用户名: 密码: 验证码:
NSPc1沉默HOX基因的表观遗传学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Polycomb家族蛋白(Polycomb group proteins,PcGs)在进化中高度保守,存在于几乎所有细胞中,在胚胎发育、胚胎干细胞和成体干细胞状态的维持、细胞命运决定以及肿瘤形成等过程中起非常重要的作用。NSPcl(Nervous System Polycomb 1,又名PCGF1,Polycomb group ring finger 1)是于2001年分离、鉴定的PcG家族的一个新基因,与哺乳动物PcG家族成员MEL18,BMI1具有较高同源性。然而,无论在功能还是在作用机制方面,NSPc1都相对缺乏研究。曾有报告指出,NSPc1在多种肿瘤中高表达;我们前期的工作结果表明,过表达NSPc1能促进肿瘤细胞增殖;相反,NSPc1敲低的肿瘤细胞则表现为生长缓慢、接触抑制。本论文重点对NSPc1抑制靶基因转录、调控细胞增殖的分子机制进行了研究。
     首先,我们尝试纯化NSPc1功能性复合体,同时已经有文献报道,通过串联亲和纯化(Tandem Affinity Purification,TAP)的方法,研究者发现NSPc1和其它PcG家族成员RING1,RING2,RYBP处于同一复合体中。通过免疫共沉淀(Coimmunoprecipitation,CoIP)实验,我们验证了NSPc1和RING2的相互作用。这一复合体与此前报道的组蛋白H2A泛素化复合体(human Polycomb repressive complex 1-like,hPRC1L)很相似:其中RING2具有泛素E3连接酶活性,BMI1等增强其活性,从而促进H2A泛素化。同样地,在HeLa细胞敲低NSPc1之后,细胞内泛素化H2A(uH2A)整体水平明显下降;相反,过表达NSPc1能促进H2A泛素化;并且体外重组NSPc1蛋白能显著增强RING2的活性。因此,NSPc1有可能通过促进组蛋白H2A泛素化而抑制靶基因的转录。
     PcG家族蛋白通常通过调控HOX基因的转录而影响体节发育,因此,我们在HeLa和NT2/D1(人胚胎肿瘤细胞)细胞中通过RT-PCR的方法筛选了NSPc1可能抑制的HOX基因。结果表明,在NSPc1敲低的细胞中,HOXA7和HOXB13表达上调较为明显。为了验证NSPc1介导的H2A泛素化是否参与这两个HOX基因的转录抑制,我们在它们的上游进行了染色质免疫沉淀实验(Chromatin Immunoprecipitation,ChIP)。实验结果显示,NSPc1复合体确实结合于它们的启动子区,并且当NSPc1敲低之后,RING2在相应区域的结合减少,组蛋白H2A泛素化水平显著下降,基本验证了我们的设想。
     PcGs蛋白在细胞内多以复合体的形式起作用,至少可以分为两大类:起始复合体(Polycomb Repressive Complex 2,PRC2)和维持复合体(Polycomb RepressiveComplex 1,PRC1),其中PRC2成员EZH2能引起组蛋白H3K27三甲基化(H3K27trimethylation,me3H3K27),这一修饰又能募集PRC1复合体进一步维持靶基因的转录抑制。近年来研究还发现,PcGs的转录抑制效应与DNA甲基化(DNA methylation)紧密相关,而后者也是参与基因转录抑制的一种重要的表观遗传学修饰形式,在哺乳动物细胞内由DNA甲基转移酶(DNA methyltransferases,DNMTs)DNMT1负责维持DNA甲基化。通过RT-PCR实验,我们发现PRC2成员EZH2或DNA甲基转移酶DNMT1敲低、或5-aza-dC(一种DNMTs抑制剂)处理的HeLa细胞中,HOXA7的表达也去抑制,即EZH2和DNA甲基化也参与了HOXA7基因的沉默。
     接下来,我们致力于揭示PcGs介导的组蛋白修饰与DNA甲基化如何协调而参与HOX基因沉默。通过ChIP和基因组亚硫酸氢盐修饰后测序(Bisulfite sequencing)实验,我们发现:在HeLa细胞中当PRC2成员EZH2敲低之后,将导致DNA甲基转移酶DNMT1和PRC1成员NSPc1在HOXA7和HOXB13基因启动子区的结合都明显减少;而敲低NSPc1之后,EZH2的募集和me3H3K27水平不受影响,但是DNMT1结合却被显著抑制,并且相应的DNA甲基化的水平也明显下降;敲低DNMT1或者用其抑制剂5-aza-dC处理细胞,EZH2结合没有变化,但NSPc1结合减少。因此,在HOX基因沉默过程中,EZH2介导的me3H3K27募集NSPc1/RING2复合体,后者促进相应区域的H2A泛素化;同时,EZH2可以直接募集DNA甲基转移酶DNMTs,起始并维持相应CpG岛的DNA甲基化;而下游的H2A泛素化及DNA甲基化这两种表观遗传学修饰之间不是孤立的,而是相互依赖(interdependent)的,因为无论干扰NSPc1还是DNMT1都会影响到对方在靶基因调控区的结合和功能,使靶基因去抑制,即它们协同作用,维持HOX靶基因的稳定、长期、不可逆的沉默。
     本论文揭示了PcG家族蛋白NSPc1的一种转录调控模式,这一模式与近年来提出的肿瘤发生的表观遗传学机制相似,建立了NSPc1与其它表观遗传调节因子(如其它PcG蛋白和DNMTs)在细胞增殖、肿瘤发生过程中的联系。并且,其中对调节HOX靶基因转录的研究,为进一步阐明NSPc1在胚胎发育过程中的作用奠定了基础。
Polycomb group proteins (PcG) are highly conserved from Drosophila, C. elegans to human. They are expressed in almost all cell types and play essential roles in embryonic development, cell memory and cell fate decision. PcGs are widely studied about the function in the maintenance of embryonic stem (ES) cells or adult stem cells and tumorigenesis in recent years. Novel PcG gene NSPc1 (Nervous System Polycomb 1, also named as Polycomb group RING finger 1, PCGF1) is homologous to the family members BMI1 and MEL18 in mammals, but less well studied. It was ever reported that NSPc1 is expressed higher in several types of tumors than in the normal tissues. Our previous results also demonstrated that NSPc1 promoted the tumor cell proliferation. This thesis focuses on the studies of mechanism for NSPc1 in transcriptional repression and cell proliferation regulation.
