用户名: 密码: 验证码:
整合素α_vβ_3介导的阿霉素—树枝状聚合物纳米载药系统的肿瘤靶向研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题通过药剂学、高分子材料学、药理学、分子生物学等手段的交叉应用,首先以聚酰胺-胺树枝状聚合物(Polyamidoamine dendrimer, PAMAM)为聚合物骨架材料,以聚乙二醇(Polyethylene glycol, PEG)为高分子修饰剂,制备不同PEG化程度的PEG-PAMAM,然后将模型药物阿霉素(Doxorubicin, DOX)通过酸敏感的顺式乌头酸酐(Cis-acotonic anhydride, CA)和非酸敏感的丁二酸酐(Succinic anhydride)共价结合到PAMAM表面,制备PEG-PAMAM-DOX偶联物纳米载药系统,通过考察PEG化程度和DOX偶联方式对载药系统体内外活性的影响,优选出PEG化程度最高的,并通过顺式乌头酸酐偶联DOX的PPCD 32/1作进一步研究。为进一步提高PPCD的抗肿瘤活性,以相同分子量的双功能PEG(MAL-PEG-NHS)代替单功能PEG,通过控制投料比制备与PPCD 32/1的PEG化程度和载药量相近的主动靶向给药系统RGD-PPCD,考察偶联RGD多肽对PPCD的体内外活性的影响,并探讨其可能的机理。
     第一章的主要内容是PEG-PAMAM-DOX的合成和表征。首先以分子量为5000的MeO-PEG-NHS和4代PAMAM为起始原料,制备三种PEG化程度的PEG-PAMAM,分别为PEG-PAMAM 4/1、16/1和32/1。通过1H-NMR峰面积归一化法计算得到每个PAMAM分子表面共价结合了3.8、12.9和20.1个PEG分子。分别采用TLC、UV、1H-NMR、FTIR、GPC等方法对三种PEG-PAMAM进行结构确证和表征。接着通过酸酐的氨解反应分别制备DOX的顺式乌头酸酐衍生物(CAD)和丁二酸酐衍生物(SAD),两者经过活化后分别与三种PEG化程度的PEG-PAMAM偶联,制备PPCD和PPSD。采用UV和GPC等方法对PPCD和PPSD(统称PEG-PAMAM-DOX)进行表征,并测定粒径和Zeta电位。各PEG-PAMAM-DOX的载药量在6.18-18.18%(wt.%),每个PAMAM分子表面偶联约14个DOX分子,游离CAD/SAD的含量小于0.6%(mol%),粒径均在纳米级的范围内,Zeta电位随PEG化程度增加而降低,且PPSD的电位高于PPCD。
     第二章对PEG-PAMAM-DOX的体内外活性进行评价。酸敏感释放实验表明PPCD具有酸敏感特性,DOX的释放程度和速度均随着PEG化程度的增加以及pH值的降低而增加,PPSD则在各pH条件下均没有DOX释放;以Cathespin B模拟溶酶体的酶环境,释放结果表明PPCD和PPSD均不能通过酶解释放游离DOX。各PEG-PAMAM和PEG-PAMAM-DOX的溶血毒性均显著降低。以SKOV-3和B16细胞为肿瘤细胞模型,PPCD对两种细胞的毒性高于PPSD,且PPCD的细胞毒性随PEG化程度的增加而增加。两种细胞对PPCD和PPSD的摄取均随PEG化程度的增加而降低。SKOV-3细胞对PEG-PAMAM-DOX的摄取机理研究结果表明PEG-PAMAM-DOX主要通过与细胞膜上的负电荷发生静电相互作用,然后经网格蛋白介导的内吞摄取。细胞内分布研究证明了PPCD能在溶酶体酸性环境中释放游离DOX进入细胞核,PPSD虽然也定位于溶酶体,但不能释药。
     第二章的第二节进一步考察了各PEG-PAMAM-DOX的组织分布和药效学。首先采用活体荧光成像实验初步考察各PEG-PAMAM-DOX在荷SKOV-3肿瘤组织的分布,结果发现肿瘤蓄积随PEG化程度的增加而增加,PPSD的蓄积高于PPCD。采用FLD-HPLC法测定在各组织中游离和结合的DOX浓度。DOX与PEG-PAMAM偶联后,在血液中的滞留时间显著延长,主要表现为AUC, T1/2β和MRT显著增加,Vc和CL大大减小;组织分布特性也发生显著改变,以总DOX计,PPSD 4/1、PPSD 16/1、PPSD 32/1、PPCD 4/1、PPCD 16/1和PPCD 32/1在肿瘤部位的AUC分别为DOX溶液剂组的16.6、51.4、75.8、11.6、21.9和37.5倍。以游离DOX计,PPCD在肿瘤部位AUC大于PPSD, PPCD 32/1和16/1的游离DOX的AUC大于DOX溶液剂组,分别达到35.0和15.5h·μg/g。各PEG-PAMAM-DOX均能有效抑制肿瘤生长,延长小鼠的生存时间,其中PPCD 32/1具有最强的抗肿瘤活性,接种21天后的抑瘤率达到87.4%,平均生存时间和中位生存期最长,生存期延长率最大。
     第三章对抗肿瘤活性最大的PPCD32/1进一步用RGD多肽修饰,制备主动靶向载药系统。首先通过分子模拟的方法对所设计的环状多肽RGDyC的受体亲和力进行评估;在此基础上通过双功能的MAL-PEG-NHS分别偶联靶向头基RGDyC和载体PAMAM,制备RGD-PEG-PAMAM;最后将CAD偶联到PAMAM表面得到RGD-PPCD。表征结果表明,RGD-PPCD中每个PAMAM分子表面偶联有21.2个PEG分子、16.8个RGDyC分子和14.2个CAD分子,粒径为17.02±0.13nm, Zeta电位为2.31±0.15mV。RGD-PPCD与PPCD具有相近的PEG化程度、载药摩尔数、粒径和Zeta电位,可用于进一步研究考察偶联RGD对PPCD体内外活性的影响。
     第四章评价了RGD-PPCD的体内外活性。体外释放研究证明了偶联RGD对酸敏性几乎没有影响。以人脐静脉内皮细胞HUVEC作为肿瘤新生血管内皮模型,SKOV-3和B16细胞为肿瘤细胞模型,进行细胞水平的研究。偶联RGD进一步增强了PPCD对三种细胞的毒性,HUVEC、SKOV-3和B16细胞的IC50值分别从8.24μM、20.58μM和15.64μM降低至3.58μM、11.04μM和4.37μM。与PPCD相比,HUVEC细胞对RGD-PPCD的总摄取增加了1.57倍;SKOV-3细胞的总摄取和内吞分别增加了1.32倍和1.58倍;B16细胞的总摄取和内吞分别增加了1.38倍和1.85倍。摄取机理研究结果表明,RGD-PPCD主要通过非特异性的静电相互作用和特异性的整合素αvβ3与RGD多肽相互识别与三种细胞接触,然后主要经网格蛋白介导的内吞被细胞摄取,内吞过程均为肌动蛋白和微管蛋白参与的细胞运动,此外,RGD与整合素αvp3形成的配体受体复合物也对内吞起到促进作用。对RGD-PPCD的细胞内定位研究结果表明,三种细胞摄取RGD-PPCD后均能将其递送至溶酶体,且RGD-PPCD能在溶酶体的弱酸性条件下释放游离DOX,进入细胞核。
     采用活体荧光成像考察RGD-PPCD在SKOV-3荷瘤裸鼠的组织分布,48h后RGD-PPCD在肿瘤组织的荧光强度为PPCD的1.52倍(P<0.05),游离的RGDyK能显著降低RGD-PPCD在肿瘤部位的荧光强度(P<0.05),证实了RGD-PPCD在肿瘤蓄积的特异性。B16荷瘤小鼠的体内药动学实验结果表明,RGD-PPCD的滞留时间比PPCD稍短。RGD-PPCD在肿瘤组织总DOX和游离DOX的AUC分别是PPCD的1.46倍和2.36倍;另一方面,RGD-PPCD除了能引起肿瘤细胞凋亡外,还能显著引起肿瘤新生血管内皮细胞的凋亡,以上因素的综合作用可能使RGD-PPCD比PPCD具有更高的抗肿瘤活性,平均生存时间,中位生存期和生存期延长率相应增加。HE染色和TUNEL法的结果表明,RGD-PPCD相对于DOX溶液剂表现出良好的安全性,没有心脏毒性,对其他正常组织也几乎无损伤。
This study is based on the combined use of pharmaceutics, macromolecular chemistry, pharmacology and molecular biology. For the construction of this polymeric drug delivery system, Polyamidoamine (PAMAM) dendrimer was used as the scaffold which was first modified with Polyethylene glycol (PEG) to produce PEG-PAMAM conjugates with different PEGylation degree. Doxorubicin (DOX) was then conjugated to each PEG-PAMAM either by acid sensitive cis-aconityl linkage or acid insensitive succinic linkage to produce the final product of PPCD and PPSD conjugates, respectively. By evaluating the in vitro and in vivo antitumor activity, PPCD 32/1 which had the highest PEGylation and acid sensitive linkage was found to be the most potent product. To further improve the antitumor activity of PPCD 32/1, RGD peptide was used to modify this polymeric drug delviery system via bifunctional MAL-PEG-NHS. By controlling the feed ratio of starting materials, RGD-PPCD was synthesized with similar PEGylation degree and drug laoding with PPCD 32/1. Subsquent evaluation was performed to study the effects of RGD modification on the antitumor activity of PPCD 32/1 and the underlying mechanism.
