technol. Lett., vol. 18, no. 4, pp. 553-555, Feb.2006.
    [55] C-T Lin, S-P Dai, Jason (Jyehong) Chen, et al,“A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,”IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1106-1108, Jul. 2008.
    [56] J. B. Song, and A. H. M. Razibul Islam,“Distortion of OFDM signals on Radio-over-fiber links integrated with an RF amplifier and active/passive electroabsorption modulators,”J. Lightw. Technol. vol. 26, no. 5, pp. 467-477, Mar. 2008.
    [57] M. M. Sisto, S. LaRochelle, and L. A. Rusch,“Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,”IEEE Photon. Technol. Lett., vol. 18, no. 17, pp. 1840-1842, Sep. 2006.
    [58] H. Louchet, K. Kuzmin, and A. Richter,“Efficient BER estimation for electrical QAM signal in radio-over-fiber transmission,”IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 114-116, Jan. 2008.
    [59] J. Yu, Z. Jia, L. Yi, et al,“Optical millimeter-wave generation or up-conversion using external modulators,”IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 265-267, Jan. 2006.
    [60] Y. Song, X. Zheng, H. Zhang, et al,“All-optical subcarrier demodulation in up-link of WDM mm-wave radio-over-fiber system,”IEEE Photon. Technol. Lett., vol. 20, no. 9, pp. 685-687, May. 2008.
    [61] J. J. OReilly and P. M. Lane,“Optical generation of very narrow linewidth millimeter wave signal,”Electron. Lett., vol. 28, pp.2309-2311, 1992.
    [62] Q. Wang, H. Rideout, and F. Zeng,“Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,”IEEE Photon. Technol. Lett., vol. 18, no. 23, pp. 2460-2462, Dec. 2006.
    [63] T. Kawanishi, H. Kiuchi, M. Yamada, et al,“Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulators for photonic local oscillators,”in Proc. IEEE Microwave Photonics 2005, paper PDP-03.
    [64] C-T Lin, P-T Shih, J. Chen, et al,“Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,”IEEE Photon. Technol. Lett. vol. 20, no. 12, pp. 1027-1029, Jun. 2008.
    [65] A. Wiberg, P. P-Millan, M. V. Andres,et al,“Microwave-photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg Gratings,”J. Lightw. Technol. vol. 24, no. 1, pp. 329-334, Jan. 2006.
    [66] M. Jarrahi, T. H. Lee, and D. A. B. Miller,“Wideband, low driving voltage traveling-wave Mach–Zehnder modulator for RF photonics,”IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 517-519, Apr. 2008.
    [67] B. Masella and X. Zhang,“Linearized optical single-sideband Mach–Zehnder modulator for radio-over-fiber systems,”IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2018-2020, Dec. 2007.
    [68] T. Kuri, H. Toda, and K. Kitayama,“Novel demultiplexer for dense wavelength-division -mutliplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving technique,”IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2018-2010, Dec. 2007.
    [69] M. Bakaul, A. Nirmalathas, C. Lim, et al,“Investigation of performance enhancement of WDM optical interfaces for millimeter-wave fiber-radio networks,”IEEE Photon. Technol. Lett., vol. 19, no. 11, pp. 843-845, Jun. 2007.
    [1] J. J. OReilly and P. M. Lane,“Optical generation of very narrow linewidth millimeter wave signal,”Electron. Lett., vol. 28, pp.2309-2311, 1992.
    [2] Q. Wang, H. Rideout, and F. Zeng,“Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,”IEEE Photon. Technol. Lett., vol. 18, no. 23, pp. 2460-2462, Dec. 2006.
    [3] T. Kawanishi, H. Kiuchi, M. Yamada, et al,“Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulators for photonic local oscillators,”in Proc. IEEE Microwave Photonics 2005, paper PDP-03.
    [4] J. Zhang, H. Chen, M. Chen, et al,“A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,”IEEE Photon. Technol. Lett. vol. 19, no. 14, pp. 1057-1059, July. 2007.
