用户名: 密码: 验证码:
(-)棉酚的抗肿瘤作用及其与Imatinib协同诱导人慢性髓性白血病细胞凋亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Anticancer Effect of (-)gossypol and Apoptosis Induced by Combination of (-)gossypol with Imatinib in Human Chronic Myeloid Leukemic Cells
  • 作者:孟旸
  • 论文级别:博士
  • 学科专业名称:药理学
  • 学位年度:2006
  • 导师:陈晓光
  • 学科代码:100706
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2006-05-01
摘要
棉酚是从棉籽中提取的一种多酚类化合物。研究表明,它对多种肿瘤都有杀伤作用。其中(-)棉酚成份被证明抗肿瘤效果最强。目前认为(-)棉酚的主要作用机制是抑制抗凋亡蛋白Bcl-2和Bcl-X_L。
     慢性髓性白血病(CML)是一种血液系统恶性增生疾病。以细胞内出现嵌合蛋白Bcr-Ab1为主要特征。Bcr-Ab1是一种被持续激活的酪氨酸激酶,并激活多条信号传导通路,引起发病。
     Imatinib(又称Gleevec,STI-571)是Bcr-Ab1的选择性抑制剂。在体内、体外实验中,Imatinib引起细胞凋亡,并且对临床上Bcr-Ab1阳性的患者有非常好的疗效。但是Imatinib对CML急变期的患者治疗效果却并不理想,而且很容易产生耐药。这促使人们不断寻找新的方案治疗CML。
     本实验探讨了(-)棉酚与Imatinib联合应用对人CML细胞系K562的影响,以及(-)棉酚对K562细胞和K562耐Imatinib细胞系K562/R的抑制作用。
     一、(-)棉酚及其与Imatinib合用对K562细胞的抑制作用
     采用MTT的方法观察了(-)棉酚以及(-)棉酚与Imatinib联合应用对K562细胞的生长抑制作用。(-)棉酚抑制K562细胞生长,IC_(50)为5.22μmol/L。在6.25μmol/L浓度下,(-)棉酚使Imatinib对K562细胞的IC_(50)由1.56μmol/L降低到0.013μmol/L。说明(-)棉酚增强Imatinib对K562细胞的抑制作用。裸鼠中空纤维模型实验进一步证实,(-)棉酚可以抑制K562细胞在裸鼠体内的生长,并且(-)棉酚15mg/kg与Imatinib 30gmol/kg合用对裸鼠体内K562细胞抑制率达到93.7%。在10:1的比例下,用MTT方法得出(-)棉酚与Imatinib的联合指数<1,说明二者具有协同作用。
     在体外(-)棉酚5μmol/L与Imatinib 0.5μmol/L联合作用使大量K562细胞出现核碎裂这种典型的凋亡形态学改变,而(-)棉酚5μmol/L,Imatinib 0.5μmol/L分别作用引起的改变则不明显。采用流式细胞术技术,Annexin V/PI双染及PI单染两种方法都得出(-)棉酚与Imatinib联合应用使凋亡细胞比例明显增加。另外,(-)棉酚单独作用也可以使K562细胞凋亡增加,并使细胞周期阻滞于G0/G1期,并且呈剂量依赖性。用DiOC_6染色方法观察了线粒体膜电位(△Ψm)的变化,这也是线粒体功能的一种反映。(-)棉酚和Imatinib分别单独作用时均可引起△Ψm降低,(-)棉酚与Imatinib联合作用则使△Ψm降低更为明显。
     为了阐明(-)棉酚与Imatinib引起K562细胞凋亡的作用机制,本研究中采用western blot方法检测了caspase3和细胞质内细胞色素C含量的变化。(-)棉酚使K562细胞caspase3前体减少,释放入细胞质的细胞色素C含量增加;(-)棉酚与Imatinib联合应用时细胞色素C释放增多,caspase3前体进一步减少,并出现被水解的小片段,这意味着caspase3被激活。由此可以推断(-)棉酚和Imatinib作用后的K562细胞,细胞色素C释放入细胞质并随后激活caspase3,引起细胞凋亡。
     为了进一步研究(-)棉酚与Imatinib引起K562细胞生长抑制并诱导凋亡的机制,采用western blot和RT-PCR方法分析了Bcl-2家族成员蛋白和mRNA水平的变化,以及P21的变化。(-)棉酚使Bcl-X_L、Mcl-1蛋白水平降低,并使Bcl-X_LmRNA表达也降低。与Imatinib合用时Bcl-X_L、Mcl-1进一步降低,并且使Bcl-2,Bcl-X_L,Mcl-1,Bak mRNA表达降低,Bad mRNA表达增加。(-)棉酚可以诱导K562细胞P21表达,但Imatinib却具有相反的作用。在实验中还发现(-)棉酚和Imatinib单独应用并未能使Bcr-Ab1和JNK蛋白含量改变,但二者合用却明显降低Bcr-Ab1和JNK蛋白水平。
     由此可见,(-)棉酚通过诱导K562细胞凋亡和周期阻滞于G0/G1期,从而抑制K562细胞的生长。(-)棉酚增强Imatinib引起的K562细胞凋亡,并且二者具有协同作用。(-)棉酚所引起的凋亡至少部分通过线粒体途径,其中抗凋亡蛋白Bcl-X_L、Mcl-1的减少是其机制之一。尽管(-)棉酚对Bcl-2表达水平影响甚微,但是,目前普遍认为(-)棉酚通过结合于Bcl-X_L和Bcl-2而影响其功能,并不能改变其蛋白水平,因此可以推断在Bcl-X_L高表达的K562细胞内,(-)棉酚也降低了Bcl-X_L和Bcl-2的抗凋亡作用。(-)棉酚与Imatinib联合应用时引起了较为广泛的Bcr-Ab1传导通路和凋亡传导通路上的改变,其中包括Bcl-X_L、Mcl-1、Bcl-2、Bcr-Ab1、JNK不同程度的下调。(-)棉酚与Imatinib联合应用对细胞周期影响并不显著,而(-)棉酚引起的G0/G1期阻滞应与P21的诱导表达有关。