     The first chapter focused on the synthesis and characterization of PEG-PAMAM-DOX conjugates. With MeO-PEG-NH2 (M.W.4834) and G4 PAMAM denderimer as the starting materials, PEG-PAMAM conjugates with three different PEGylation degree were prepared, namely PEG-PAMAM 4/1,16/1 and 32/1. The conjugated number of PEG molecules per PAMAM dendrimer was calculated to be 3.8,12.9 and 20.1 respectively. TLC, UV,'H-NMR, FTIR, GPC were used to confirm the conjugation between PEG and PAMAM dendrimer. DOX was then converted to its cis-aconityl and succinic derivatives by ammonolysis reaction to produce CAD and SAD respectively. The two derivatives were subsequently activated and conjugated to PEG-PAMAM with different PEGylation degree to obtain the final products of PPCD and PPSD conjugates. The conjugated number of DOX molecule was controlled to be about 14, DOX loading percentage was in the range of 6.18-18.18% by weight, and the content of free CAD/SAD was less than 0.6% by mole. The particle of PEG-PAMAM 4/1 increased significantly from -7nm to -80 nm after conjugation of CAD/SAD, which might be due to the aggregation of these particles, while PEG-PAMAM 16/1 and 32/1 displayed slight increase in particle size after DOX conjugation, with 16/1 larger than 32/1. The Zeta potential of PEG-PAMAM-DOX decreased with increasing PEGylation degree, and PPSD showed higher Zeta potential than PPCD conjugates at the same PEGylation degree.
     The second chapter was about the in vitro and in vivo evaluation of PEG-PAMAM-DOX conjugates. In the first section, we first evaluated the in vitro release of DOX from PPCD and PPSD conjugates. PPCD was characteristic of acid sensitive DOX release, with DOX release increasing with increasing PEGylation and decreasing pH value, while PPSD was acid insensitive with no DOX release at any pH condition. Cathespin B, a major protease in lysosomes, had no effect on drug release of PEG-PAMAM-DOX, suggesting the stability of amide bond between PAMAM and CAD/SAD. When evaluating the heamolytic toxicity of these conjugates, we found significantly reduced heamolytic toxicity after conjugation of PEG and CAD/SAD as compared with G4 PAMAM, which ensured their further i.v. administration. Cellular level experimented were carried out using SKOV-3 and B16 cells as the model cell lines. The cytotoxicity of PEG-PAMAM conjugates decreased with increasing PEGylation, while PPCD conjugates showed the opposite trend, which might be due to the release of free DOX. For the same reason, PPCD were more cytotoxic than PPSD. As to cellular uptake, both cell lines showed decreased uptake of PEG-PAMAM-DOX with increasing PEGylation degree. Further investigation on the internalization mechanism by SKOV-3 cells indicated that PEG-PAMAM-DOX mainly interacted with plasma membrane by electrostatic interaction, and then was internalized by clathrin-mediated endocytosis. The results of intracellular distribution by confocal laser microscopy showed that the slightly acid condition in lysosomes triggered DOX release from PPCD 32/1, and enable the following entry into nucleus, while PPSD 32/1 release no free DOX although it was also located in lysosomes.
     In the second section, we evaluated the biodistribution and in vivo antitumor activity of these PEG-PAMAM-DOX conjugates. In vivo fluorescence imaging was first used to evaluate the tumor accumulation in SKOV-3 tumor bearing nude mice. The results demonstrated that tumor accumulation increased with increasing PEGylation and PPSD conjugates showed higher tumor accumulation than PPCD conjugates. FLD-HPLC method determining the total and free DOX was established to evaluate the biodistribution of these conjugates in B16 tumor bearing mice. After conjugation with PEG-PAMAM conjugates, DOX displayed significant longer blood retention time, with prolonged AUC, T1/2βand MRT, and reduced Vc and CL. Biodistribution profiles of DOX was also significantly changed. Total DOX AUC of PPSD 4/1, PPSD 16/1, PPSD 32/1, PPCD 4/1, PPCD 16/1 and PPCD 32/1 in tumor was increased by 16.6、51.4、75.8、11.6、21.9 and 37.5 times as compared with DOX solution. Significant RES uptake was observed at lower PEGylation degree, which could be improved at higher PEGylation degree. As to free DOX concentration, AUCs in normal tissues were smaller than that of DOX solution. PPCD conjugates displayed more tumor accumulation of free DOX than PPSD conjugates, with the AUCs of PPCD 32/1 and 16/1 even larger than DOX solution, reaching 35.0 and 15.5 h-μg/g, respectively.
     In the third chapter, we were intended to modify PPCD 32/1, the most powerful PEG-PAMAM-DOX conjugate, with RGD peptides to prepare active targeting drug delivery system. We first evaluated the receptor binding affinity of the newly designed cyclic RGDyC peptide by molecular simulation. With the obtained positive results, we further conjugated RGDyC to PAMAM dendrimer by bifunctional MAL-PEG-NHS, followed by the coupling of CAD. The final product of RGD-PPCD contained 21.2 molecules of PEG,16.8 molecules of RGDyC and 14.2 molecules of CAD in each PAMAM molecule. The particle size and Zeta potential of RGD-PPCD were 17.02±0.13 nm and 2.31±0.15 mV, respectively. In conclusion, RGD-PPCD had similar PEGylation degree, drug loading, particle size and Zeta potential with PPCD, thus could be used to evaluate the effects of RGD modification on the in vitro and in vivo antitumor activities of PPCD conjugate.
     In vitro and in vivo evaluation of RGD-PPCD was carried out in the fourth chapter. In the first section, it was demonstrated that RGD modification had no influence on the acid sensitive release of DOX from PPCD conjugates. Besides, RGD-PPCD displayed no heamolytic toxicity which permitted its further i.v. administration. Human Umbilical Vein Endothelial Cells (HUVEC) was included into the cellular level experiments as the endothelial cell model of tumor neovasculature. Cytotoxicity of RGD-PPCD against HUVEC, SKOV-3 and B16 cells was enhanced as compared with PPCD. RGD-PPCD also displayed significant higher cellular uptake than PPCD (P<0.01), with 1.57-fold increase in total uptake by HUVEC cells, 1.32-and 1.58-fold increase in total uptake and internalization respectively by SKOV-3 cells, and 1.38- and 1.85-fold increase in total uptake and internalization respectively by B16 cells. Internalization mechanism studies revealed that RGD-PPCD interacted with plasma membrane both by non-specific electrostatic interaction and specific recognition between integrinαvβ3 and RGD peptides, and subsequently be internalized mainly by clathrin-mediated endocytosis, which was related with the cellular movement involving actin filaments and microtubule cytoskeleton, and also with complex of integrinαvβ3 and RGD peptides. All the three cell lines were able to internalize RGD-PPCD and deliver it to the lysosomes where the acidic condition permitted the release of free DOX and the entry into nucleus.
     In the second section, we first evaluated the tissue distribution of RGD-PPCD in SKOV-3 tumor bearing nude mice by in vivo fluorescence imaging. Fluorescent intensity of RGD-PPCD in tumor site was 1.52 times higher than that of PPCD 48 h post injection (P<0.05), which could be significatnly reduced but not fully inhibited by free RGDyK. Pharmacokinetics in B16 tumor bearing mice demonstrated that modification of RGD peptides led to reduced t1/2β, AUC and MRT, and increased Vc and CL. RGD-PPCD displayed 1.46- (by total DOX) and 2.36-(by free DOX) fold higher AUC in tumor site than PPCD. On the other hand, RGD-PPCD not only induced apoptosis of tumor cell, but also remarkably induced apoptosis of tumor neovasculature endothelial cell. Accordingly, RGD-PPCD demonstrated higher antitumor activity than PPCD, with greater MST, Median and ILS. The results of HE staining and TUNEL revealed that RGD-PPCD exhibited almost no toxicity to normal organs, which was a great improvement in safeness compared with DOX solution.