    [5] C-T. Lin, P-T. Shih, J. Chen, et al,“Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,”IEEE Photon. Technol. Lett. vol. 20, no. 12, pp. 1027-1029, June. 2008.
    [6] A. Wiberg, P. P-Millan, M. V. Andres, et al,“Microwave-photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg Gratings,”J. Lightw. Technol. vol. 24, no. 1, pp. 329-334, Jan. 2006.
    [7] T. Wang, M. Chen, H. Chen, et al,“Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,”IEEE Photon. Technol. Lett. vol. 19, no. 16, pp. 1191-1193, Aug. 2007.
    [8] M. G. Larrodé, A. M. J. Koonen, J. J. Vegas Olmos, et al,“Microwave signal generation and transmission based on optical frequency multiplication with a polarization interferometer,”J. Lightw. Technol. vol. 25, no. 6, pp. 1372-1378, June. 2007.
    [9] C-T. Lin, P-T. Shih, J. Chen, et al,“Optical millimeter-wave fignal generation using frequency quadrupling technique and no optical filtering,”IEEE Photon. Technol. Lett., vol. 20, no. 12, pp. 1027-1029, Jun.2008.
    [10] R. W. Ridgway, and D. W. Nippa,“Generation and modulation of a 94-GHz signal using electrooptic modulators,”IEEE Photon. Technol. Lett., vol. 20, no. 8, pp. 653-655, Apr.2008.
    [11] J. S. Leng, Y. C. Lai, W. Zhang, et al,“A new method for microwave generation and data transmission using DFB laser based on fiber Bragg gratings,”IEEE Photon. Technol. Lett., vol. 18, no. 16, pp. 1729-1731, Aug.2006.
    [12] L. A. Johansson and A. J. Seeds,“Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lockloop,”IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 690-692, Jun. 2000.
    [13] Z. Deng and J. P. Yao,“Photonic generation of microwave signal using a rational harmonic mode- locked fiber ring laser,”IEEE Trans. Microw.Theory Tech., vol. 54, no. 2, pp. 763-767, Feb. 2006.
    [14] L. Goldberg, H. F. Taylor, J. F.Weller, et al,“Microwave signal generation with injection-locked laser diodes,”Electron. Lett., vol. 19, no. 13, pp. 491-493, Jun. 1983.
    [15] M. Ghavami, L. B. Michael, and R. Kohno,“Ultra Wideband Signals and Systems in Communication Engineering,”West Sussex, U.K. Wiley, 2004.
    [16] R. W. Ridgway, and D. W. Nippa,“Generation and modulation of a 94-GHz signal using electrooptic modulators,”IEEE Photon. Technol. Lett., vol. 20, no. 8, pp. 653-655, Apr.2008.
    [17] J. S. Leng, Y. C. Lai, W. Zhang, et al,“A new method for microwave generation and data transmission using DFB laser based on fiber Bragg gratings,”IEEE Photon. Technol. Lett., vol. 18, no. 16, pp. 1729-1731, Aug.2006.
    [18] Porcine, P. Research, and W. Hirt,“Ultra-wideband radio technology: Potential and challenges ahead,”IEEE Commun. Mag., vol. 41, no. 7, pp. 66-74, Jul. 2003.
    [19] I. Oppermann,“The role of UWB in 4G”, Wireless Personal Communications, vol. 29, Numbers 1-2, pp. 121-133, Apr. 2004.
    [20] G. R. Aiello and G. D. Rogerson,“Ultra-wideband wireless systems,”IEEE Microw. Mag., vol. 4, no. 2, pp. 36-47, Jun. 2003.
    [21] Fed. Commun. Commission, Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems, Tech. Rep., ET-Docket 98-153, FCC02-48, Apr. 2002.
    [22] FCC, Second report and order and second memorandum opinion and order FCC 04-285, Dec. 2004.
    [23] L. Q. Yang and G. B. Giannakis,“Ultra-wideband communications: An idea whose time has come,”IEEE Signal Process. Mag., vol. 21, no. 6, pp. 26-54, Nov. 2004.