     二、K562/R细胞株的建立以及(-)棉酚对K562/R细胞的抑制作用
     通过逐渐增加Imatinib浓度施加于K562细胞的方法建立了K562耐Imatinib细胞系K562/R。与K562细胞相比,K562/R细胞对Imatinib敏感性降低约15倍,而两个细胞系对(-)棉酚敏感程度基本一致。K562/R细胞Bcr-Ab1以及线粒体Bcl-2表达增高,Mcl-1则无变化。令人费解的是,K562/R细胞Bcl-X_L表达却显著降低,因此初步认为,所建立的细胞系为Bcr-Ab1、Bcl-2高表达细胞系。进一步的鉴定工作有待深入。
     MTT方法和裸鼠中空纤维模型实验都证实,(-)棉酚可以抑制K562/R细胞的生长。体外实验IC_(50)为7.97μmol/L,裸鼠体内实验(-)棉酚15mg/kg、30mg/kg剂量的抑制作用与对照组相比有显著性差异。在体外(-)棉酚10μmol/L使K562/R细胞出现典型的凋亡形态学改变。采用流式细胞术技术,(-)棉酚使K562/R细胞凋亡增加,并使细胞周期阻滞于G0/G1期,且呈剂量依赖性。(-)棉酚5μmol/L、10μmol/L引起K562/R细胞△Ψm降低。10μmol/L(-)棉酚引起K562/R细胞色素C释放。为了进一步研究(-)棉酚与Imatinib引起K562/R细胞生长抑制并诱导凋亡的机制,采用western blot和RT-PCR方法分析了一些Bcl-2家族成员蛋白和mRNA水平的变化。(-)棉酚使Bcl-X_L、Mcl-1蛋白水平降低,Bax、Bad、BakmRNA表达增加。与K562细胞不同,(-)棉酚并未诱导K562/R细胞P21表达(结果未给出)。
     由此可见,(-)棉酚通过诱导K562/R细胞凋亡和周期阻滞于G0/G1期,抑制K562/R细胞生长;(-)棉酚通过上调促凋亡基因表达,下调抗凋亡蛋白水平从而引起K562/R细胞凋亡;(-)棉酚所引起G0/G1期阻滞可能与P21无关。
     综上所述,(-)棉酚可能对CML治疗有效,尤其与Imatinib合用将会更有前景。当然,在应用临床之前,对于(-)棉酚的研究还有待于进一步深入。
     棉酚作为一种避孕药,已经证实其还对多种肿瘤细胞系有生长抑制作用。我们通过实验验证了棉酚及其衍生物棉醌对肿瘤细胞的生长抑制作用。其作用强度从高到低依次为(-)棉酚、棉醌、(±)棉酚、(+)棉酚。(-)棉酚可以诱导人黑色素瘤细胞A375产生凋亡,但对A375细胞周期无明显影响。(-)棉酚增强A375细胞P53蛋白表达,可能与其诱导凋亡有关,但对Bcl-2 mRNA表达无影响。研究还发现(-)棉酚可降低B16BL6细胞的侵袭能力和恶性程度。
Gossypol, a natural polyphenol extracted from cottonseed, has been shown to have antiproliferative activity in a variety of cancer cell lines. (-)gossypol was proved the potent component and regarded as a small-molecule inhibitor of antiapoptosis protein Bcl-2 and Bcl-X_L proteins.
     Chronic myeloid leukemia (CML) is a hematopoietic neoplasm with the hallmark of chimeric oncoprotein, Bcr-Abl, which displays constitutive tyrosine kinase activity and activates several signaling transduction pathways. Imatinib (Gleevec, STI-571; Novartis, Inc.) is a tyrosine kinase inhibitor that competitively inhibits Bcr-Abl kinases. It specifically induces apoptosis both in vitro and in vivo, Imatinib has shown a substantial clinical effect in BCR/ABL-positive leukemia patients. Although demonstrating impressive clinical activity against chronic-phase CML, in the accelerated and blastic phases of CML (CML-BC) the outcome after imatinib therapy is unacceptably poor and imatinib resistance occur shortly after the treatment. These findings emphasize the need to identify novel therapies for CML.