引文
[1]世界卫生组织网.世卫组织规划和项目媒体中心实况报道第297号,http://www.who.int/mediacentre/factsheets/fs297/zh/index.html,2009,2.
    [2]van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery[J]. Pharma Res, 2007,24(8):1405-1414.
    [3]Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS[J]. Cancer Res,1986,46:6387-6392.
    [4]Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature:the key role of tumor-selective macromolecular drug targeting [J]. Adv Enzyme Regul,2001,41(1):189-207.
    [5]Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review [J]. J Control Release,2000,65(1-2): 271-284.
    [6]Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS [J]. J Control Release, 2001,74(1-3):47-61.
    [7]Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-Hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates[J]. Clin Cancer Res,1999,5:83-94.
    [8]Bilim V. Technology evaluation:PK1, Pfizer/Cancer Research UK[J]. Curr Opin Mol Ther,2003,5:326-330.
    [9]Li C, Yu DF, Newman RA, et al. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate[J]. Cancer Res,1998,58:2404-2409.
    [10]Adiseshaiah PP, Hall JB, McNeil SE.Nanomaterial standards for efficacy and toxicity assessment[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol,2010,2: 99-112.
    [11]Cai WB, Gambh ir SS, Chen XY. Molecular imaging of tumor vasculature[J]. Methods Enzymol,2008,445:141-176.
    [12]Borgman MP, Ray A, Kolhatkar RB, et al. Targetable HPMA copolymer-aminohexylgeldanamycin conjugates for prostate cancer therapy[J]. Pharm Res,2009,26:1407-1418.
    [13]Borgman MP, Aras O, Geyser-Stoops S, et al. Biodistribution of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer drug delivery[J]. Mol Pharm,2009,6:1836-1847.
    [14]Xiong JP, Stehle T, Zhang R, et al. Crystal structure of the extracellular segment of integrin alphaVbeta3 in complex with an Arg-Gly-Asp ligand [J]. Science, 2002,296(5565):151-155.
    [15]Temming K, Schiffelers RM, Molema G, et al. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature[J]. Drug Resist Updat,2005,8:381-402.
    [16]Gulledge CJ, Dewhirst MW. Tumor oxygenation: a matter of supply and demand[J]. Anticancer Res,1996,16:741-750.
    [17]Prescott DM, Charles HC, Poulson JM, et al. The relationship between intracellular and extracellular pH in spontaneous canine tumors[J]. Clin Cancer Res,2000,6(6):2501-2505.
    [18]Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer[J]. Cancer Res,1996,56: 1194-1198.
    [19]Simon S, Roy D, Schindler M. Intracellular pH and the control of multidrug resistance[J]. Proc Natl Acad Sci USA,1994,91:1128-1132.
    [20]van Sluis R, Bhujwalla ZM, Raghunand N, et al. In vivo imaging of extracellular pH using 1H MRSI[J]. Magn Reson Med,1999,41 (4):743-750.
    [21]Ojugo AS, McSheehy PM, McIntyre DJ, et al. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy:a comparison of exogenous (19)F and (31)P probes[J]. NMR Biomed,1999,12(8):495-504.
    [22]Liu J, Shapiro JI. Endocytosis and signal transduction: basic science update[J]. Biol Res Nurs,2003,5:117-128.
    [23]Shen WT, Ryser HJP. Cis-aconityl spacer between daunomycin and macromolecular carriers:A model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate[J]. Biochem Biophys Res Commun, 1981,102:1048-1054.
    [24]Chytil P, Etrych T, Konak C, et al. Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: effect of polymer chain modification[J]. J Control Release,2006,115:26-36.
    [25]Kakinoki A, Kaneo Y, Ikeda Y, et al. Synthesis of poly(vinyl alcohol)-doxorubicin conjugates containing cis-aconityl acid-cleavable bond and its isomer dependent doxorubicin release[J]. Biol Pharm Bull,2008,31:103-110.
    [26]Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages[J]. J Control Release,2002,82:17-27.
    [27]Chytil P, Etrych T, Konak C, et al. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J Control Release,2008,127:121-130.
    [28]Kono K, Kojima C, Hayashi N, et al. Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine) dendrimers bearing adriamycin[J]. Biomaterials,2008,29:1664-1675.
    [29]Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin:the good, the bad and the ugly effect[J]. Curr Med Chem,2009,16(25):3267-3285.
    [30]Jevprasesphant R, Penny J, Jalal R, et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers[J]. Int J Pharm,2003, 252(1-2):263-266.
    [31]El-Sayed M, Ginski M, Rhodes C, et al. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers[J]. J Control Release,2002,81:355-365.
    [32]Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers:from biomimicry to drug delivery and biomedical applications[J]. Drug Discov Today, 2001,6:427-436.
    [1]Esfand R, Tolmalia DA. Poly(amidoamine)(PAMAM) dendrimers:from biomimicry to drug delivery and biomedical applications[J]. Drug Discovery Today,2001,6(8):427-436
    [2]Thomas TP, Majoros IJ, Kotlyar A, et al. Targeting and inhibition of cell growth by an engineered dendritic nanodevice[J]. J Med Chem,2005, 48(11):3729-3735.
    [3]Agarwal R, Strickland S, Mcneish IA, et al. Doppler ultrasonography of the uterine artery and the response to chemotherapy in patients with gestational trophoblastic tumors[J]. Clin Cancer Res,2002,8(5):1142-1147
    [4]Majoros IJ, Myc A, Thomas T, et al. PAMAM dendrimer-based multifunctional for cancer therapy: synthesis, characterization, and founctionality[J]. Biomacromolecules,2006,7(2):572-579.
    [5]Parag Kolhe, Ekta Misra, Rangaramanujan M. et al. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymer[J]. International Journal of Pharmaceutics,2003,259:143-160
    [6]Asthana A, Chauhan AS, Diwan PV, et al. Poly(amidoamine) (PAMAM) Dendritic Nanostructures for controlled Site-specific Delivery of Acidic Anti-inflammatroy Active Ingredient[J]. AAPS PharmSciTech,2005, 6(3):E526-E542
    [7]Kojima C, Kono K, Maruyama K, et al. Synthesis of Polyamidoamine Dendrimers Having Poly(ethylene glycol) Grafts and their Ability To Encapsulate Anticancer Drug[J]. Bioconjugate Chem,2000,11:910-917
    [8]Bhadra D, Bhadra S, Jain S, et al. A PEGylated dendritci nanoparticulate carrier of fluorouracil[J]. Int J Pharm,2003,257:111-124.
    [9]Jevprasesphant R, Penny J, Jalal R, et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers[J]. Int J Pharm,2003, 252(1-2):263-266.
    [10]El-Sayed M, Ginski M, Rhodes C, et al. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers[J]. J Control Release,2002,81:355-365.
    [11]Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers:relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I-125-labelled poly(amidoamine) dendrimers in vivo[J]. J Control Release,2000,65:133-148.
    [12]Kono K, Kojima C, Hayashi N, et al. Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine) dendrimers bearing adriamycin[J]. Biomaterials,2008,29(11):1664-1675.
    [13]Morgan MT, Nakanishi Y, Kroll DJ, et al. Dendrimer-encapsulated camptothecins:increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro[J]. Cancer Res,2006,66(24):11913-11921.
    [14]Luo D, Haverstick K, Belcheva N, et al. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery[J]. Macromolecules,2002,35:3456-3462.
    [15]Kobayashi H, Kawamoto S, Saga T, et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents[J]. Magn Reson Med,2001,46(4):781-788.
    [16]Kobayashi H, Kawamoto S, Jo SK, et al. Macromolecular MRI contrast agents with small dendrimers:pharmacokinetic differences between sizes and cores[J]. Bioconjug Chem.2003,14(2):388-394.
    [17]Calabretta MK, Kumar A, McDermott AM, et al. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups[J]. Biomacromolecules,2007,8(6):1807-1811.
    [18]Reff ME, Hariharan K, Braslawsky G. Future of monoclonal antibodies in the treatment of hematologic malignancies[J]. Cancer Control,2002,9:152-166.
    [19]Knauf MJ, Bell DP, Hirtzer P, et al. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers[J]. J Biol Chem,1988,263:15064-15070.
    [20]Veronese FM, Pasut G. PEGylation, successful approach to drug delivery[J]. Drug Discov Today,2005,10:1451-1458.
    [21]Moghimi SM. The effect of methoxy-PEG chain length and molecular architecture on lymph node targeting of immuno-PEG liposomes[J]. Biomaterials,2006,27:136-144.