    [24] C. R. Nassar, F. Zhu, and Z. Wu,“Direct sequence spreading UWB systems: Frequency domain processing for enhanced performance and throughput,”in Proc. IEEE Int. Conf. Commun., vol. 3, pp. 2180–2186, May 2003.
    [25] J. Balakrishnan, A. Batra, and A. Dabak,“A multi-band OFDM system for UWB communication,”in Proc. IEEE Conf. Ultra Wideband Syst.Technol., pp. 354-358, Nov. 2003.
    [26] J. Yao, F. Zeng, and Q. Wang,“Photonic generation of ultrawideband signals,”J. Lightwave Technol. vol. 25,no. 11, pp. 3219-3235, Nov. 2007.
    [27] X. Chen, and Kiaei. S,“Monocycle shapes for ultra wideband system,”in Proc. IEEE International Symposium on Circuits and Systems, vol. 1, pp. 597- 600, 2002.
    [28] J. Dong, X. Zhang, J. Xu, et al,“Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,”Opt. Lett., vol. 32, no.10, pp. 1223-1225, May.2007.
    [29] Q. Wang, F. Zeng, S. Blais, et al,“Optical ultra-wideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,”Opt. Lett., vol. 31, no. 21, pp. 3083-3085, Nov. 2006.
    [30] H. Chen, M. Chen, C. Qiu, et al,“A novel composite method for ultra-wideband doublet pulses generation,”IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2021-2023, Dec. 2007.
    [31] F. Zeng and J. Yao,“Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-brag grating-based frequency discriminator,”IEEE Photon. Technol. Lett., vol. 18, no. 19, pp. 2062-2064, Oct. 2006.
    [32] F. Zeng, Q. Wang, and J. P. Yao,“All-optical UWB impulse generation based on cross phase modulation and frequency discrimination,”Electron. Lett., vol. 43, no. 2, pp. 119-121, Jan. 2007.
    [33] V. T. Company, K. Prince, and I. T. Monroy,“Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion,”Opt. Lett., vol. 33, no. 3, pp. 222-224, Feb. 2008.
    [34] C. Wang, F. Zeng, and J. Yao,“All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,”IEEE Photon. Technol. Lett., vol. 19, no. 3, pp. 137-139, Feb. 2007.
    [35] Q. Wang and J. Yao,“UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,”Electron. Lett., vol. 42, no. 22, pp. 1304-1305, Oct. 2006.
    [36] T. Kawanishi, T. Sakamoto, and M. Izutsu,“Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 3, pp. 153-155, Mar. 2005.
    [37] T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, and K. Kitayama,“Optical transmitter and receiver of 24-GHz ultra-wideband signal by direct photonic conversion techniques,”in Int. Topical Meeting Microwave Photonics, Grenoble, France, Oct. 2006.
    [38] Y. L. Guennec and R. Gary,“Optical frequency conversion for millimeter-wave ultra- wideband-over-fiber systems,”IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 996-998, July. 2007.
    [39] S. Fu, Wen-De Zhong, Y. Wen, et al,“Photonic monocycle pulse frquency up-convrsion for untrawideband-over-fiber applications,”IEEE Photon. Technol. Lett., vol. 20, no. 12, pp. 1006-1008, June. 2008.
    [1] L. Chen, Y. Shao, X. Lei, et al,“A novel radio-over fiber system with wavelength reuse for upstream data connection,”IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 387-389, Mar. 2007.
    [2] A. Nirmalathas, D. Novak, C. Lim, et al,“Wavelength reuse in the WDM optical interface of a millimeter-wave fiber-wireless antenna base station,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 2006-2009, Oct. 2001.
    [3] J. Yu, Z. Jia, T. Wang, et al,“A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,”IEEE Photon. Technol. Lett., vol. 19, no. 3, pp. 140-142, Feb. 2007.
    [4] A. Kaszubowska, L. Hu, and L. P. Barry,“Remote downconversion with wavelength reuse for the radio/fiber uplink connection,”IEEE Photon. Technol. Lett., vol. 18, no. 4, pp. 562-564, Feb. 15, 2006.