     In the present studies, we discussed the combination effect of (-)gossypol and imatinib on CML cell line K562, along with the effects of (-)gossypol on K562 and K562/R.
     1. Inhibition effects of (-)gossypol and its combination with imatinib on K562 cells.
     Effects of (-)gossypol and the combination of (-)gossypol with imatinib on the growth of K562 cells were analyzed by MTT assay. The growth of K562 cells was inhibited by (-)gossypol with the IC_(50) value of 5.22μmol/L. At the concentration of 6.25μmol/L (-)gossypol reduced the IC_(50) value of imatinib from 1.56μmol/L to 0.013μmol/L. In vivo result in nude mice bearing hollow fibers showed that (-)gossypol inhibited growth of K562 cells in nude mice, and co-treatment with (-)gossypol 15mg/kg and Imatinib 30μmol/kg inhibited K562 cell growth by 93.7%. At a fixed ratio of 10:1, combination index value of (-)gossypol and imatinib < 1.0, corresponding to synergistic interactions, was obtained in MTT assay.
     Morphologically, combination of (-)gossypol 5μmol/L with imatinib 0.5μmol/L dramatically induced typical apoptotic change -- karyorrhexis in K562 cells, whereas the effect of either (-)gossypol 5μmol/L or imatinib 0.5μmol/L was barely seen. Flow cytometric assay was performed to evaluate the cell cycle and apoptosis, by staining with PI as well as Annexin V/PI, similar results came out that percentage of apoptotic K562 cells increased markedly after combination treatment with (-)gossypol and imatinib. PI staining showed that (-)gossypol increased apoptosis percentage and caused G0/G1 arrest of cell cycle in K562 cells in a dose-dependent manner. By using DiOC_6, loss ofΔΨm was also detected in (-)gossypol and imatinib treated K562 cells, which represent mitochondria function. Combination of (-)gossypol 5μmol/L and imatinib 0.5μmol/L leaded toΔΨm loss to a deeper extent in K562 cells .
     In order to understand the pathways involved in (-)gossypol and imatinib induced apoptosis, the level of caspase3 and cytoplasmic cytochrome C were tested using western blot. Procaspase3 decreased and cytoplasmic cytochrome C increased after treatment with (-)gossypol or imatinib. Combination with (-)gossypol and imatinib increased cytoplasmic cytochrome C more, and decreased procaspase3 with cleaved fragments of caspase3 detected, which it predicted the activation of caspase3. It can be inferred that treatment with (-)gossypol and imatinib arose cytochrome C release in K562 cells and consequently activated caspase3. To highlight the mechanism of growth inhibition and apoptosis induced by (-)gossypol and imatinib, protein and mRNA expression of several Bcl-2 family members and P21 were analyzed using western blot and RT-PCR assays, (-)gossypol decreased Bcl-X_L, Mcl-1 protein level moderately and Bcl-2 protein level neglectablely. Combination with (-)gossypol and imatinib caused Bcl-X_L, Mcl-1 protein level to decrease markedly and had no obvious effect on Bcl-2 protein level. As far as the mRNA level was concerned, combination with (-)gossypol and imatinib decreased level of Bcl-2, Bcl-X_L, Mcl-1, Bak, and increased level of Bad, whereas (-)gossypol simply decreased Bcl-X_L level. P21 induction was observed in (-)gossypol treated K562 cells, however, imatinib seemed to have reverse effect on P21 induction. Combination with (-)gossypol and imatinib reduced expression of Bcr-Abl and JNK, while neither (-)gossypol nor imatinib caused detectable change of these two proteins at tested concentrations.
     Conclusively, (-)gossypol inhibited the growth of CML cell line K562 by inducing apoptosis and G0/G1 arrest in cell cycle, (-)gossypol synergistically potentiated imatinib induced apoptosis in K562 cells. Mictochondria pathway contributed at least partly to (-)gossypol induced apoptosis with the decreased Bcl-X_L, Mcl-1 expression. Although (-)gossypol did not effect Bcl-2 expression significantly, in the well accepted view of that (-)gossypol interrupted function of Bcl-X_L and Bcl-2 by interacting with them, we confer that in K562 cells (-)gossypol also lower the function of Bcl-2 as well as Bcl-X_L which is overexpressed in Bcr-Abl positive cells. Combination with (-)gossypol and imatinib leaded to more extensive changes in Bcr-Abl signaling and apoptosis signaling in K562 cells, including downregulation of Bcl-X_l, Mcl-1, Bcl-2, Bcr-Abl, JNK by a varied extent. Combination treatment seemed to have less effect on cell cycle, although (-)gossypol caused G0/G1 arrest, which may partly owe to the induction of P21.