    [22]Najam-ul-Haq M, Rainer M, Szabo Z, et al. Role of carbon nano-materials in the analysis of biological materials by laser desorption/ionization-mass spectrometryJ Biochem Biophys Methods[J].2007,70(2):319-328.
    [23]Sroka-Bartnicka A, Olejniczak S, Sochacki M, et al. Solid-state NMR spectroscopy as a tool supporting optimization of MALDI-TOF MS analysis of polylactides[J]. J Am Soc Mass Spectrom,2009,20(1):67-72.
    [24]Klee JE. Review: mass spectrometry of step-growth polymers[J]. Eur J Mass Spectrom (Chichester, Eng),2005,11(6):591-610.
    [25]Kim Y, Klutz AM, Jacobson KA. Systematic investigation of polyamidoamine dendrimers surface-modified with poly(ethylene glycol) for drug delivery applications:synthesis, characterization, and evaluation of cytotoxicity[J]. Bioconjug Chem,2008,19(8):1660-1672.
    [1]Box VG. The intercalation of DNA double helices with doxorubicin and nagalomycin[J]. J Mol Graph Mod,2007,26:14-19.
    [2]Fornari FA, Randolph JK, Yalowich JC, et al. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells[J]. Mol Pharmacol,1994, 45:649-656.
    [3]Cutts S, Parsons P, Sturm R, et al. Adriamycin-induced DNA adducts inhibit the DNA interactions of transcription factors and RNA polymerase[J]. J Biol Chem, 1996,271:5422-5429.
    [4]Cutts S, Swift L, Rephaeli A, et al. Recent advances in understanding and exploiting the activation of anthracyclines by formaldehyde[J]. Curr Med Chem AntiCancer Agents,2005,5:431-447.
    [5]Ashley N, Poulton J. Mitochondrial DNA is a direct target of anticancer anthracycline drugs[J]. Biochem Biophys Res Commun,2009,378:450-455
    [6]Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin: the good, the bad and the ugly effect[J]. Curr Med Chem,2009,16(25):3267-3285.
    [7]Xiong XB, Huang Y, Lu WL, et al. Enhanced intracellular uptake of sterically stabilized liposomal Doxorubicin in vitro resulting in improved antitumor activity in vivo[J]. Pharm Res,2005,22(6):933-939.
    [8]Li X, Ding L, Xu Y, et al. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin[J]. Int J Pharm,2009,373(1-2):116-123.
    [9]Li YL, Zhu L, Liu Z, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver Doxorubicin into the nuclei of cancer cells[J]. Angew Chem Int Ed Engl,2009,48(52):9914-9918.
    [10]Park J, Fong PM, Lu J, et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin[J]. Nanomedicine,2009,5(4):410-418.
    [11]Hu FQ, Liu LN, Du YZ, et al. Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles[J]. Biomaterials,2009,30(36):6955-6963.
    [12]Sun H, Guo B, Cheng R, et al. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin[J]. Biomaterials,2009,30(31):6358-6366.
    [13]Kim D, Gao ZG, Lee ES, et al. In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer[J]. Mol Pharm,2009,6(5):1353-1362.
    [14]Andersson L, Davies J, Duncan R, et al. Poly(ethylene glycol)-poly(ester-carbonate) block copolymers carrying PEG-peptidyl-doxorubicin pendant side chains:synthesis and evaluation as anticancer conjugates[J]. Biomacromolecules,2005,6(2):914-926.
    [15]Tomlinson R, Heller J, Brocchini S, et al.Polyacetal-doxorubicin conjugates designed for pH-dependent degradation[J]. Bioconjug Chem, 2003,14(6):1096-1106.
    [16]Chytil P, Etrych T, Konak C, et al. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting[J]. J Control Release,2008,127(2):121-130.
    [17]Gulledge CJ, Dewhirst MW. Tumor oxygenation: a matter of supply and demand[J]. Anticancer Res,1996,16:741-750.
    [18]Prescott DM, Charles HC, Poulson JM, Page RL et al. The relationship between intracellular and extracellular pH in spontaneous canine tumors[J]. Clin Cancer Res,2000,6(6):2501-2505.
    [19]Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer[J]. Cancer Res,1996,56: 1194-1198.
    [20]Simon S, Roy D, Schindler M. Intracellular pH and the control of multidrug resistance[J]. Proc Natl Acad Sci USA,1994,91:1128-1132.
    [21]van Sluis R, Bhuj walla ZM, Raghunand N, et al. In vivo imaging of extracellular pH using 1H MRSI[J]. Magn Reson Med,1999,41(4):743-750.
    [22]Ojugo AS, McSheehy PM, McIntyre DJ, et al. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy:a comparison of exogenous (19)F and (31)P probes[J]. NMR Biomed,1999,12(8):495-504.
    [23]Liu J, Shapiro JI. Endocytosis and signal transduction:basic science update[J]. Biol Res Nurs,2003,5:117-128.
    [24]Camaggi CM, Comparsi R, Strocchi E, et al. HPLC analysis of doxorubicin, epirubicin and fluorescent metabolites in biological fluids[J]. Cancer Chemother Pharmacol,1988,21(3):216-220.
    [25]Kakinoki A, Kaneo Y, Ikeda Y, et al. Synthesis of poly(vinyl alcohol)-doxorubicin conjugates containing cis-aconityl acid-cleavable bond and its isomer dependent doxorubicin release[J]. Biol Pharm Bull,2008, 31(1):103-110.
    [26]Wirth M, Fuchs A, Wolf M, et al. Lectin-mediated drug targeting:preparation, binding characteristics, and antiproliferative activity of wheat germ agglutinin conjugated doxorubicin on Caco-2 cells. Pharm Res,1998,15(7):1031-1037.
    [27]Yang HM, Reisfeld RA. Doxorubicin conjugated with a monoclonal antibody directed to a human melanoma-associated proteoglycan suppresses the growth of established tumor xenografts in nude mice. Proc Natl Acad Sci U S A, 1988,85(4):1189-1193.
    [28]Seymour LW, Ulbrich K, Strohalm J, et al. The pharmacokinetics of polymer-bound adriamycin[J]. Biochem Pharmacol,1990,39(6):1125-1131.
    [29]Colombo PE, Boustta M, Poujol S, et al. Biodistribution of doxorubicin-alkylated poly(L-lysine citramide imide) conjugates in an experimental model of peritoneal carcinomatosis after intraperitoneal administration. Eur J Pharm Sci,2007,31(1):43-52.
    [30]Shen WT, Ryser HJP. Cis-aconityl spacer between daunomycin and macromolecular carriers:A model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate[J]. Biochem Biophys Res Commun,1981, 102:1048-1054.
    [31]Zhu Z, Kralovec J, Ghose T, et al. Inhibition of Epstein-Barr-virus-transformed human chronic lymphocytic leukaemic B cells with monoclonal-antibody-Adriamycin (doxorubicin) conjugates[J]. Cancer Immunol Immunother,1995, 40:257-267.
    [32]Luo Y, Bernshaw NJ, Lu ZR, et al. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates[J]. Pharm Res,2002,19(4):396-402.
    [33]Adams DJ. The Impact of Tumor Physiology on Camptothecin-Based Drug Development[J]. Curr Med Chem AntiCancer Agents,2005,5:1-13.
    [34]Beijnen JH, van der Houwen OAGJ, Underberg WJM. Aspects of the degradation kinetics of doxorubicin in aqueous solution[J]. Int J Pharm,1986, 32:123-131.
    [35]Remenyi J, Balazs B, Toth S,et al. Isomer-dependent daunomycin release and in vitro antitumour effect of cis-aconityl-daunomycin. Biochem Biophys Res Commun,2003,303:556-561.
    [36]Sadzuka Y, Nakade A, Hirama R, et al. Effects of mixed polyethyleneglycol modification on fixed aqueous layer thickness and antitumor activity of doxorubicin containing liposome[J]. Int J Pharm,2002,238:171-180.
    [37]Glodde M, Sirsi SR, Lutz GJ. Physiochemical properties of low and high molecular weight poly(ethylene glycol)-grafted poly(ethylene imine) copolymers and their complexes with oligonucleotides[J]. Biomacromolecules, 2006,7:347-356.
    [38]Majoros IJ, Keszler B, Woehler S, et al. Acetylation of Poly(amidoamine) Dendrimers[J]. Macromolecules,2003,36:5526-5529.
    [1]Mousavi SA, Malerod L, Berg T, et al. Clathrin-dependent endocytosis[J]. Biochem J,2004,377:1-16.