     We first purified NSPc1 functional repressive complex. But before we detected the purified sample by Mass Spectrometry, the results were published that Tandem Affinity Purification (TAP) showed that NSPc1 and other PcG family members like RING1, RING2 and RYBP co-eluted in the same complex. And their interactions were verified by Co-immunoprecipitation (CoIP) assay. This complex is highly similar to the human Polycomb Repressive Complex-1 Like (hPRC1L) which turned out to ubiquitinate histone H2A. Among the hPRC1L components, RING2 is the main E3 ligase, while other PcG members like BMI1 stimulate its activity. Similarly, we found that the NSPc1 complex also could ubiquitinate H2A. When NSPc1 was knocked down in HeLa cells, the global level of uH2A was reduced. On the contrary, NSPc1 overexpression promoted H2A ubiquitination. Though NSPc1 recombinant protein alone failed to ubiquitinate H2A, it dose-dependently enhanced the E3 ligase activity of RING2. CoIP assay showed that NSPc1 could interact both RING2 and H2A, probably stabilizing the ubiqutination reaction as a bridge. Therefore NSPc1 probably represses target genes transcription through mediating H2A ubiquitination.
     To test this hypothesis, we carried out Chromatin Immunoprecipitation (ChIP) experiment on specific target genes. Given that PcG proteins are known to regulate HOX gene expression and therefore the body segment development, we screened the potential target HOX genes for NSPc1 by RT-PCR: HOXA7 and HOXB13 were significantly derepressed in NSPc1 knockdown HeLa and NT2/D1 cells. Therefore these two target genes were chosen for further experiments. First, ChIP assay demonstrated that NSPc1 complex did bind to their promoter regions. And deficiency of NSPc1 resulted in reduced association with RING2 and significant decrease of H2A ubiquitination in the region, which supported the idea that NSPc1-mediated H2A ubiquitination was responsible for its transcriptional repression effect.
     PcG proteins regulate gene expression by forming large multiprotein complexes, which can at least be divided into two principal types: the maintenance complex (PRC2) and initiate complex (PRC1). PRC2 is catalytically active to trimethylate H3K27. And the H3K27 tnmethylation (me3H3K27) can recruit PRC1. Recent studies have also demonstrated that PcG proteins are closely connected with DNA methylation, which is another important transcriptionally repressive epigenetic modification. RT-PCR experiment also showed that H0XA7 expression derepression was also found in EZH2 and DNMT1 knockdown HeLa cells, as well as in 5-aza-dC (a potent DNA methyltransferase inhibitor) treated HeLa cells. Therefore EZH2-mediated H3K27 trimethylation and DNA methylation are also involved in HOX gene silencing.
     Then how all these epigenetic modifications coordinate to keep HOX genes silenced? ChIP experiment in HeLa cells showed that loss of NSPc1 binding and DNMT1 deficiency did not affect EZH2 recruitment and H3K27 trimethylation. But EZH2 depletion resulted in reduced EZH2 binding and H3K27 trimethylation, concomitant with a significant reduction of NSPc1 binding and H2A ubiquitination, and loss of DNMT1 recruitment. Collectively, NSPc1 and DNMT1 recruitment, H2A ubiquitination and DNA methylation are downstream events of EZH2-mediated H3K27 trimethylation. Interestingly, the knockdown of NSPc1 resulted in loss of DNMT1 binding and DNA hypomethylation examined by Bisulfite Sequencing, while the knockdown of DNMT1 or 5-aza-dCtreatment also affected NSPc1 recruitment. Therefore DNA methylation andNSPc1-mediated H2A ubiquitination are not separated, but interdependent and self-reinforce each other in HOX gene silencing.
     ChIP-on-chip assays have demonstrated the stem cell PcG targets are more vulnerable than non-targets to DNA hypermethylation, turning the reversible state to permanent silencing, and thereby locking stem/precursor cells into abnormal c1onal expansion which predispose to cancer. Hence our extablished epigenetic network has partially demonstrated the transcriptional repression mechanism for NSPc1 and established a functional link of NSPc1 with different chromatin modifers in tumorigenesis. The research into HOX gene expression regulation in this thesis will also help to further elucidate the function of NSPc1 in embryonic development.
引文
Akasaka, T., Kanno, M., Balling, R., Mieza, M.A., Taniguchi, M. and Koseki, H. (1996) A role for mel-18, a Polycomb group-related vertebrate gene, during theanteroposterior specification of the axial skeleton. Development, 122, 1513-1522.
    Akasaka, T., van Lohuizen, M., van der Lugt, N., Mizutani-Koseki, Y., Kanno, M., Taniguchi, M., Vidal, M.,
    Alkema, M., Berns, A. and Koseki, H. (2001) Mice doubly deficient for the Polycomb Group genes Mel18 and Bmil reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development, 128, 1587-1597.