     2. The establishment of K562/R cell line and inhibition of (-)gossypol in K562/R cells.
     By increasing imatinib concentration in K562 cell culture step by step, an imatinib resistant K562 cell line was established, referred as K562/R. In contrast with K562 cell line, the sensitivity of K562/R to imatinib decreased 15-fold, while both cell lines had similar responses to (-)gossypol. By comparison, expression of Bcr-Abl and mitochondrial Bcl-2 dramatically increased, Mcl-1 was unchanged. However, Bcl-X_L decreased to an almost undetectable extent perplexingly. Anyway, because of the complex mechanisms in imatinib resistance further identifications between the two cell lines need to be done.
     In vivo result from nude mice bearing hollow fibers showed that (-)gossypol inhibited growth of K562/R cells in nude mice. Compared with control group the dose of 15mg/kg and 30mg/kg had P values less than 0.05. Morphologically, (-)gossypol induced typical apoptotic change -- karyorrhexis in K562/R cells at concentration of 10μmol/L. Flow cytometric assay was performed to evaluate the cell cycle and apoptosis. Results showed that being treated with (-)gossypol, percentage of apoptotic K562/R cells increased, and G0/G1 arrest of cell cycle in K562/R cells was observed with a dose-dependent manner. Loss ofΔΨm was also detected in (-)gossypol treated K562/R cells, (-)gossypol caused cytochrome C release was proved by using western blot. To investigate the mechanism of growth inhibition and apoptosis of (-)gossypol in K562/R cells, protein and mRNA expression of several Bcl-2 family members were analyzed using western blot and RT-PCR assays, (-)gossypol decreased Bcl-X_L and Mcl-1 protein level, and increased mRNA level of Bax, Bad and Bak. Unlike in K562 cells (-)gossypol seemed to have no effect on P21 induction in K562/R cells(data not shown).
     Conclusively, (-)gossypol inhibited K562/R by inducing apoptosis and G0/G1 arrest of cell cycle, (-)gossypol induced apoptosis by decreasing antiapoptosis proteins and increasing proapoptosis gene transcription. (-)gossypol caused G0/G1 arrest may have no relationship with P21.
     In summary, (-)gossypol may be effective in CML treatment and combining it with imatinib may be more promising, although there is still more to be explored before (-)gossypol can be used in clinic.
     Gossypol, a male contraceptive drug, has been demonstrated to have antiproliferative effects on many kinds of cancer cells in vitro. Here, we tested the antiproliferative effect of gossypol and its derivative gossypolone. The results showed that the rank of intensity was (-)gossypol, gossypolone, (±)gossypol, (+)gossypol. (-)gossypol induced apoptosis in human melanoma cell line A375, but did not cause cell cycle change. (-)gossypol increased P53 protein level in A375, which may contribute partly to the apoptosis, but it had no obvious effect on Bcl-2 mRNA expression. We also found that (-)gossypol lowered antimetastatic ability of B16BL6 cells.
引文
1. Kantarjian HM, Deisseroth A, and et al. Chronic myelogenous leukemia: a concise update. Blood. 1993;82:691-703.
    2. Laurent E, Talpaz M, and et al. The BCR gene and Philadelphia chromosome -positive leukemogenesis. Cancer Res. 2001 ;61: 2343-2355.
    3. Daley, GQ, Van Etten, RA, and et al. Induction of chronic myelogenous leukemia in mice by the p210 bcr/abl gene of the Philadelphia chromosome. Science. 1990;247: 824-830.
    4. Daley GQ, Van Etten, RA, and et al. Nonmyristoylated Abl proteins transform a factor-dependent hematopoietic cell line. Mol Cell Biol. 1992;12: 1864-1871.
    5. Amarante-Mendes GP, McGahon, AJ, and et al. Bcl-2-independent Bcr-Abl mediated resistance to apoptosis: protection is correlated with upregulation of Bcl-xL. Oncogene. 1998;16: 1383-1390.
    6. Reuther JY, Reuther GW, and et al. A requirement for NF-kB activation in Bcr-Abl mediated transformation. Genes. 1998;12: 968-981.
    7. Buchdunger E, Cioffi CL, and et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther. 2000;295: 139-145.
    8. Dan S, Naito M, and et al. Selective induction of apoptosis in Philadelphia chromosome-positive chronic myelogenous leukemia cells by an inhibitor of BCR-ABL tyrosine kinase, CGP 57148. Cell Death Differ. 1998;5: 710-715.
    9. Druker BJ, Talpaz M, and et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 2001;344: 1031-1037.
    10. Weisberg E, Griffin JD. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood. 2000;95:3498-3505.
    11. Le Coutre P, Tassi E, and et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood. 2000; 95: 1758-1766.
    12. Warmuth M, Simon N, and et al. Dual-specific Src and Abl kinase inhibitors, PPl and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood. 2003;101:664-72.
    13. Shah NP, Tran C, and et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399-401.
    14. Reidenberg MM. Studies of gossypol in the treatment of cancer. Reproductive Medicine. 1999; 305-308.
    15. Benz CC, Keniry MA, and et al. Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers. Mol Pharmacol 1990; 37:840-847.