    [2]Fielding CJ, Fielding PE. Caveolae and intracellular trafficking of cholesterol [J]. Adv Drug Deliv Rev,2001,49(3):251-264.
    [3]Sieczkarski SB. Whittaker GR. Dissecting virus entry via endocytosis[J]. J Gen Virol,2002,83:1535-1545.
    [4]Gruenberg J. The endocytic pathway:a mosaic of domains[J]. Nat Rev, Mol Cell Biol,2001,2 (10):721-730.
    [5]Casey CA, Wiegert RL, Tuma DJ. Effect of hyperosmolarity on both receptor-mediated and fluid-phase endocytosis in ethanol-fed animals[J]. Biochem Pharmacol,1995,49:1117-1123.
    [6]Chen J, Li G, Lu J, et al. A novel type of PTD, common helix-loop-helix motif, could efficiently mediate protein transduction into mammalian cells[J]. Biochem Biophys Res Commun,2006,347:931-940.
    [7]Schnitzer JE, Oh P, Pinney E, et al. Filipin-sensitive caveolar-mediated transport in endothelium: Reduced transcytosis, scavenger endocytosis, and capillary permeability of selected macromolecules[J]. J Cell Biol,1994,127:1217-1232.
    [8]Kheirolomoom A, Ferrara KW. Cholesterol transport from liposomal delivery vehicles[J]. Biomaterials,2007,28:4311-4320.
    [9]Kansara V, Paturi D, Luo S, et al. Folic acid transport via high affinity carrier-mediated system in human retinoblastoma cells[J]. Int J Pharm,2008,355: 210-219.
    [10]Lu W, Sun Q, Wan J,et al.Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration[J]. Cancer Res,2006,66:11878-11887.
    [11]Conner SD, Schmid SL. Regulated portals of entry into the cell[J]. Nature,2003, 422:37-44.
    [12]Hovorka O, Etrych T, Subr V, et al.HPMA based macromolecular therapeutics: internalization, intracellular pathway and cell death depend on the character of covalent bond between the drug and the peptidic spacer and also on spacer composition[J]. J Drug Target,2006,14:391-403.
    [13]Allen TD, Cronshaw JM, Bagley S, et al. The nuclear pore complex:mediator of translocation between nucleus and cytoplasm[J]. J Cell Sci,2000,113: 1651-1659.
    [14]Krogstad DJ, Schlesinger PH. The basis of antimalarial action: non-weak base effects of chloroquine on acid vesicle pH[J]. Am J Trop Med Hyg,1987,36: 213-220.
    [15]Yang HM, Reisfeld RA. Doxorubicin conjugated with a monoclonal antibody directed to a human melanoma-associated proteoglycan suppresses the growth of established tumor xenografts in nude mice[J]. Proc Natl Acad Sci U S A, 1988,85:1189-1193.
    [16]Calderon M, Graeser R, Kratz F, et al. Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol[J]. Bioorg Med Chem Lett, 2009,19(14):3725-3728.
    [17]Luo D, Haverstick K, Belcheva N, et al. Poly(ethylene glycol)-Conjugated PAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery. Macromolecules,2002,35 (9):3456-3462.
    [18]肖飞,郑治,王剑龙.新型支架材料磷酸钙骨水泥-聚乳酸聚羟基乙酸二聚体复合物生物相容性的研究[J].中华实验外科杂志,2006,23:1254-1256.
    [19]Papagiannaros A, Dimas K, Papaioannou GT, et al. Doxorubicin-PAMAM dendrimer complex attached to liposomes:cytotoxic studies against human cancer cell lines[J]. Int J Pharm,2005,302:29-38.
    [20]Ke W, Zhao Y, Huang R, et al. Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system[J]. J Pharm Sci,2008,97:2208-2216.
    [21]Leonardi D, Barrera MG, Lamas MC, et al. Development of prednisone:polyethylene glycol 6000 fast-release tablets from solid dispersions: solid-state characterization, dissolution behavior, and formulation parameters[J]. AAPS PharmSciTech,2007,8:E108.
    [22]Liu C, Desai KG. Characteristics of rofecoxib-polyethylene glycol 4000 solid dispersions and tablets based on solid dispersions [J]. Pharm Dev Technol,2005, 10:467-477.
    [23]Malugin A, Kopeckova P, Kopecek J. Liberation of doxorubicin from HPMA copolymer conjugate is essential for the induction of cell cycle arrest and nuclear fragmentation in ovarian carcinoma cells[J]. J Control Release,2007,124:6-10.
    [24]Lai PS, Lou PJ, Peng CL, et al. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy[J]. J Control Release,2007,122(1):39-46.
    [25]Liu J, Shapiro JI. Endocytosis and signal transduction: basic science update[J]. Biol Res Nurs,2003,5:117-128.
    [26]Pelkmans L, Helenius A. Endocytosis via caveolae[J]. Traffic,2002,3:311-320.
    [27]Hamasaki M, Araki N, Hatae T. Association of early endosomal autoantigen 1 with macropinocytosis in EGF-stimulated A431 cells[J]. Anat Rec A Discov Mol Cell Evol Biol,2004,277:298-306.
    [28]Kitchens KM, Foraker AB, Kolhatkar RB, et al. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells[J]. Pharm Res,2007,24: 2138-2145.
    [29]Kitchens KM, Kolhatkar RB, Swaan PW, et al. Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells[J]. Mol Pharm,2008,5:364-369.
    [30]Seib FP, Jones AT, Duncan R. Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells[J]. J Control Release,2007,117:291-300.
    [31]Saovapakhiran A, D'Emanuele A, Attwood D, et al. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization[J]. Bioconjugate Chem,2009,20:693-701.
    [1]Lee SJ, Park K, Oh YK, et al. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice[J]. Biomaterials,2009,30:2929-2939.
    [2]Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles[J]. Mol Pharm,2008,5:496-504.
    [3]Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles[J]. Int J Pharm,2006,307:93-102.
    [4]Kobayashi H, Kawamoto S, Saga T, et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med,2001,46:781-788.
    [5]Sheng Y, Liu C, Yuan Y, et al. Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan[J]. Biomaterials, 2009,30:2340-2348.
    [6]Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin[J]. Biochem Pharmacol,1999,57:727-734.
    [7]Malugin A, Kopeckova P, Kopecek J. Liberation of doxorubicin from HPMA copolymer conjugate is essential for the induction of cell cycle arrest and nuclear fragmentation in ovarian carcinoma cells[J]. J Control Release.2007,124:6-10.
    [8]Singal PK, Iliskovic N. Adriamycin cardiomyopathy[J]. N Engl J Med,1998, 339:900-905.
    [9]Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin[J]. Cancer,2003,97:2869-2879.
    [10]Sun X, Zhou Z, Kang YJ. Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart[J]. Cancer Res,2001,61: 3382-3387.
    [11]Takakura Y, Mahato RI, Nishikawa M, et al. Control of pharmacokinetic profiles of drug-macromolecule conjugates[J]. Adv Drug Deliv Rev,1996,19:377-399.
    [1]Cai WB, Gambh ir SS, Chen XY. Molecular imaging of tumor vasculature[J]. Methods Enzymol,2008,445:141-176.
    [2]Hood JD, Cheresh DA. Role of integrins in cell invasion and migration[J]. Nat Rev Cancer,2002,2:91-100.
    [3]Aumailley M, Gurrath M, Muller G, et al. Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1[J]. FEBS Lett,1991,291(1):50-54.
    [4]Gurrath M, Muller G, Kessler H, et al. Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides[J]. Eur J Biochem,1992, 210(3):911-921.
    [5]Dechantsreiter MA, Planker E, Matha B, et al. N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists[J]. J Med Chem,1999,42(16):3033-3040.
    [6]da Ressurreicao AS, Vidu A, Civera M, et al. Cyclic RGD-peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands. Chemistry,2009,15(45):12184-12188.
    [7]Haubner R, Wester HJ, Reuning U, et al. Radiolabeled alpha(v)beta3 integrin antagonists:a new class of tracers for tumor targeting[J]. J Nucl Med,1999, 40(6):1061-1071.
    [8]Xiong Z, Cheng Z, Zhang X, et al. Imaging chemically modified adenovirus for targeting tumors expressing integrin alphavbeta3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene[J]. J Nucl Med, 2006,47(1):130-139.
    [9]Chen X, Plasencia C, Hou Y, et al. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery[J]. J Med Chem,2005,48(4):1098-1106.
    [10]Cheng Z, Wu Y, Xiong Z, et al. Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice[J]. Bioconjug Chem,2005,16(6):1433-1441.
    [11]Gai W, Zhang YL, Ai L, et al. Screening of HMG-CoA Reductase Inhibitors from Composite Salvia Miltiorrhiza Using Autodock[J]. Chin J Nat Med, 2010,8:51-56.