    Alkema, M.J., Bronk, M., Verhoeven, E., Otte, A., van 't Veer, L.J., Berns, A. and van Lohuizen, M. (1997a) Identification of Bmil-interacting proteins as constituents of a multimeric mammalian polycomb complex. Genes Dev, 11,226-240.
    Alkema, M.J., Jacobs, J., Voncken, J.W., Jenkins, N.A., Copeland, N.G., Satijn, D.P., Otte, A.P., Berns, A. and van Lohuizen, M. (1997b) MPc2, a new murine homolog of the Drosophila polycomb protein is a member of the mouse polycomb transcriptional repressor complex. J Mol Biol, 273, 993-1003.
    Bachmann, I.M., Halvorsen, O.J., Collett, K., Stefansson, I.M., Straume, O., Haukaas, S.A., Salvesen, H.B., Otte, A.P. and Akslen, L.A. (2006) EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol, 24, 268-273.
    Barna, M., Merghoub, T., Costoya, J.A., Ruggero, D., Branford, M., Bergia, A., Samori, B. and Pandolfi, P.P. (2002) Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev Cell, 3,499-510.
    Baylin, S.B. (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol, 2 Suppl 1, S4-11.
    Bea, S., Tort, F., Pinyol, M., Puig, X., Hernandez, L., Hernandez, S., Fernandez, P.L., van Lohuizen, M., Colomer, D. and Campo, E. (2001) BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res, 61, 2409-2412.
    Bel-Vialar, S., Core, N., Terranova, R., Goudot, V., Boned, A. and Djabali, M. (2000) Altered retinoic acid sensitivity and temporal expression of Hox genes in polycomb-M33-deficient mice. Dev Biol, 224, 238-249.
    Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S.L. and Lander, E.S. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315-326.
    Bird, A. (2007) Perceptions of epigenetics. Nature, 447, 396-398.
    Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., Gifford, D.K., Melton, D.A., Jaenisch, R. and Young, R.A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947-956.
    Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T, Medeiros, L.A., Lee, T.I., Levine, S.S., Wernig, M., Tajonar, A., Ray, M.K., Bell, G.W., Otte, A.P., Vidal, M., Gifford, D.K., Young, R.A. and Jaenisch, R. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441, 349-353.
    Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H. and Helin, K. (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev, 20, 1123-1136.
    Bruggeman, S.W., Hulsman, D., Tanger, E., Buckle, T, Blom, M., Zevenhoven, J., van Tellingen, O. and van
    Lohuizen, M. (2007) Bmil controls tumor development in an ink4a/arf-independent manner in a mouse model for glioma. Cancer Cell, 12, 328-341.
    Brunk, B.P., Martin, E.C. and Adler, P.N. (1991) Drosophila genes Posterior Sex Combs and Suppressor two of zeste encode proteins with homology to the murine bmi-1 oncogene. Nature, 353, 351-353.
    Cantile, M., Pettinato, G., Procino, A., Feliciello, I., Cindolo, L. and Cillo, C. (2003) In vivo expression of the whole HOX gene network in human breast cancer. Eur J Cancer, 39, 257-264.
    Cao, R., Tsukada, Y. and Zhang, Y. (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell, 20, 845-854.
    Chen, H. and Sukumar, S. (2003) HOX genes: emerging stars in cancer. Cancer Biol Ther, 2, 524-525.
    Chiba, T., Miyagi, S., Saraya, A., Aoki, R., Seki, A., Morita, Y, Yonemitsu, Y, Yokosuka, O., Taniguchi, H., Nakauchi, H. and Iwama, A. (2008) The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res, 68, 7742-7749.
    Cillo, C., Cantile, M, Faiella, A. and Boncinelli, E. (2001) Homeobox genes in normal and malignant cells. J Cell Physiol, 188, 161-169.
    Cloos, P.A., Christensen, J., Agger, K. and Helin, K. (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev, 22, 1115-1140.
    Cohen, K.J., Hanna, J.S., Prescott, J.E. and Dang, C.V. (1996) Transformation by the Bmi-1 oncoprotein correlates with its subnuclear localization but not its transcriptional suppression activity. Mol Cell Biol, 16, 5527-5535.
    Collett, K., Eide, G.E., Arnes, J., Stefansson, I.M., Eide, J., Braaten, A., Aas, T., Otte, A.P. and Akslen, L.A. (2006) Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res, 12, 1168-1174.
    Cui, H., Ma, J., Ding, J., Li, T., Alam, G. and Ding, H.F. (2006) Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem, 281, 34696-34704.
    del Mar Lorente, M., Marcos-Gutierrez, C., Perez, C., Schoorlemmer, J., Ramirez, A., Magin, T. and Vidal, M. (2000) Loss- and gain-of-function mutations show a polycomb group function for Ring1A in mice. Development, 127, 5093-5100.
    Di Croce, L., Raker, V.A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Lo Coco, F., Kouzarides, T., Nervi, C., Minucci, S. and Pelicci, P.G (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science, 295, 1079-1082.
    Drabkin, H.A., Parsy, C., Ferguson, K., Guilhot, F, Lacotte, L., Roy, L., Zeng, C., Baron, A., Hunger, S.P., Varella-Garcia, M., Gemmill, R., Brizard, F, Brizard, A. and Roche, J. (2002) Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia, 16, 186-195.
    Elderkin, S., Maertens, G.N., Endoh, M., Mallery, D.L., Morrice, N., Koseki, H., Peters, G., Brockdorff, N. and Hiom, K. (2007) A Phosphorylated Form of Mel-18 Targets the Ring1B Histone H2A Ubiquitin Ligase to Chromatin. Mol Cell, 28, 107-120.
    Epping, M.T., Wang, L., Edel, M.J., Carlee, L., Hernandez, M. and Bernards, R. (2005) The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell, 122, 835-847.