    16. Shelley MD, Hartley L, and et al. Stereospecific cytotoxic effects of gossypol enantiomers and gossypolone in tumour cell lines. Cancer Lett 1999; 135:171-180.
    17. Van Poznak C, Seidman AD, and et al. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res Treat. 2001 ;66:239-48.
    18. Liang XS, Rogers AJ, and et al. Developing gossypol derivatives with enhanced antitumor activity. Invest New Drugs 1995;13:181 -6.
    19. Kitada S, Leone M, and et al. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenol targeting B-cell lymphocyte/leukemia-2 proteins. J. Med. Chem. 2003;46: 4259-4264.
    20. Zhang M, Liu H, and et al. Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. Biochem. Pharmacol. 2003;66:93-103.
    21. Mohammad RM, Wang S, and et al. Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(-)-gossypol] against diffuse large cell lymphoma. Mol Cancer Ther. 2005; 4:13-21.
    22.Shelley MD,Hartley L,and et al.Structure-activity studies on gossypol in tumor cell lines.Anticancer Drugs.2000;11:209-16.
    23.Ergun MA,Konac E,and et al.Apoptosis and nitric oxide release induced by thalidomide,gossypol and dexamethasone in cultured human chronic myelogenous leukemic K-562 cells.Cell Biol Int.2004;28:237-42
    24.Mahon FX,Deininger MW,and et al.Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571:diverse mechanisms of resistance.Blood.2000;96:1070-9
    25.Miyoshi T,Nagai T,and et al.Relative importance of apoptosis and cell cycle blockage in the synergistic effect of combined R115777 and imatinib treatment in BCR/ABL-positive cell lines.Biochem Pharmacol.2005;69:1585-94.
    26.韩锐(2005)抗癌药物研究与实验技术,北京医科大学中国协和医科大学联合出版社。
    27.韩锐,孙燕;新世纪癌的化学预防与药物治疗(2005),人民军医出版社:240-249。
    28.Melinda G.Hollingshead MC.And et al.In vivo cultivation of tumor cells in hollow fibers.Life sciences 1995;57:131-141
    29.Yu C,Rahmani M,and et al.Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells.Cancer Res.2003;63:2118-26.
    30.[0]Sambrook,J.(2002)分子克隆实验指南,科学出版社
    31.Ko CH,Shen SC,and et al.Flavanones structure-related inhibition on TPA-induced tumor promotion through suppression of extracellular signal-regulated protein kinases:involvement of prostaglandin E_2 in anti-promotive process.J Cell Physiol.2002;293:93-102.
    32.Condorelli F,Salomoni P,and et al.Caspase cleavage enhances the apoptosisinducing effects of Bad.Molecular and Cellular Biology.2002;21:3025-3036
    33.Rosato R,Almenara J,and et al.The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells. Molecular Cancer Therapeutics 2002; 1:253-266.
    34. Erikson J, Griffin CA, and et al. Heterogeneity of chromosome 22 breakpoint in Philadelphia-positive (Ph+) acute lymphocytic leukemia. Proc. Natl. Acad. Sci. 1986; 86: 1807-1811.
    35. Lugo TT, Prendergast AM,et al. Tyrosine Kinase activity and transformation potency of bcr-abl oncogene products. Science, 1990;247 : 1079-1082,
    36. Bedi, A., Barber, J. P., and et al. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 1995; 86:1148-1158.
    37. Vivanco I, Sawyers CL. The phosphatidylinositol-3 kinase/Akt pathway in human cancer. Nat Rev Cancer. 2002;2:489-501.
    38. Horita M, Andrew EJ, and et al. Blockade of the BCR/ABL kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-XL. J Exp Med. 2000;191:977-984.
    39. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407:770-777.
    40. Earnshaw WC, Martins LM, and et al. Mammalian caspases:structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 1999; 68: 383-424.
    41. Martin DS, Bertino JR, and et al. ATP depletion plus pyrimidine depletion can markedly enhance cancer therapy: fresh insight for a new approach. Cancer Res. 2000; 60: 6776-6783.
    42. Saleh A, Srinivasula SM, and et al. Cytochrome C and dATP2mediated oligomerization of Apaf21 is a prerequisite for pro2 caspase29 activation. J Biol Chem. 1999; 274: 17941—5
    43. Nicholson DW, Thornberry NA and et al. Caspases: Killer proteases. Trends Biochem Sci. 1997; 22:199-306
    44. Green DR, Reed FC. Mitochondria and apoptosis. Sciences 1998: 281: 1309-1312.
    45. Smaili SS, Hsu YT, and et al. Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Braz J Med Biol Res. 2003;36:183-90.
    46. Goldstein JC, Waterhouse NJ, and et al. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biology. 2000; 2: 156-162.
    47. Korsmeyer, SJ. Bcl-2 gene family and the regulation of programmed cell death. Cancer Res. 1999; 59 Suppl: 1693-1700
    48. Mohammad RM, Wang S, and et al. Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(-)-gossypol] against diffuse large cell lymphoma. Mol Cancer Ther. 2005;4:13-21.