    [5] J. Yu, O. Akanbi, Y. Luo, et al,“Demonstration of a novel WDM passive optical network architecture with source-free optical network units,”IEEE Photon. Technol. Lett. vol. 19, no. 8, pp. 571-573, Apr. 2007.
    [6] W. Hung, C-K. Chan, L-K. Chen, et al,“System characterization of a robust re-modulation scheme with DPSK downstream traffic in a WDM access network,”in Proc. ECOC 2003, paper We. 3.4.5.
    [7] Z. Jia, J. Yu, D. Boivin, et al,“Bidirectional RoF links using optically up-converted DPSK for downstream and remodulated OOK for upstream,”IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 653-655, May. 2007.
    [8] H-H. Lu, A. S. Patra, W-J. Ho, et al,“A full-duplex radio-over-fiber transport system based on FP laser diode with OBPF and optical circulator with fiber Bragg grating,”IEEE Photon. Technol. Lett. vol. 19, no. 20, pp. 1652-1654, Oct. 2007.
    [9] M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, et al,“Bidirectional radio-over-fiber link employing optical frequency multiplication,”IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 241-243, Jan. 2006.
    [10] T. Taniguchi, N. Sakurai, K. Kumozaki, et al,“Full-Duplex 1-Gbps 60 GHz-band radio- on-fiber access based on loop-back optical heterodyne technique,”in Proc. OFC 2006, Anaheim, CA, Paper OWG5.
    [11] G. C. Kassar, N. Calabretta,I. T. Monroy,“Simultaneous optical carrier and radio frequency re-modulation in radio-over-fiber systems employing reflective SOA modulators,”in Proc. LEOS 2007.
    [12] A. Stohr, K. Kitayama, and D. Jager,“Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/ photodetector,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp.1338-1341, July 1999.
    [13] Q. Chang, H. Fu, and Y. Su,“Simultaneous generation and transmission multi-band signals and upstream data in a bidirectional radio over fiber system,”IEEE Photon. Technol. Lett., vol. 20, no. 3, pp. 181-183, Feb. 2008.
    [14] Z. Jia, J. Yu, D. Boivin, et al,“Bidirectional RoF links using optically up-converted DPSK for downstream and remodulated OOK for upstream,”IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 653-655, May. 2007.
    [15] B. P. Lathi,“Modern digital and analog communication systems,”Oxford University Press, 3rd edition, 1998.
    [16] P. J. Winzer, and R-J. Essiambre,“Advanced optical modulation formats,”Proceedings of the IEEE. 94, pp. 952-985, May 2006.
    [17] T. Ye, Q. Chang, J. Gao, et al,“An optical PSK-RF-signal transmitter based on ASK-to-PSK conversion and self-heterodyning,”in Proc. OFC 2008, paper JWA64.
    [18] H. Kim, and P. J. Winzer,“Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,”J. Lightw. Technol. vol. 21, no. 9, pp.1887-1891, Sep. 2003.
    [19] Q. Wang, H. Rideout, F. Zeng, et al,“Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,”IEEE Photon. Technol. Lett. vol. 18, no. 23, pp. 2460-2462, Dec. 2006.
    [20] L. Matabishi,“Theoretical implementation of antenna polarization to improve the reduction of co-channel interference in mobile cellular systems,”in IEEE Int. Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE 2005), vol. 1, pp. 431-433, Aug. 2005.
    [21] D. P. Stapor,“Optimal receive antenna polarization in the presence of interference and noise,”IEEE Trans. Antenns Propaga., vol. 43, no. 5, pp. 473-477, May. 1995.
    [22] H. Kim, and P. J. Winzer,“Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,”J. Lightw. Technol. vol. 21, no. 9, pp.1887-1891, Sep. 2003.
    [1] G-K. Chang, J. Yu, Z. Jia, et al,“Novel optical-wireless access network architecture for simultaneously providing broadband wireless and wired services,”in Proc. OFC 2006, paper OFM1.
    [2] J. Yu, Z. Jia, T. Wang, et al,“Demonstration of a novel WDM-PON access network compatible with RoF system to provide 2.5-Gb/s per channel symmetric data services,”in Proc. OFC 2007, paper OThM5.