    [12]Xiong JP, Stehle T, Zhang R, et al. Crystal structure of the extracellular segment of integrin alphaVbeta3 in complex with an Arg-Gly-Asp ligand [J]. Science. 2002,296(5565):151-155.
    [1]Wang Y, Wang X, Zhang Y, et al. RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells[J]. J Drug Target,2009,17(6):459-467.
    [2]Knight LC, Romano JE, Cosenza SC, et al. Differences in binding of (99m)Tc-disintegrins to integrin alphavbeta3 on tumor and vascular cells[J]. Nucl Med Biol,2007,34:371-381.
    [3]Cressman S, Dobson I, Lee JB, et al. Synthesis of a labeled RGD-lipid, its incorporation into liposomal nanoparticles, and their trafficking in cultured endothelial cells[J]. Bioconjug Chem,2009,20:1404-1411.
    [4]Murphy EA, Majeti BK, Barnes LA, et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis[J]. Proc Natl Acad Sci U S A, 2008,105:9343-9348.
    [5]West MA, Bretscher MS, Watts C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells[J]. J Cell Biol, 1989,109:2731-2739.
    [6]Marechal V, Prevost MC, Petit C, et al. Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis[J]. J Virol,2001, 75:11166-11177.
    [7]Nakase I, Niwa M, Takeuchi T, et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement [J]. Mol Ther,2004,10: 1011-1022.
    [8]Baravelle G, Schober D, Huber M, Bayer N, Murphy RF, Fuchs R. Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole and low temperature. Cell Tissue Res 2005;320:99-113.
    [9]Kaksonen M, Toret CP, Drubin DG. Harnessing actin dynamics for clathrinmediated endocytosis[J]. Nat Rev Mol Cell Biol,2006; 7:404-414.
    [10]Merrifield CJ. Seeing is believing:imaging actin dynamics at single sites of endocytosis[J]. Trends Cell Biol,2004,14:352-358.
    [11]Perumal OP, Inapagolla R, Kannan S, et al. The effect of surface functionality on cellular trafficking of dendrimers[J]. Biomaterials,2008,29:3469-3476.
    [12]Wan J, Taub ME, Shah D, et al. Brefeldin A enhances receptor-mediated transcytosis of transferrin in filter-grown Madin-Darby canine kidney cells[J]. J Biol Chem,1992,267:13446-13450.
    [13]Lippincott-Schwartz J, Yuan L, Tipper C, et al. Brefeldin A’s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic[J]. Cell,1991,67:601-616.
    [14]Hunziker W, Whitney JA, Mellman I. Selective inhibition of transcytosis by brefeldin A in MDCK cells[J]. Cell,1992,67:617-627.
    [15]Le PU, Nabi IR. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum[J]. J Cell Sci,2003,116:1059-1071.
    [16]Shitara Y, Kato Y, Sugiyama Y. Effect of brefeldin A and lysosomotropic reagents on intracellular trafficking of epidermal growth factor and transferrin in Madin-Darby canine kidney epithelial cells[J]. J Control Release, 1998,55:35-43.
    [17]Emieux BL, Percival MD, Falgueyret JF. Quantitation of lysomotropic character of cationic amphiphilic drugs using the fluorescent basic amine red DND-99[J]. Anal Biochem,2004,327:247-251.
    [18]Bhadra D, Bhadra S, Jain S, et al. A PEGylated dendritic nanoparticulate carrier of fluorouracil[J]. Int J Pharm,2003,257:111-124.
    [19]Nasongkla N, Shuai X, Ai H, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery[J]. Angew Chem Int Ed Engl,2004,43:6323-6327.
    [20]Zhao H, Wang JC, Sun QS, et al. RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer[J]. J Drug Target,2009,17:10-18.
    [21]Schiffelers RM, Koning GA, ten Hagen TL, et al. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin[J]. J Control Release,2003, 91:115-122.
    [22]Kopatz I, Remy JS, Behr JP. A model for non-viral gene delivery:through syndecan adhesion molecules and powered by actin[J]. J Gene Med, 2004;6:769-776.
    [23]Kameyama S, Horie M, Kikuchi T, et al. Acid wash in determining cellular uptake of Fab/cell-permeating peptide conjugates[J]. Biopolymers,2007, 88(2):98-107.
    [24]Thole M, Nobmanna S, Huwyler J, et al. Uptake of cationzied albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries[J]. J Drug Target,2002,10:337-44.
    [25]Perumal OP, Inapagolla R, Kannan S, et al. The effect of surface functionality on cellular trafficking of dendrimers[J]. Biomaterials,2008,29(24-25):3469-3476.
    [26]Temming K, Meyer DL, Zabinski R, et al. Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels[J]. Bioconjug Chem,2006,17:1385-1394.
    [1]Lammers T, Subr V, Ulbrich K, et al. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers[J]. Biomaterials.2009,30:3466-3475.
    [2]Cao Q, Li ZB, Chen K, et al. Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer[J]. Eur J Nucl Med Mol Imaging,2008,35:1489-1498.
    [3]Samanta S, Sistla R, Chaudhuri A. The use of RGDGWK-lipopeptide to selectively deliver genes to mouse tumor vasculature and its complexation with p53 to inhibit tumor growth[J]. Biomaterials,2010,31:1787-1797.
    [4]Yu DH, Lu Q, Xie J, et al. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature[J]. Biomaterials,2010,31: 2278-2292.
    [5]Martin TA, Watkins G, Lane J, et al. Assessing microvessels and angiogenesis in human breast cancer, using VE-cadherin[J]. Histopathology,2005,46:422-430.
    [6]Allen S, Sotos J, Sylte MJ, et al. Use of Hoechst 33342 staining to detect apoptotic changes in bovine mononuclear phagocytes infected with Mycobacterium avium subsp. Paratuberculosis[J]. Clin Diagn Lab Immunol, 2001,8(2):460-464.
    [7]Line BR, Mitra A, Nan A, et al. Targeting tumor angiogenesis:comparison of peptide and polymer-peptide conjugates[J]. J Nucl Med,2005,46:1552-1560.
    [8]Mitra A, Mulholland J, Nan A, et al. Targeting tumor angiogenic vasculature using polymer-RGD conjugates[J]. J Control Release,2005,102:191-201.
    [9]Wu Y, Zhang XZ, Xiong ZM, et al. MicroPET imaging of glioma av-integrin expression using 64Cu-labeled tetrameric RGD peptide[J]. J Nucl Med,2005,46: 1707-1718.
    [10]Liu S, Hsieh WY, Jiang Y, et al. Evaluation of a (99m)Tc-labeled cyclic RGD tetramer for noninvasive imaging integrin alpha(v)beta3-positive breast cancer. Bioconjug Chem,2007,18:438-446.
    [11]Wang J, Kim YS, Liu S.99mTc-labeling of HYNIC-conjugated cyclic RGDfK dimer and tetramer using EDDA as coligand. Bioconjug Chem,2008,19: 634-642.
    [12]Wu Y, Zhang X, Xiong Z, et al. microPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide[J]. J Nucl Med,2005,46:1707-1718.
    [13]Li ZB, Cai W, Cao Q, et al. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression[J]. J Nucl Med,2007,48:1162-1171.
    [14]Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin:the good, the bad and the ugly effect[J]. Curr Med Chem,2009,16:3267-3285.
    [15]De Beer EL, Bottone AE, Voest EE. Doxorubicin and mechanical performance of cardiac trabeculae after acute and chronic treatment: a review[J]. Eur J Pharmacol,2001,415:1-11.
    [16]Lee Y, Chan K, Harris P, et al. Distribution of adriamycin in cancer patients: tissue uptakes, plasma concentration after IV and hepatic IA administration[J]. Cancer,1980,45:2231-2239.
    [17]Greupink R, Bakker H, Bouma W, et al. The Antiproliferative Drug Doxorubicin Inhibits Liver Fibrosis in Bile Duct-Ligated Rats and Can Be Selectively Delivered to Hepatic Stellate Cells in vivo[J]. J Pharmacol Exp Ther,2006,317: 514-521
    [18]Okuda S, Oh Y, Tsuruda H, et al. Adriamycin-induced nephropathy as a model of chronic progressive glomerular disease[J]. Kidney Int,1986,29:502-510.
    [19]Bigotte L, Olsson Y. Cytofluorescence localization of adriamycin in the nervous system. Acta Neuropathol,1982,58:193-202.
    [20]Tangpong J, Cole MP, Sultana R, et al. Adriamycin-induced, TNF-α-mediated central nervous system toxicity. Neurobiol Dis,2006,23:127-139.