    49. Moulding DA, Akgul C, and et al. J. BCL-2 family expression in human neutrophils during delayed and accelerated apoptosis. Leukoc. Biol. 2001; 70:783-792
    50. Edwards SW, Derouet M, and et al. Regulation of neutrophil apoptosis by Mcl-1. Biochem Soc Trans. 2004;32(Pt3):489-92.
    51. Fukuchi Y, Kizaki M, and et al. Mcl-1, an early-induction molecule, modulates activin Ainduced apoptosis and differentiation of CML cells. Oncogene. 2001; 20:704-713.
    52. Zhou P, Qian L, and et al. Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood. 1997;89:630-643.
    53. Aichberger KJ, Mayerhofer M, and et al. Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood. 2005;105:3303-ll.
    54. Chang JS, Hsu YL, and et al. Upregulation of Fas/Fas ligand-mediated apoptosis by gossypol in an immortalized human alveolar lung cancer cell line. Clin Exp Pharmacol Physiol. 2004; 31:716-22.
    55. Yu C, Rahmani M, and et al. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571 -sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res. 2003; 63:2118-26.
    56. Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther. 2002; 1:639-49.
    57. Raitano AB, Halpera JR, and et al. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc. Natl. Acad. Sci. 1995; 92: 11746-11750.
    58. Gorre ME, Mohammed M, and et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001; 293:876-80.
    59. Mahon FX, Deininger MW, and et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000; 96: 1070-1079.
    60. Gambacorti-Passerini C, Barni R, and et al. Role of alphal acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst. 2000;92:1641-1650.
    61. Klucher KM, Lopez DV, and et al. Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood. 1998; 91:3927-3934.
    62. Hochhaus A, Kreil S, and et al. Roots of clinical resistance to STI-571 cancer therapy. Science. 2001;293:2163.
    63. Tauchi T, Sumi M, and et al. Bcl-2 antisense oligonucleotide genasense is active against imatinib-resistant BCR-ABL-positive cells. Clin Cancer Res. 2003; 9:4267-73.
    64. Harris MH, Thompson CB, and et al. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ. 2000; 7:1182-91.
    65. Donato NJ, Wu JY, and et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood. 2003;101:690-8.
    66. Oliver CL, Bauer JA, and et al. In vitro effects of the BH3 mimetic, (-)-gossypol, on head and neck squamous cell carcinoma cells. Clin Cancer Res. 2004; 10:7757-63.
    67. Jurgensmeier JM, Xie Z, and et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proceedings of the National Academy of Sciences, USA, 1998;95: 4997-5002.
    1.Band V,Hoffer AP,and et al.Antiproliferative effect of gossypol and its optical isomers on human reproductive cancer cell lines.Gynecol Oncol.1989;32(3):273-7.
    2.Vermel EM,Krugliak SA.Antitumor Activity of Gossypol in Experiments on Transplanted Tumors.Fed Proc Transl Suppl.1965;24:106-8.
    3.Tuszynski GP,Cossu G.Differential cytotoxic effect of gossypol on human melanoma,colon carcinoma,and other tissue culture cell lines.Cancer Res 1984;44:768-71.
    4.Liang XS,Rogers A J,and et al.Developing gossypol derivatives with enhanced antitumor activity.Invest New Drugs 1995;13:181-6.
    5.韩锐(1997)抗癌药物研究与实验技术,北京医科大学中国协和医科大学联合出版社。
    6.M.J.Hendrix and et al,A simple quantitative assay for studying the invasive potential of high and low human metastatic variants,Cancer Lett.1987;38:137-147.
    7.Heussen C,Dowdle EB,and et al.Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates.Anal.Biochem.1980;102:196-202.
    8.Repesh LA.A new in vitro assay for quantitating tumor cell invasion.Invasion Metastasis 1989;9:192-208.
    9.Randel RD,Chase CC,and et al.Effects of Gossypol and Cottonseed Products on Reproduction of Mammals J.Anim.Sci.1992;70:1628-1638
    10.Vander Jagt DL,Deck LM,and et al.Gossypol:prototype of inhibitors targeted to dinucleotide folds.Curr Med Chem 2000;7:479-98.
    11.Liu S,Kulp SK,and et al.The(-)-enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer.Anticancer Res 2002; 22:33-8.
    12. Enyedy IJ, Ling Y, and et al. Discovery of small molecule inhibitors of Bcl-2 through structure-based computer screening approach. J Med Chem. 2001; 44:4313-24.
    13. Nakadate T, Arco Y, and et al. Comparison of Protein Kinase C Functional Assays to Clarify Mechanisms of Inhibitor Action. Blumberg. Bioche Pharma. 1988; 37:1541-1545.
    14. Meksongsee LA, Clawson AJ, and et al. The in vivo effect of gossypol on cytochrome oxidase, succinoxidase, and succinic dehydrogenase in animal tissues. J Agric Food Chem 1970; 18:917 -20.
    15. Tripathi AK, Desai PV, and et al. An a-proteobacterial type malate dehydrogenase may complement LDH function in Plasmodium falciparum. Eur. J. Biochem. 2004; 271:3488-3502.