    [3] Z. Jia, J. Yu , Y-Kee Yeo, et al,“Design and implementation of a low cost, integrated platform for delivering super-broadband dual services simultaneously,”in Proc. ECOC 2006, paper Tu1.6.6.
    [4] A. Martinez, V. Polo, and J. Marti,“Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 2018-2024, Oct. 2001.
    [5] H. Pfrommer, M. A. Piqueras, J. Herrera, et al,“Full-duplex DOCSIS/Wireless DOCSIS fiber-radio network employing packaged AFPM-based base-Stations,”IEEE Photon. Technol. Lett., vol. 18, no. 2, pp.406-408, Jan. 2006.
    [6] Z. Jia , J. Yu, Y-K Yeo, et al,“Design and implementation of a low cost, integrated platform for delivering super-broadband dual services simultaneously,”in Proc. ECOC 2006, paper Tu1.6.1.
    [7] C. Lin, W. Peng, P. Peng,“Simultaneous generation of baseband and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity,”IEEE Photon. Technol. Lett., vol. 18, no. 23, pp.2481-2483, Dec. 2006.
    [8] C. Lim, A. Nirmalathas, D. Novak, et al,“Millimeter-Wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,”J. Lightw. Technol., vol. 18, no. 10, pp. 1355-1363, Oct. 2000.
    [9] A. Martinez, V. Polo, and J. Marti,“Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access networks,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 2018-2024, Oct. 2001.
    [10] C. T. Lin, J. Chen, P. C. Peng, et al,“Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,”IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 610-612, Apr. 2007.
    [11] Z. Jia, J. Yu, A. Chowdhury, et al,“Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave-band radio-over-fiber systems,”IEEE Photon. Technol. Lett., vol. 19, no. 20, pp. 1691-1693, Oct. 2007.
    [12] M. Bakaul, A. Nirmalathas, C. Lim, et al,“Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network,”IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2311-2313, Nov. 2006.
    [13] G. H. Smith and D. Novak,“Broadband millimeter-wave fiber-radio network incorporating remote up/downconversion,”in Proc. IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, pp. 1509-1512, 1998.
    [14] C. Lim, A. Nimarthalas, D. Novak, et al,“Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,”J. Lightw. Technol., vol. 18, no. 10, pp. 1355-1363, Oct. 2000.
    [15] A. Martínez, P.l Mu?oz, J. Capmany, et al,“Multiservice hybrid radio over fiber and baseband AWG-PON using CWDM and spectral periodicity of arrayed waveguide gratings,”IEEE Photon. Technol. Lett., vol. 16, no. 2, pp.599-601, Nov. 2006.
    [16] K. Ikeda, T. Kuri, and K. Kitayama,“Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength,”J. Lightw. Technol., vol. 21, no. 12, pp. 3194-3202, Dec. 2003.
    [17] G. P. Agrawal,“Nonlinear fiber optics”, Academic Press,third edition, 2001.
    [18] J. Toulouse,“Optical nonlinearities in fibers: review, recent examples, and systems applications”, J. Lightw. Technol., vol. 23, no. 11, pp.3625-3641, Nov. 2005.
    [19] G. P. Agrawal,“Lightwave technology-telecommunication systems”, Wiley-Interscience,2005.
    [20] N. Chi and S. Yu,“Optical Subcarrier Labeling Transparent to the Payload Format Using Carrier Suppression Technique,”IEEE Photon. Technol. Lett., vol. 18, no. 8, pp. 971-973, Apr. 2006.
    [21] S-S. Pun, C-K. Chan and L-K. Chen,“Demonstration of a novel optical transmitter for high-speed differential phase-shift-keying/inverse-return-to-zero orthogonally modulated signals,”IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2763-2765, Dec. 2005.
    [22] T. Miyazaki and F. Kubota,“2-bit per symbol modulation/demodulation by DPSK over inverse-RZ optical pulses,”in Proc. CLEO 2004, Paper CThBB2.
    [23] M. Zitelli,“Optical phase and intensity modulation using dark pulses,”IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1972-1974, Aug. 2004.