    Esteller, M. (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 8, 286-298.
    Fang, J., Chen, T., Chadwick, B., Li, E. and Zhang, Y. (2004) Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem, 279, 52812-52815.
    Fang, S., Lorick, K.L., Jensen, J.P. and Weissman, A.M. (2003) RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Semin Cancer Biol, 13, 5-14.
    Fasano, C.A., Dimos, J.T., Ivanova, N.B., Lowry, N., Lemischka, I.R. and Temple, S. (2007) shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell, 1,87-99.
    Fischle, W., Wang, Y, Jacobs, S.A., Kim, Y., Allis, C.D. and Khorasanizadeh, S. (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev, 17, 1870-1881.
    Freemont, P.S. (1993) The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci, 684, 174-192.
    Frescas, D., Guardavaccaro, D., Bassermann, F., Koyama-Nasu, R. and Pagano, M. (2007) JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature, 450, 309-313.
    Fuks, F. (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev, 15, 490-495.
    Furukawa, M., Andrews, P.S. and Xiong, Y. (2005) Assays for RING family ubiquitin ligases. Methods Mol Biol, 301, 37-46.
    Gal-Yam, E.N., Saito, Y, Egger, G. and Jones, P.A. (2008) Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med, 59, 267-280.
    Galmozzi, E., Facchetti, F. and La Porta, C.A. (2006) Cancer stem cells and therapeutic perspectives. Curr Med Chem, 13, 603-607.
    Gearhart, M.D., Corcoran, C.M., Wamstad, J.A. and Bardwell, V.J. (2006) Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol, 26, 6880-6889.
    Gieseg, M.A., Man, M.Z., Gorski, N.A., Madore, S.J., Kaldjian, E.P. and Leopold, W.R. (2004) The influence of tumor size and environment on gene expression in commonly used human tumor lines. BMC Cancer, 4, 35.
    Gil, J., Bernard, D., Martinez, D. and Beach, D. (2004) Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol, 6, 67-72.
    Gil, J., Bernard, D. and Peters , G. (2005) Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol, 24, 117-125.
    Gillespie, R.F. and Gudas, L.J. (2007) Retinoid Regulated Association of Transcriptional Co-regulators and the Polycomb Group Protein SUZ12 with the Retinoic Acid Response Elements of Hoxa1, RARbeta(2), and Cyp26A1 in F9 Embryonal Carcinoma Cells. J Mol Biol.
    Gong, Y, Wang, X., Liu, J., Shi, L., Yin, B., Peng, X., Qiang, B. and Yuan, J. (2005) NSPc1, a mainly nuclear localized protein of novel PcG family members, has a transcription repression activity related to its PKC phosphorylation site at S183. FEBS Lett, 579, 115-121.
    Gong, Y, Yue, J., Wu, X., Wang, X., Wen, J., Lu, L., Peng, X., Qiang, B. and Yuan, J. (2006) NSPcl is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the RARE element. Nucleic Acids Res, 34, 6158-6169.
    Gunster, M.J., Satijn, D.P., Hamer, K.M., den Blaauwen, J.L., de Bruijn, D., Alkema, M.J., van Lohuizen, M., van Driel, R. and Otte, A.P. (1997) Identification and characterization of interactions between the vertebrate polycomb-group protein BMI1 and human homologs of polyhomeotic. Mol Cell Biol, 17, 2326-2335.
    Harikrishnan, K.N., Chow, M.Z., Baker, E.K., Pal, S., Bassal, S., Brasacchio, D., Wang, L., Craig, J.M., Jones, P.L., Sif, S. and El-Osta, A. (2005) Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet, 37, 254-264.
    Hashimoto, N., Brock, H.W., Nomura, M, Kyba, M., Hodgson, J., Fujita, Y., Takihara, Y., Shimada, K. and Higashinakagawa, T. (1998) RAE28, BMI1, and M33 are members of heterogeneous multimeric mammalian Polycomb group complexes. Biochem Biophys Res Commun, 245, 356-365.
    Haupt, Y, Alexander, W.S., Barri, G., Klinken, S.P. and Adams, J.M. (1991) Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell, 65, 753-763.
    Hayashi, H., Nagae, G., Tsutsumi, S., Kaneshiro, K., Kozaki, T., Kaneda, A., Sugisaki, H. and Aburatani, H. (2007) High-resolution mapping of DNA methylation in human genome using oligonucleotide tiling array. Hum Genet, 120, 701-711.
    Hernandez-Munoz, I., Taghavi, P., Kuijl, C., Neefjes, J. and van Lohuizen, M. (2005) Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol Cell Biol, 25, 11047-11058.
    Houbaviy, H.B., Murray, M.F. and Sharp, P.A. (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell, 5, 351-358.
    Itahana, K., Zou, Y, Itahana, Y, Martinez, J.L., Beausejour, C., Jacobs, J.J., Van Lohuizen, M., Band, V., Campisi, J. and Dimri, G.P. (2003) Control of the replicative life span of human fibroblasts by pl6 and the polycomb protein Bmi-1. Mol Cell Biol, 23, 389-401.
    Ivey, K.N., Muth, A., Arnold, J., King, F.W., Yeh, R.F., Fish, J.E., Hsiao, E.C., Schwartz, R.J., Conklin, B.R., Bernstein, H.S. and Srivastava, D. (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2, 219-229.
    Iwama, A., Oguro, H., Negishi, M., Kato, Y and Nakauchia, H. (2005) Epigenetic regulation of hematopoietic stem cell self-renewal by polycomb group genes. Int J Hematol, 81, 294-300.
    Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A. and van Lohuizen, M. (1999a) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature, 397, 164-168.