    [21]Nanda A, St Croix B. Tumor endothelial markers:new targets for cancer therapy[J]. Curr Opin Oncol,2004,16:44-49.
    [1]Cai WB, Gambh ir SS, Chen XY. Molecular imaging of tumor vasculature[J]. Methods Enzymol,2008,445:141-176.
    [2]Sivolapenko GB, Skarlos D, Pectasides D, et al. Imaging of metastatic melanoma utilizing a technetium-99m labeled RGD-containing synthetic peptide[J]. Eur J Nucl Med,1998,25:1383-1389.
    [3]Sutcliffe-Goulden JL, O'Doherty MJ, Marsden PK, et al. Rapid solid-phase synthesis and biodistribution of 18F-labeled linear peptides[J]. Eur J Nucl Med, 2002,29:754-759.
    [4]Aumailley M, Gurrath M, Muller G, et al. Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1[J]. FEBS Lett,1991,291(1):50-54.
    [5]Gurrath M, Muller G, Kessler H, et al. Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides[J]. Eur J Biochem,1992, 210(3):911-921.
    [6]Dechantsreiter MA, Planker E, Matha B, et al. N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists[J]. J Med Chem,1999,42(16):3033-3040.
    [7]da Ressurreicao AS, Vidu A, Civera M, Belvisi L, et al. Cyclic RGD-peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands. Chemistry.2009;15(45):12184-12188.
    [8]Haubner R, Wester HJ, Reuning U,et al. Radiolabeled alpha(v)beta3 integrin antagonists:a new class of tracers for tumor targeting[J]. J Nucl Med. 1999,40:1061-1071.
    [9]Su ZF, Liu G, Gupta S, et al. In vitro and in vivo evaluation of a Technetium-99m-labeled cyclic RGD peptide as a specific marker of alpha(V)beta(3) integrin for tumor imaging[J]. Bioconjug Chem, 2002,13:561-570.
    [10]Boturyn D, Coll JL, Garanger E, et al. Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis[J]. J Am Chem Soc, 2004,126:5730-5739.
    [11]Liu S, Edwards DS, Ziegler MC, et al. 99mTc-Labeling of a hydrazinonicotinamide conjugated vitronectin receptor antagonist useful for imaging tumor[J]. Bioconjug Chem,2001,12:624-629.
    [12]Liu S, Cheung E, Rajopadhye M, et al.90Y- and 177Lu-labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy[J]. Bioconjug Chem,2001,12:559-568.
    [13]Janssen ML, Oyen WJG, Dijkgraaf I, et al. Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model[J]. Cancer Res,2002,62: 6146-6151.
    [14]Janssen M, Oyen WJG, Massuger LFAG, et al. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting[J]. Cancer Biother Radiopharm,2002,17:641-646.
    [15]Janssen ML, Frielink C, Dijkgraaf I, et al. Improved tumor targeting of radiolabeled RGD peptides using rapid dose fractionation[J]. Cancer Biother Radiopharm,2004,19:399-404.
    [16]Liu S, Hsieh WY, Kim YS, et al. Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGDfK dimmer[J]. Bioconjugate Chem,2005,16:1580-1588.
    [17]Chen XY, Liu S, Hou Y, et al. MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides[J]. Mol Imaging Biol,2004, 6:350-359.
    [18]Chen XY, Tohme M, Park R, et al. MicroPET imaging of breast cancer αv -integrin expression with 18F-labeled dimeric RGD peptide[J]. Mol Imaging, 2004,3:96-104.
    [19]Poethko T, Schottelius M, Thumshirn G, et al. methodology for high yield routine radiohaligenation of peptides:18F-labeled RGD and octreotide analogs[J]. J Nucl Med,2004,45,892-902.
    [20]Wu Y, Zhang XZ, Xiong ZM, et al. MicroPET imaging of glioma αv-integrin expression using 64Cu-labeled tetrameric RGD peptide[J]. J Nucl Med,2005,46: 1707-1718.
    [21]Liu S, Hsieh WY, Jiang Y, et al. Evaluation of a (99m)Tc-labeled cyclic RGD tetramer for noninvasive imaging integrin alpha(v)beta3-positive breast cancer. Bioconjug Chem,2007,18:438-446.
    [22]Wang J, Kim YS, Liu S.99mTc-labeling of HYNIC-conjugated cyclic RGDfK dimer and tetramer using EDDA as coligand. Bioconjug Chem,2008,19: 634-642.
    [23]Wu Y, Zhang X, Xiong Z, et al. microPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide[J]. J Nucl Med,2005,46:1707-1718.
    [24]Li ZB, Cai W, Cao Q, et al. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression[J]. J Nucl Med,2007,48:1162-1171.
    [25]Chen X, Park R, Shahinian AH, et al. Pharmacokinetics and tumor retention of 1251-labeled RGD peptide are improved by PEGylation[J]. Nucl Med Biol, 2004,31:11-19.
    [26]Chen X, Sievers E, Hou Y, et al. Integrin alpha v beta 3-targeted imaging of lung cancer[J]. Neoplasia,2005,7:271-279.
    [27]Wang L, Shi J, Kim YS, et al. Improving tumor-targeting capability and pharmacokinetics of (99m)Tc-labeled cyclic RGD dimers with PEG(4) linkers[J].Mol Pharm,2009,6:231-245.
    [28]Line BR, Mitra A, Nan A, et al. Targeting tumor angiogenesis:comparison of peptide and polymer-peptide conjugates[J]. J Nucl Med,2005,46:1552-1560.
    [29]Mitra A, Mulholland J, Nan A, et al. Targeting tumor angiogenic vasculature using polymer-RGD conjugates[J]. J Control Release,2005,102:191-201.
    [30]Mitra A, Coleman T, Borgman M, et al. Polymeric conjugates of mono- and bi-cyclic alphaVbeta3 binding peptides for tumor targeting[J]. J Control Release. 2006,114:175-183.
    [31]Borgman MP, Coleman T, Kolhatkar RB, et al. Tumor-targeted HPMA copolymer-(RGDfK)-(CHX-A"-DTPA) conjugates show increased kidney accumulation[J]. J Control Release,2008,132:193-199.
    [32]Liu S, Edwards DS. Fundamentals of receptor-based diagnostic metalloradio pharmaceuticals[J]. Top Curr Chem,2002,222:259-278.
    [33]Liu, S. The role of coordination chemistry in development of target-specific radiopharmaceuticals[J]. Chem Soc Rev,2004,33:1-18.
    [34]Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts[J]. Cancer Res,2004, 64:8009-8014.
    [35]Cheng Z, Wu Y, Xiong Z, et al. Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice[J].Bioconjug Chem,2005,16:1433-1441.
    [36]Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumor integrin alpha v beta 3 expression with Cy7-labeled RGD multimers[J]. Mol Imaging Biol,2006,8:226-236.
    [37]Liu Z, Liu S, Niu G, et al. Optical imaging of integrin alphavbeta3 expression with near-infrared fluorescent RGD dimer with tetra(ethylene glycol) linkers[J]. Mol Imaging,2010,9:21-29.
    [38]Ye Y, Bloch S, Xu B, et al. Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors[J]. J Med Chem,2006, 49:2268-2275.
    [39]Smith BR, Cheng Z, De A, et al. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature[J]. Nano Lett, 2008,8:2599-2606.
    [40]Zhang C, Jugold M, Woenne EC, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner[J]. Cancer Res,2007,67:1555-1562.
    [41]Jiang T, Zhang C, Zheng X, et al. Noninvasively characterizing the different alphavbeta3 expression patterns in lung cancers with RGD-USPIO using a clinical 3.0T MR scanner[J]. Int J Nanomedicine,2009,4:241-249.
    [42]Kiessling F, Huppert J, Zhang C, et al. RGD-labeled USPIO inhibits adhesion and endocytotic activity of alpha v beta3-integrin-expressing glioma cells and only accumulates in the vascular tumor compartment[J]. Radiology,2009,253: 462-469
    [43]Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model[J]. Science,1998,279:377-380.
    [44]Kim JW, Lee HS. Tumor targeting by doxorubicin-RGD-4C peptide conjugate in an orthotopic mouse hepatoma model[J]. Int J Mol Med,2004,14:529-535.
    [45]de Groot FM, Broxterman HJ, Adams HP. Design, synthesis, and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin cleavable doxorubicin prodrug[J]. Mol Cancer Ther,2002,1:901-911.
    [46]Ryppa C, Mann-Steinberg H, Fichtner I, et al. In vitro and in vivo evaluation of doxorubicin conjugates with the divalent peptide E-[c(RGDfK)2] that targets integrin alphavbeta3[J]. Bioconjug Chem,2008,19:1414-1422.