    [24] Y. Keith Lizé, X. Liu, and R. Kashyap,“Single modulator payload/label encoding and node operations for optical label switching,”IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1140-1142, May. 2006.
    [1] Jun-Hyuk Seo, S-Y. Kwang, C-W. Young,“1.244-Gb/s Data Distribution in 60-GHz Remote Optical Frequency Up-Conversion Systems,”IEEE Photon.Technol. Lett., vol. 18, no. 12, pp. 1389-1391, Jun. 2006.
    [2] C-Soo Park,C. K. Oh, and C. G. Lee, et al,“A photonic up-converter for a WDM Radio-Over- Fiber System Using Cross-Absorption Modulation in an EAM,”IEEE Photon. Technol. Lett., vol. 17, no. 9, Sept. 2005.
    [3] J. Yu, Z. Jia, and G.-K. Chang,“All-optical mixer based on crossabsorption modulation in electroabsorption modulator,”IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2421-2423, Nov. 2005.
    [4] C. S. Park, Y. Guo, Y-K.Yeo, et al,“Fiber-Optic 60-GHz wireless downlink using cross- absorption modulation in an EAM,”IEEE Photon. Technol. Lett., vol. 20, no. 8, pp. 557-559, Apr. 2008.
    [5] P. S. Cho, D. Mahgerefteh, and J. Goldhar,“All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator,”IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1662-1664, Dec. 1999.
    [6] K. I. Kitayama and R. A. Grifin,“Optical downconversion from millimeter-wave to IF-band over 50-km-long optical fiber link using an electroabsorption modulator,”IEEE Photon. Technol. Lett., vol. 11, no. 2, pp. 287-289, Feb. 1999.
    [7] K. Nishimura, R. Inohara, M. Usami, et al,“All-optical wavelength conversion by electroabsorption modulator,”IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 278-284, Jan. 2005.
    [8] H-J. Kim, Jong-In Song, and Ho-Jin Song,“An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over fiber applications,”Opt. Express, vol. 15, issue 6, pp. 3384-3389, 2007.
    [9] J. Yu, J. Gu, Z. Jia, et al,“Seamless integration of an 8x2.5 Gb/s WDM-PON and radio-over -fiber using all-optical up-conversion based on raman-assisted FWM,”IEEE Photon.Technol. Lett., vol. 17, no. 9, pp. 1896-1898, Sept. 2005.
    [10] Z. Jia, J. Yu, G-K Chang,“All-Optical 16x2.5-Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in RoF systems,”IEEE Photon.Technol. Lett., vol. 17, no. 12, pp. 2724-2726, Dec. 2005.
    [11] J-H. Seo, Y-K. Seo, and W-Y. Choi,“Nonlinear characteristics of an SOA photonic frequency up-converter,”in Proc. Int. Topical Meeting Microw. Photon., pp. 109-112, Sep. 2003.
    [12] H.-J. Song, J.-S. Lee, and J.-I. Song,“Signal up-conversion by using a cross-phase -modulation inall-optical SOA-MZI wavelength converter,”IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 593-595, Feb. 2004.
    [13] C. S. Park, C. G. Lee, and C-S. Park,“Photonic frequency upconversion based on stimulated Brillouin scattering,”IEEE Photon. Technol. Lett., vol. 19, no. 10, pp. 777-779, May. 2007.
    [14] C. S. Park, C. G. Lee, and C-S Park,“Experimental demonstration of 1.25-Gb/s radio-over -fiber downlink using SBS-based photonic upconversion,”IEEE Photon. Technol. Lett., vol. 19, no. 22, pp. 1828-1830, Nov. 2007.
    [15] S. B. Constant, Y. Le Guennec, G. Maury, et al,“Low-cost all-optical up-conversion of digital radio signals using a directly modulated 1550-nm emitting VCSEL,”IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 120-122, Jan. 2008.
    [16] Z. Jia, J. Yu, G. Ellinas, et al,“Key enabling technologies for optical–wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,”J. Lightw. Technol., vol. 25, no. 11, pp. 3452-3471, Jul. 2007.