    Jacobs, J.J., Scheijen, B., Voncken, J.W., Kieboom, K., Berns, A. and van Lohuizen, M. (1999b) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev, 13, 2678-2690.
    Jacobs, J.J. and van Lohuizen, M. (2002) Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim Biophys Acta, 1602, 151-161.
    Jenuwein, T. and Allis, CD. (2001) Translating the histone code. Science, 293, 1074-1080.
    Joazeiro, C.A. and Weissman, A.M. (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell, 102, 549-552.
    Jones, P.A. and Baylin, S.B. (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet, 3, 415-428.
    Jones, P.A. and Baylin, S.B. (2007) The epigenomics of cancer. Cell, 128, 683-692.
    Jones, P.L., Veenstra, G.J., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N., Strouboulis, J. and Wolffe,
    A.P. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19, 187-191.
    Joo, H.Y., Zhai, L., Yang, C, Nie, S., Erdjument-Bromage, H., Tempst, P., Chang, C. and Wang, H. (2007) Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature, 449, 1068-1072.
    Jung, C., Kim, R.S., Lee, S.J., Wang, C. and Jeng, M.H. (2004a) HOXB13 homeodomain protein suppresses the growth of prostate cancer cells by the negative regulation of T-cell factor 4. Cancer Res, 64, 3046-3051.
    Jung, C., Kim, R.S., Zhang, H.J., Lee, S.J. and Jeng, M.H. (2004b) HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling. Cancer Res, 64, 9185-9192.
    Kanno, M., Hasegawa, M., Ishida, A., Isono, K. and Taniguchi, M. (1995) mel-18, a Polycomb group-related mammalian gene, encodes a transcriptional negative regulator with tumor suppressive activity. Embo J, 14, 5672-5678.
    Kawamura, A., Yokota, S., Yamada, K., Inoue, H., Inohaya, K., Yamazaki, K., Yasumasu, I. and Higashinakagawa, T. (2002) pc1 and psc1, zebrafish homologs of Drosophila Polycomb and Posterior sex combs, encode nuclear proteins capable of complex interactions. Biochem Biophys Res Commun, 294, 456-463.
    Kirmizis, A., Bartley, S.M. and Farnham, P.J. (2003) Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther, 2, 113-121.
    Kleer, C.G., Cao, Q., Varambally, S., Shen, R., Ota, I., Tomlins, S.A., Ghosh, D., Sewalt, R.G., Otte, A.P, Hayes, D.F., Sabel, M.S., Livant, D., Weiss, S.J., Rubin, M.A. and Chinnaiyan, A.M. (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A, 100, 11606-11611.
    Knoepfler, P.S., Cheng, P.F. and Eisenman, R.N. (2002) N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev, 16, 2699-2712.
    Kobrossy, L., Rastegar, M. and Featherstone, M. (2006) Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J Biol Chem, 281, 25926-25939.
    Kouzarides, T. (2007) Chromatin modifications and their function. Cell, 128, 693-705.
    Lee, E.R., Murdoch, F.E. and Fritsch, M.K. (2007a) High Histone Acetylation and Decreased Polycomb Repressive Complex 2 Member Levels Regulate Gene Specific Transcriptional Changes During Early Embryonic Stem Cell Differentiation Induced by Retinoic Acid. Stem Cells, 25, 2191-2199.
    Lee, M.G., Villa, R., Trojer, P., Norman, J., Yan, K.P., Reinberg, D., Di Croce, L. and Shiekhattar, R. (2007b) Demethylation of H3K27 Regulates Polycomb Recruitment and H2A Ubiquitination. Science, 318, 447-450.
    Lee, N., Maurange, C., Ringrose, L. and Paro, R. (2005) Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature, 438, 234-237.
    Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M., Chevalier, B., Johnstone, S.E., Cole, M.F., Isono, K., Koseki, H., Fuchikami, T., Abe, K., Murray, H.L., Zucker, J.P., Yuan, B., Bell, G.W., Herbolsheimer, E., Hannett, N.M., Sun, K., Odom, D.T., Otte, A.P., Volkert, T.L., Bartel, D.P., Melton, D.A., Gifford, D.K., Jaenisch, R. and Young, R.A. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125, 301-313.
    Lessard, J. and Sauvageau, G. (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423, 255-260.
    Leung, C, Lingbeek, M., Shakhova, O., Liu, J., Tanger, E., Saremaslani, P., Van Lohuizen, M. and Marino, S. (2004) Bmil is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature, 428, 337-341.
    Lewis, E.B. (1978) A gene complex controlling segmentation in Drosophila. Nature, 276, 565-570.
    
    Liu, L., Andrews, L.G. and Tollefsbol, T.O. (2006) Loss of the human polycomb group protein BMI1 promotes cancer-specific cell death. Oncogene.
    Margueron, R., Trojer, P. and Reinberg, D. (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev, 15, 163-176.
    Marson, A., Levine, S.S., Cole, M.F., Frampton, G.M., Brambrink, T., Johnstone, S., Guenther, M.G., Johnston, W.K., Wernig, M., Newman, J., Calabrese, J.M., Dennis, L.M., Volkert, T.L., Gupta, S., Love, J., Hannett, N., Sharp, P.A., Bartel, D.P., Jaenisch, R. and Young, R.A. (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134, 521-533.
    Mimori, K., Ogawa, K., Okamoto, M., Sudo, T., Inoue, H. and Mori, M. (2005) Clinical significance of enhancer of zeste homolog 2 expression in colorectal cancer cases. Eur J Surg Oncol, 31, 376-380.
    Min, J., Zhang, Y. and Xu, R.M. (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev, 17, 1823-1828.