    [47]Chen X, Plasencia C, Hou Y, et al. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery[J]. J Med Chem,2005,48:1098-1106.
    [48]Cao Q, Li ZB, Chen K, et al. Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer[J]. Eur J Nucl Med Mol Imaging,2008,35:1489-1498.
    [49]Dal Pozzo A, Ni MH, Esposito E, et al. Novel tumor-targeted RGD peptide-camptothecin conjugates:synthesis and biological evaluation[J]. Bioorg Med Chem,2010,18:64-72.
    [50]Frochot C, Di Stasio B, Vanderesse R, et al. Interest of RGD containing linear or cyclic peptide targeted tetraphenylchlorin as novel photosensitizers for selective photodynamic activity[J]. Bioorg Chem,2007,35:205-220
    [51]Conway C L, Walker I, Bell A, et al. In vivo and in vitro characterisation of a protoporphyrin Ⅸ -cyclic RGD peptide conjugate for use in photodynamic therapy[J]. Photochem Photobiol Sci,2008,7:290-298
    [52]Kuroda, K., Miyata, K., Shikama, H., et al. Novel muteins of human tumor necrosis factor with potent antitumor activity and less lethal toxicity in mice[J]. Int J Cancer,1995,63:152-157.
    [53]Kuroda K, Miyata K, Fujita F, et al. Human tumor necrosis factor-alpha mutant RGD-V29 (F4614) shows potent antitumor activity and reduced toxicity against human tumor xenografted nude mice[J]. Cancer Lett,2000,159:33-41.
    [54]Curnis F, Gasparri A, Sacchi A, et al. Coupling tumor necrosis factor-alpha with alphaV integrin ligands improves its antineoplastic activity[J]. Cancer Res,2004, 64:565-571.
    [55]Curnis F, Sacchi A, Borgna L, et al. Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13)[J]. Nat Biotechnol,2000,18:1185-1190.
    [56]Wang H, Chen K, Cai W, et al. Integrin-targeted imaging and therapy with RGD4C-TNF fusion protein[J]. Mol Cancer Ther,2008,7:1044-1053.
    [57]Dickerson EB, Akhtar N, Steinberg H, et al. Enhancement of the antiangiogenic activity of interleukin-12 by peptide targeted delivery of the cytokine to alphavbeta3 integrin[J]. Mol Cancer Res,2004,2:663-673.
    [58]Xiao B, Li W, Yang J, et al.RGD-IL-24, a novel tumor-targeted fusion cytokine: expression, purification and functional evaluation[J]. Mol Biotechnol,2009, 41:138-144.
    [59]Liu Z, Wang J, Yin P, et al. RGD-FasL induces apoptosis in hepatocellular carcinoma[J]. Cell Mol Immunol.2009,6:285-293.
    [60]Chen L, Zhuang G, Li W, et al. RGD-FasL induces apoptosis of pituitary adenoma cells[J]. Cell Mol Immunol,2008,5:61-68.
    [61]Cao L, Du P, Jiang SH, et al. Enhancement of antitumor properties of TRAIL by targeted delivery to the tumor neovasculature[J]. Mol Cancer Ther,2008,7: 851-861.
    [62]Xu HM, Yin R, Chen L, et al. An RGD-modified endostatin-derived synthetic peptide shows antitumor activity in vivo[J]. Bioconjug Chem,2008,19: 1980-1986.
    [63]Yang J, Guo H, Gallazzi F, et al. Evaluation of a Novel Arg-Gly-Asp-Conjugated alpha-Melanocyte Stimulating Hormone Hybrid Peptide for Potential Melanoma Therapy[J]. Bioconjug Chem,2009,20:1634-1642.
    [64]Foillard S, Jin ZH, Garanger E, et al. Synthesis and biological characterisation of targeted pro-apoptotic peptide[J]. Chembiochem,2008,9:2326-2332.
    [65]Xiong XB, Huang Y, Lu WL, et al. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic[J]. J Control Release,2005, 107:262-275.
    [66]Xiong XB, Huang Y, Lu WL, et al. Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo[J]. J Pharm Sci,2005,94:1782-1793.
    [67]Xiong XB, Huang Y, Lu WL, et al. Enhanced intracellular uptake of sterically stabilized liposomal Doxorubicin in vitro resulting in improved antitumor activity in vivo[J]. Pharm Res,2005,22:933-939.
    [68]Zhao H, Wang JC, Sun QS, et al. RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer[J]. J Drug Target,2009,17:10-18.
    [69]Zhang YF, Wang JC, Bian DY, et al. Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: In vitro and in vivo studies[J]. Eur J Pharm Biopharm,2010,74: 467-473.
    [70]Wang Y, Wang X, Zhang Y, et al. RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells[J]. J Drug Target,2009,17:459-467.
    [71]Zhan C, Gu B, Xie C, et al. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect[J]. J Control Release, doi:10.1016/j.jconrel.2009.12.020
    [72]Danhier F, Vroman B, Lecouturier N, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel[J]. J Control Release, 2009,140:166-173.
    [73]Wang Z, Chui WK, Ho PC. Design of a multifunctional PLGA nanoparticulate drug delivery system:evaluation of its physicochemical properties and anticancer activity to malignant cancer cells[J]. Pharm Res,2009,26:1162-1171.
    [74]Murphy EA, Majeti BK, Barnes LA, et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis[J]. Proc Natl Acad Sci U S A,2008, 105:9343-9348.
    [75]Borgman MP, Ray A, Kolhatkar RB, et al. Targetable HPMA copolymer-aminohexylgeldanamycin conjugates for prostate cancer therapy[J]. Pharm Res,2009,26:1407-1418.
    [76]Borgman MP, Aras O, Geyser-Stoops S, et al. Biodistribution of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer drug delivery[J]. Mol Pharm,2009,6:1836-1847.
    [77]Koizumi N, Mizuguchi H, Utoguchi N, et al. Generation of fiber-modified adenovirus vectors containing heterologous peptides in both the HI loop and C terminus of the fibre knob[J]. J Gene Med,2003,5:267-276.
    [78]Mizuguchi H, Hayakawa T. Enhanced antitumor effect and reduced vector dissemination with fiber-modified adenovirus vectors expressing herpes simplex virus thymidine kinase. Cancer Gene Ther,2002,9:236-242.
    [79]Okada Y, Okada N, Mizuguchi H, et al. Optimization of antitumor efficacy and safety of in vivo cytokine gene therapy using RGD fiber-mutant adenovirus vector for preexisting murine melanoma[J]. Biochim Biophys Acta,2004, 1670:172-180.
    [80]Ogawara K, Rots MG, Kok RJ. A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo[J]. Hum Gene Ther,2004,15:433-443.
    [81]Eto Y, Gao JQ, Sekiguchi F. PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability[J]. J Gene Med,2005,7:604-612.
    [82]Erbacher P, Remy JS, Behr JP. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway[J]. Gene Ther,1999,6:138-145.
    [83]Kunath K, Merdan T, Hegener O, et al. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer[J]. J Gene Med,2003,5:588-599.
    [84]Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle[J]. Nucleic Acids Res,2004,32:e149.
    [85]Oba M, Fukushima S, Kanayama N, et al. Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing alphavbeta3 and alphavbeta5 integrins[J]. Bioconjug Chem, 2007,18:1415-1423.
    [86]Oba M, Aoyagi K, Miyata K, et al. Polyplex Micelles with Cyclic RGD Peptide Ligands and Disulfide Cross-Links Directing to the Enhanced Transfection via Controlled Intracellular Trafficking[J]. Mol Pharm,2008,5:1080-1092.
    [87]Vachutinsky Y, Oba M, Miyata K, et al. Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles[J]. J Control Release,2010,
    [88]Waite CL, Roth CM. PAMAM-RGD Conjugates Enhance siRNA Delivery Through a Multicellular Spheroid Model of Malignant Glioma[J].Bioconjug Chem,2009,20:1908-1916
    [89]Hood JD, Bednarski M, Frausto R, et al. Tumor regression by targeted gene delivery to the neovasculature[J]. Science,2002,296:2404-2407.
    [90]Leng Q, Mixson AJ. Modified branched peptides with a histidine-rich tail enhance in vitro gene transfection[J]. Nucleic Acids Res,2005,33:e40.
    [91]Sugahara KN, Teesalu T, Karmali PP, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors[J]. Cancer Cell,2009,16:510-520.
    [92]Li C, Wang W, Wu Q, et al. Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe[J]. Nucl Med Biol, 2006,33:349-358.
    [93]Sancey L, Garanger E, Foillard S, et al. Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide[J]. Mol Ther,2009,17: 837-843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700