    [17] Z. Li, Y. Dong, Y. Wen, et al“Realizaion of RF shift on amplitude modulated data for smart antenna in wireless access networks,”in Prof. OFC 2007, paper Own5.
    [18] M. A. Piqueras and et al.,“Optical beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access network,”IEEE Trans. On Microwave Theory and Techniques, vol. 54, no. 2, pp. 887-899, Feb. 2006.
    [19] A. Loayssa and F. J. Lahoz,“Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,”IEEE Photon. Technol. Lett., vol.18, no. 1, pp. 208-230, Jan. 2006.
    [20] K. Ghorbani, A. Mitchell, R. B. Waterhouse, et al,“A novel wide-band tunable RF phase shifter using a variable optical directional coupler,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 5, pp. 645-648, May. 1999.
    [21] M. R. Fisher and S. L. Chuang,“A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,”IEEE Photon. Technol. Lett., vol.18, pp. 1714-1716, Aug. 2006.
    [22] Y. Dong, Z. Li, Q. Wang, et al,“Broadband RF photonic phase modulator based on a novel nonlinear optical loop mirror,”in Proc. ECOC 2006, paper Mo4.4.1,
    [23] Y. Dong, Z. Li, Q. Wang, et al,“Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach-Zehnder interferometer,”Opt. Lett., vol. 32, issue 7, pp. 745-747, 2007.
    [24] S. S. Lee, A. H. Udupa, H. Erlig, et al,“Demonstration of a photonically controlled RF phase shifter,”IEEE Microw. Guided Wave Lett., vol. 9, no. 3, pp. 357-359, Sep. 1999.
    [25] J. Han, H. Erlig, D. Chang, et al,“Multiple output photonic RF phase shifter using a novel polymer technology,”IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 531-533, Apr. 2002.
    [26] J. F. Coward, T. K. Yee, C. H. Chalfant, et al,“A photonic integrated-optic Rf phase-shifter for phased-array antenna beam-forming applications,”J. Lightw. Technol., vol. 11, no. 12, pp. 2201-2205, Dec. 1993.
    [27] S. T. Winnall, A. C. Lindsay, and G. A. Knight,“A wide-band microwave photonic phase and frequency shifter,”IEEE Trans. Microwave Theory Tech., vol. 45, no. 6, pp. 1003-1006, Jun. 1997.
    [28] E. H. W. Chan, and R. A. Minasian,“Photonic RF phase shifter and tunable photonic RF notch filter,”J. Lightw. Technol., vol. 24, no. 7. pp. 2676-2632, Jul. 2008.
    [29] Q. Xu, V. R. Almeida, and M. Lipson,“Micrometer-scale all-optical wavelength converter on silicon,”Opt. Lett. vol. 30, no. 20, pp. 2733-2735, Oct. 2005.
    [30] Z. Zhang, M. Dainese, L. Wosinski, et al,“Resonance-splitting and enhance notch depth in SOI ring resonators with mutual mode coupling,”Opt. Express, vol. 16, no. 7, pp. 4621-4630, Mar.2008.
    [31] M. Dinu, F. Quochi, and H. Garcia,“Third-order nonlinearities in silicon at telecom wavelengths,”Appl. Phys. Lett. vol. 82, no. 18, pp. 2954-2956, May 2003.
    [32] Q. Li, Z. Zhang, F. Liu, et al,“Dense wavelength conversion and multicasting in a resonance-split silicon microring,”Appl. Phys. Lett., vol. 93, no. 8, Aug. 2008.
    [33] T. Kawanishi, H. Kiuchi, M. Yamada, et al,“Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulators for photonic local oscillators,”in Proc. IEEE Microwave Photonics 2005, paper PDP-03.
    [34] Y. Lu, F. Liu, M. Qiu, et al,“All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators,”Opt. Express, vol. 15, no. 21, pp. 14275-14282, Oct. 2007.
    [35] J. E. Heebner and R. W. Boyd,“Enhanced all-optical switching by use of a nonlinear fiber ring resonator,”Opt. Lett. vol. 24, issue. 12, pp. 847-849, Jun. 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700