    Molofsky, A.V., He, S., Bydon, M., Morrison, S.J. and Pardal, R. (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev, 19, 1432-1437.
    Molofsky, A.V., Pardal, R., Iwashita, T., Park, I.K., Clarke, M.F. and Morrison, S.J. (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425, 962-967.
    Muthusamy, V., Duraisamy, S., Bradbury, C.M., Hobbs, C., Curley, D.P., Nelson, B. and Bosenberg, M. (2006) Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res, 66, 11187-11193.
    Nakagawa, T., Kajitani, T., Togo, S., Masuko, N., Ohdan, H., Hishikawa, Y., Koji, T., Matsuyama, T., Ikura, T., Muramatsu, M. and Ito, T. (2008) Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes Dev, 22, 37-49.
    Nan, X., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N. and Bird, A. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393, 386-389.
    Negishi, M., Saraya, A., Miyagi, S., Nagao, K., Inagaki, Y, Nishikawa, M., Tajima, S., Koseki, H., Tsuda, H., Takasaki, Y, Nakauchi, H. and Iwama, A. (2007) Bmil cooperates with Dnmtl-associated protein 1 in gene silencing. Biochem Biophys Res Commun, 353, 992-998.
    Ng, D., Thakker, N., Corcoran, C.M., Donnai, D., Perveen, R., Schneider, A., Hadley, D.W., Tifft, C., Zhang, L., Wilkie, A.O., van der Smagt, J.J., Gorlin, R.J., Burgess, S.M., Bardwell, V.J., Black, G.C. and Biesecker, L.G. (2004) Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet, 36, 411-416.
    Novak, P., Jensen, T., Oshiro, M.M., Wozniak, R.J., Nouzova, M., Watts, G.S., Klimecki, W.T., Kim, C. and Futscher, B.W. (2006) Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res, 66, 10664-10670.
    Nowak, K., Kerl, K., Fehr, D., Kramps, C., Gessner, C., Killmer, K., Samans, B., Berwanger, B., Christiansen, H. and Lutz, W. (2006) BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nucleic Acids Res, 34, 1745-1754.
    Nunes, M., Blanc, I., Maes, J., Fellous, M., Robert, B. and McElreavey, K. (2001) NSPc1, a novel mammalian Polycomb gene, is expressed in neural crest-derived structures of the peripheral nervous system. Mech Dev, 102, 219-222.
    O'Carroll, D., Erhardt, S., Pagani, M., Barton, S.C., Surani, M.A. and Jenuwein, T. (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol, 21, 4330-4336.
    Ohira, M., Oba, S., Nakamura, Y., Hirata, T., Ishii, S. and Nakagawara, A. (2005) A review of DNA microarray analysis of human neuroblastomas. Cancer Lett, 228, 5-11.
    Ohm, J., McGarvey, K., Yu, X., Cheng, L., Schuebel, K., Cope, L., Mohammad, H., Chen, W., Daniel, V., Yu, W., Berman, D., Jenuwein, T., Pruitt, K., Sharkis, S., Watkins, D.N., Herman, J. and Baylin, S. (2007) A stem cell -like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet, 39, 237-242.
    Ohtsubo, M., Yasunaga, S., Ohno, Y, Tsumura, M., Okada, S., Ishikawa, N., Shirao, K., Kikuchi, A., Nishitani, H., Kobayashi, M. and Takihara, Y. (2008) Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc Natl Acad Sci U S A, 105, 10396-10401.
    Okuda, H., Toyota, M., Ishida, W., Furihata, M., Tsuchiya, M., Kamada, M., Tokino, T. and Shuin, T. (2006) Epigenetic inactivation of the candidate tumor suppressor gene HOXB13 in human renal cell carcinoma. Oncogene, 25, 1733-1742.
    Orlando, V. (2003) Polycomb, epigenomes, and control of cell identity. Cell, 112, 599-606.
    Parrish, J.Z., Emoto, K., Jan, L.Y. and Jan, Y.N. (2007) Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites. Genes Dev, 21, 956-972.
    Pasini, D., Bracken, A.P., Hansen, J.B., Capillo, M. and Helin, K. (2007) The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol, 27, 3769-3779.
    Pfau, R., Tzatsos, A., Kampranis, S.C., Serebrennikova, O.B., Bear, S.E. and Tsichlis, P.N. (2008) Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proc Natl Acad Sci U S A, 105, 1907-1912.
    Pietersen, A.M. and van Lohuizen, M. (2008) Stem cell regulation by polycomb repressors: postponing commitment. Curr Opin Cell Biol.
    Pitulescu, M., Kessel, M. and Luo, L. (2005) The regulation of embryonic patterning and DNA replication by geminin. Cell Mol Life Sci, 62, 1425-1433.
    Pritsker, M., Ford, N.R., Jenq, H.T. and Lemischka, I.R. (2006) Genomewide gain-of-function genetic screen identifies functionally active genes in mouse embryonic stem cells. Proc Natl Acad Sci U S A, 103, 6946-6951.
    Raaphorst, F.M., van Kemenade, F.J., Blokzijl, T., Fieret, E., Hamer, K.M., Satijn, D.P., Otte, A.P. and Meijer, C.J. (2000) Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin's disease. Am JPathol, 157, 709-715.
    Rajasekhar, V.K. and Begemann, M. (2007) Roles of Polycomb Group Proteins in Development and Disease: A Stem Cell Perspective. Stem Cells, 25, 2498-2510.
    Raman, J.D., Mongan, N.P., Tickoo, S.K., Boorjian, S.A., Scherr, D.S. and Gudas, L.J. (2005) Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin Cancer Res, 11, 8570-8576.