    16. DeBonis S, Skoufias D, and et al. In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities Mol Cancer Ther 2004;3:1079-90.
    17. Hamasaki Y, Tai HH. Gossypol, a potent inhibitor of arachidonate 5- and 12-lipoxygenases. Biochim Biophys Acta 1985; 834:37-41.
    18. McDonals JK, Kadkhodayan S. Cathepsin L-a latent proteinase in guinea pig sperm. Biochem Biophys Res Commun 1988;151:827-35.
    19. Adlakha RC, Ashorn CL, and et al. Modulation of 4V- (9-acridinylamino) methanesulfon-m-anisidide-induced, topoisomerase IImediated DNA cleavage by gossypol. Cancer Res 1989; 49:2052-8.
    20. Xiao DM, Zhou WH, and et al. Comparison between the effects of (-)- and (+)-gossypol on protein kinase C and protein kinase A. Yao Xue Xue Bao 1993; 28:494-8.
    21. Baumgrass R, Weiwad M, and et al. Reversible inhibition of calcineurin by the polyphenolic aldehyde gossypol. J Biol Chem 2001; 276:47914-21.
    22. Hu F, Mah K, and et al. Gossypol effects on cultured normal and malignant melanocytes. In Vitro Cell Dev Biol. 1986; 22:583-8.
    23. Wu YW, Chik CL, and et al. An in vitro and in vivo study of antitumor effects of gossypol on human SW-13 adrenocortical carcinoma. Cancer Res 1989; 49: 3754-8.
    24. Mohammad RM, Wang S, and et al. Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(-)-gossypol] against diffuse large cell lymphoma. Mol Cancer Ther. 2005; 4:13-21.
    25. Shidaifat F, Canatan H, and et al. Inhibition of human prostate cancer cells growth by gossypol is associated with stimulation of transforming growth factor-beta. Cancer Lett 1996; 107:37-44.
    26. Shidaifat F, Canatan H, and et al. Gossypol arrests human benign prostatic hyperplastic cell growth at G0/G1 phase of the cell cycle. Anticancer Res 1997;17:1003-9.
    27. Chang JS, Hsu YL, and et al. Upregulation of Fas/Fas ligand-mediated apoptosis by gossypol in an immortalized human alveolar lung cancer cell line. Clin Exp Pharmacol Physiol. 2004; 31:716-22.
    28. Flack MR, Pyle RG, and et al. Oral gossypol in the treatment of metastatic adrenal cancer. J Clin Endocrinol Metab 1993; 76:1019-24.
    29. Brandes AA, Pasetto LM, and et al. New drugs in recurrent high grade gliomas. Anticancer Res 2000; 20:1913-20.
    30. Van Poznak C, Seidman AD, and et al. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res Treat 2001; 66:239-48.
    31. Stein RC, Joseph AE, and et al. A preliminary clinical study of gossypol in advanced human cancer. Cancer Chemother Pharmacol 1992; 30:480-2.
    32. Oliver CL, Bauer JA, and et al. In vitro effects of the BH3 mimetic, (-)-gossypol, on head and neck squamous cell carcinoma cells. Clin Cancer Res. 2004; 10:7757-63.
    33.Qiu,J,Levin,LR,and et al Different Pathways of Cell Killing by Gossypol Enantiomers Exp Biol Med Vol.2002;227:398-401.
    1.Sawyers CL.Chronic myeloid leukemia.N.Engl.J.Med.1999;340:1330-1340.
    2.Druker BJ,Lydon BN.Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia.J Clin Invest.2000;105:3-7.
    3.Zhang X,Rong R,and et al.The SH2 domain of Bcr-Abl is not required to induce a murine myeloproliferative disease;however,SH2 signaling influences disease latency and phenotype.Blood.2001;97:277.
    4.Maru Y.Molecular biology of chronic myeloid leukemia.Int J Hematol.2001;73:308-22.
    5.Heisterkamp N,Voncken JW,and et al.Reduced oncogenicity of p190 Bcr/Abl F-actin-binding domain mutants.Blood.2000;96:2226.
    6.Jahagirdar BN,Miller JS,and et al Novel therapies for chronic myelogenous leukemia.Exp Hematol.2001;29:543-56.
    7.Sattler M,Mohi MG,and et al.Critical role of Gab2 in transformation by BCR/ABL.Cancer Cell.2002;1:479-492.
    8.Peters DG,Hoover RR,and et al.Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia.Blood.2001;97:1404-1412.
    9.Sattler M,Mohi MG,and et al.Critical role of Gab2 in transformation by BCR/ABL.Cancer Cell.2002;1:479-492.
    10.Vivanco I,Sawyers CL,and et al.The phosphatidylinositol-3 kinase/Akt pathway in human cancer. Nat Rev Cancer. 2002 ;2:489-501.
    11. Salomoni P, Condorelli F, and et al. Versatility of BCR/ABL-expressing leukemic cells in circumventing pro-apoptotic BAD effects. Blood. 2000; 96:676-684.