    Raman, V., Martensen, S.A., Reisman, D., Evron, E., Odenwald, W.F., Jaffee, E., Marks, J. and Sukumar, S. (2000) Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature, 405, 974-978.
    Rauch, T., Wang, Z., Zhang, X., Zhong, X., Wu, X., Lau, S.K., Kernstine, K.H., Riggs, A.D. and Pfeifer, G.P. (2007) Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci U S A, 104, 5527-5532.
    Rhee, I., Bachman, K.E., Park, B.H., Jair, K.W., Yen, R.W., Schuebel, K.E., Cui, H., Feinberg, A.P., Lengauer, C, Kinzler, K.W., Baylin, S.B. and Vogelstein, B. (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 416, 552-556.
    Riising, E.M., Boggio, R., Chiocca, S., Helin, K. and Pasini, D. (2008) The polycomb repressive complex 2 is a potential target of SUMO modifications. PLoS ONE, 3, e2704.
    Ringrose, L. and Paro, R. (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet, 38, 413-443.
    Robert, M.F., Morin, S., Beaulieu, N., Gauthier, F., Chute, I.C., Barsalou, A. and MacLeod, A.R. (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet, 33,61-65.
    Sakamoto, Y., Watanabe, S., Ichimura, T., Kawasuji, M., Koseki, H., Baba, H. and Nakao, M. (2007) Overlapping roles of the methylated DNA binding protein MBD1 and polycomb group proteins in transcriptional repression of HOXA genes and heterochromatin foci formation. J Biol Chem, 282, 16391-16400.
    Sanchez-Beato, M., Sanchez, E., Gonzalez-Carrero, J., Morente, M., Diez, A., Sanchez-Verde, L., Martin, M.C., Cigudosa, J.C., Vidal, M. and Piris, M.A. (2006) Variability in the expression of polycomb proteins in different normal and tumoral tissues. A pilot study using tissue microarrays. Mod Pathol, 19, 684-694.
    Sanchez, C., Sanchez, I., Demmers, J.A., Rodriguez, P., Strouboulis, J. and Vidal, M. (2007) Proteomic analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/ Jmjd1B histone demethylase and the BcoR corepressor. Mol Cell Proteomics.
    Satijn, D.P., Gunster, M.J., van der Vlag, J., Hamer, K.M., Schul, W., Alkema, M.J., Saurin, A.J., Freemont, P.S., van Driel, R. and Otte, A.P. (1997) RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor..Mol Cell Biol, 17, 4105-4113.
    Satijn, D.P. and Otte, A.P. (1999) Polycomb group protein complexes: do different complexes regulate distinct target genes? Biochim Biophys Acta, 1447, 1-16.
    Saurin, A.J., Borden, K.L., Boddy, M.N. and Freemont, P.S. (1996) Does this have a familiar RING? Trends Biochem Sci, 21, 208-214.
    Sauvageau, M. and Sauvageau, G. (2008) Polycomb group genes: keeping stem cell activity in balance. PLoS Biol, 6, e113.
    Sawa, M., Yamamoto, K., Yokozawa, T., Kiyoi, H., Hishida, A., Kajiguchi, T., Seto, M., Kohno, A., Kitamura, K., Itoh, Y, Asou, N., Hamajima, N., Emi, N. and Naoe, T. (2005) BMI-1 is highly expressed in MO-subtype acute myeloid leukemia. Int J Hematol, 82, 42-47.
    Schlesinger, Y, Straussman, R., Keshet, I., Farkash, S., Hecht, M., Zimmerman, J., Eden, E., Yakhini, Z., Ben-Shushan, E., Reubinoff, B.E., Bergman, Y., Simon, I. and Cedar, H. (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet, 39, 232-236.
    Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. and Cavalli, G. (2007) Genome regulation by polycomb and trithorax proteins. Cell, 128, 735
    Schwartz, Y.B., Kahn, T.G, Nix, D.A., Li, X.Y., Bourgon, R., Biggin, M. and Pirrotta, V. (2006) Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet, 38, 700-705.
    Schwartz, Y.B. and Pirrotta, V. (2008) Polycomb complexes and epigenetic states. Curr Opin Cell Biol. Sessa, L., Breiling, A., Lavorgna, G, Silvestri, L., Casari, G. and Orlando, V. (2006) Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. Rna, 13, 223-239.
    Shames, D.S., Minna, J.D. and Gazdar, A.F. (2007) DNA methylation in health, disease, and cancer. Curr Mol Med, 7, 85-102.
    Sowinska, A. and Jagodzinski, P.P. (2007) RNA interference-mediated knockdown of DNMT1 and DNMT3B induces CXCL12 expression in MCF-7 breast cancer and AsPC1 pancreatic carcinoma cell lines. Cancer Lett.
    Sparmann, A. and van Lohuizen, M. (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer, 6, 846-856.
    Spivakov, M. and Fisher, A.G. (2007) Epigenetic signatures of stem-cell identity. Nat Rev Genet, 8, 263-271.
    Strahl, B.D. and Allis, CD. (2000) The language of covalent histone modifications. Nature, 403, 41-45.
    Su, I.H., Dobenecker, M.W., Dickinson, E., Oser, M., Basavaraj, A., Marqueron, R., Viale, A., Reinberg, D., Wulfing, C. and Tarakhovsky, A. (2005) Polycomb group protein ezh2 controls actin polymerization and cell signaling. Cell, 121, 425-436.
    Sudo, T., Utsunomiya, T., Mimori, K., Nagahara, H., Ogawa, K., Inoue, H., Wakiyama, S., Fujita, H., Shirouzu, K. and Mori, M. (2005) Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer, 92, 1754-1758.