    12. Zhou BP, Liao Y, and et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001; 3:973-982.
    13. Silverman N, Maniatis T, and et al. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev. 2001; 15:2321 -2342.
    14. Komatsu N, Watanebe T, and et al. A member of the Forkhead transcription factor FKHRLl is a downstream effector of STI571-induced cell cycle arrest in BCR/ABL-expressing cells. J Biol Chem. 2003; 278:6411-6419.
    15. Parada Y, Banerji L, and et al. BCR-ABL and interleukin 3 promote hematopoietic cell proliferation and survival through modulation of cyclin D2 and p27/Kip1 expression. J Biol Chem. 2001; 276:23572-23580.
    16. Klajman A, Schreiner SJ, and et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J. 2002; 21:5766-5774.
    17. Nieborowska-Skorska M, Wasik MA, and et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med. 1999; 189:1229-1242.
    18. Horita M, Andrew EJ, and et al. Blockade of the BCR/ABL kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-XL. J Exp Med. 2000; 191:977-984.
    19. Nieborowska-Skorska M, Hoser G, and et al. Complementary functions of the anti-apoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis. Blood. 2002; 99:4531-4539.
    20. Sexl V, Piekorz R, and et al. STAT5a/b contribute to interleukin7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of STAT5. Blood. 2000; 96:2277-2283.
    21. Clark RE. Antisense therapeutics in chronic myeloid leukaemia: the promise, the progress and the problems. Leukemia. 2000; 14:347-355.
    22. Scherr M, Battmer K, and et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood. 2003; 101:1566-1569.
    23. Soda Y, Tani K. A novel maxizyme vector targeting a bcr-abl fusion gene induced specific cell death in Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2004; 104(2):356-63.
    24. Honma Y, Matsuo Y, and et al. Treatment of Philadelphia-chromosome-positive human leukemia in SCID mouse model with herbimycin A, bcr/abl tyrosine kinase activity inhibitor. Int J Cancer. 1995; 60:685-688
    25. Wisniewski D, Lambek CL, and et al. Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. Cancer Res. 2002; 62:4244-4255.
    26. Mow BM, Chandra J, and et al. Effects of the Bcr/abl kinase inhibitors STI571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood. 2002; 99:664-671.
    27. Deininger MW, Goldman JM, and et al. The molecular biology of chronic myeloid leukemia. Blood. 2000; 96:3343-3356.
    28. He Y, Wertheim JA, and et al. The coiled-coil domain and Tyrl77 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood. 2002; 99:2957-2968.
    29. Gorre ME, Ellwood-Yen K, and et al. BCR-ABL point mutants isolated from patients with imatinib mesylate- resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood. 2002; 100:3041-3044.
    30. Radujkovic A, Schad M, and et al. Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL-Inhibition of P-glycoprotein function by 17-AAG. Leukemia. 2005; 19:1198-206
    31. La Rosee P, Johnson K, In vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib-resistant Bcr-Abl-positive cell lines. Blood. 2004; 103:208-15.
    32. Kardinal C, Konkol B, and et al. Chronic myelogenous leukemia blast cell proliferation is inhibited by peptides that disrupt Grb2-SoS complexes. Blood. 2001; 98:1773-1781.
    33. Pan J, Yeung SC, and et al. Farnesyl transferase inhibitors in myeloid disorders. Oncology. 2005;19:1043-9.
    34. Pan J, Yeung SC, and et al. Recent advances in understanding the antineoplastic mechanisms of farnesyltransferase inhibitors. Cancer Res. 2005; 65:9109-12.
    35. Cohen LH, Pieterman E, and et al. Inhibitors of prenylation of Ras and other G-proteins and their application as therapeutics. Biochem Pharmacol. 2000; 60:1061-8.
    36. Chuah C, Barnes DJ, and et al. Zoledronate inhibits proliferation and induces apoptosis of imatinib-resistant chronic myeloid leukaemia cells. Leukemia. 2005; 19:1896-904
    37. Yu C, Krystal G, and et al. Pharmacologic mitogenactivated protein/extracellular signal-regulated kinase kinase/ mitogen-activated protein kinase inhibitors interact synergisticallywith STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res. 2002; 62:188-199.
    38. O'Brien S, Tefferi A, and et al. Chronic myelogenous leukemia and myeloproliferative disease. Hematology 2004; : 146-62.
    39. Klejman A, Rushen L, and et al. Phosphatidylinositol-3 kinase inhibitors enhance the antileukemia effect of STI571. Oncogene. 2002; 21:5868-5876.
    40. Ly C, Arechiga AF, and et al. Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res. 2003; 63:5716-22.
    41. Sun X, Layton JE, and et al. Comparison of effects of the tyrosine kinase inhibitors AG957, AG490, and STI571 on BCR-ABL-expressing cells, demonstrating synergy between AG490 and STI571. Blood. 2001; 97:2008-2015.
    42. Yu C, Krystal G, and et al. Flavopiridol potentiates STI571 -induced mitochondrial damage and apoptosis in BCRABL-positive human leukemia cells. Clin Cancer Res. 2002; 8:2976-2984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700