    Suh, M.R., Lee, Y., Kim, J.Y., Kim, S.K., Moon, S.H., Lee, J.Y., Cha, K.Y, Chung, H.M., Yoon, H.S., Moon, S.Y., Kim, V.N. and Kim, K.S. (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol, 270, 488-498.
    Sultmann, H., von Heydebreck, A., Huber, W., Kuner, R., Buness, A., Vogt, M., Gunawan, B., Vingron, M., Fuzesi, L. and Poustka, A. (2005) Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin Cancer Res, 11, 646-655.
    Tanay, A., O'Donnell A, H., Damelin, M. and Bestor, T.H. (2007) Hyperconserved CpG domains underlie Polycomb-binding sites. Proc Nad Acad Sci U S A, 104, 5521-5526.
    Tokimasa, S., Ohta, H., Sawada, A., Matsuda, Y, Kim, J.Y., Nishiguchi, S., Hara, J. and Takihara, Y. (2001) Lack of the Polycomb-group gene rae28 causes maturation arrest at the early B-cell developmental stage. Exp Hematol, 29, 93-103.
    Trimarchi, J.M., Fairchild, B., Wen, J. and Lees, J.A. (2001) The E2F6 transcription factor is a component of the mammalian Bmil-containing polycomb complex. Proc Natl Acad Sci U S A, 98, 1519-1524.
    Ura, H., Usuda, M., Kinoshita, K., Sun, C, Mori, K., Akagi, T., Matsuda, T., Koide, H. and Yokota, T. (2008) STAT3 and Oct-3/4 control histone modification through induction of Eed in embryonic stem cells. J Biol Chem.
    Valk-Lingbeek, M.E., Bruggeman, S.W. and van Lohuizen, M. (2004) Stem cells and cancer; the polycomb connection. Cell, 118, 409-418.
    van der Lugt, N.M., Domen, J., Linders, K., van Roon, M., Robanus-Maandag, E., te Riele, H., van der Valk,
    M., Deschamps, J., Sofroniew, M., van Lohuizen, M. and et al. (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev, 8, 757-769.
    van der Stoop, P., Boutsma, E.A., Hulsman, D., Noback, S., Heimerikx, M., Kerkhoven, R.M., Voncken, J.W., Wessels, L.F. and van Lohuizen, M. (2008) Ubiquitin e3 ligase ring1b/rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells. PLoS ONE, 3, e2235.
    van Kemenade, F.J., Raaphorst, F.M., Blokzijl, T., Fieret, E., Hamer, K.M., Satijn, D.P., Otte, A.P. and Meijer, C.J. (2001) Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood, 97, 3896-3901.
    van Lohuizen, M., Verbeek, S., Scheijen, B., Wientjens, E., van der Gulden, H. and Berns, A. (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell, 65, 737-752.
    Varambally, S., Dhanasekaran, S.M., Zhou, M., Barrette, T.R., Kumar-Sinha, C., Sanda, M.G., Ghosh, D., Pienta, K.J., Sewalt, R.G., Otte, A.P., Rubin, M. A. and Chinnaiyan, A.M. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 419, 624-629.
    Vassilev, A.P., Rasmussen, H.H., Christensen, E.I., Nielsen, S. and Celis, J.E. (1995) The levels of ubiquitinated histone H2A are highly upregulated in transformed human cells: partial colocalization of uH2A clusters and PCNA/cyclin foci in a fraction of cells in S-phase. J Cell Sci, 108 ( Pt 3), 1205-1215.
    Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J.M., Bollen, M., Esteller, M., Di Croce, L., de Launoit, Y. and Fuks, F. (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 439, 871-874.
    Visser, H.P., Gunster, M.J., Kluin-Nelemans, H.C., Manders, E.M., Raaphorst, F.M., Meijer, C.J., Willemze, R. and Otte, A.P. (2001) The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br J Haematol, 112, 950-958.
    Vissers, J.H., Nicassio, F, van Lohuizen, M., Di Fiore, P.P. and Citterio, E. (2008) The many faces of ubiquitinated histone H2A: insights from the DUBs. Cell Div, 3, 8.
    Voncken, J.W., Niessen, H., Neufeld, B., Rennefahrt, U., Dahlmans, V., Kubben, N., Holzer, B., Ludwig, S. and Rapp, U.R. (2005) MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmil. J Biol Chem, 280, 5178-5187.
    Voncken, J.W., Schweizer, D., Aagaard, L., Sattler, L., Jantsch, M.F. and van Lohuizen, M. (1999) Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status. J Cell Sci, 112 ( Pt 24), 4627-4639.
    Vonlanthen, S., Heighway, J., Altermatt, H.J., Gugger, M., Kappeler, A., Borner, M.M., van Lohuizen, M. and Betticher, D.C. (2001) The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer, 84, 1372-1376.
    Wamstad, J.A., Corcoran, C.M., Keating, A.M. and Bardwell, V.J. (2008) Role of the transcriptional corepressor bcor in embryonic stem cell differentiation and early embryonic development. PLoS ONE, 3, e2814.
    Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S. and Zhang, Y. (2004a) Role of histone H2A ubiquitination in Polycomb silencing. Nature, 431, 873-878.
    Wang, S., Robertson, G.P. and Zhu, J. (2004b) A novel human homologue of Drosophila polycomblike gene is up-regulated in multiple cancers. Gene, 343, 69-78.
    Weake, V.M. and Workman, J.L. (2008) Histone ubiquitination: triggering gene activity. Mol Cell, 29, 653-663.
    Wei, J., Zhai, L., Xu, J. and Wang, H. (2006) Role of Bmil in H2A ubiquitylation and Hox gene silencing. J Biol Chem, 281, 22537-22544.
    Weikert, S., Christoph, F., Kollermann, J., Muller, M., Schrader, M., Miller, K. and Krause, H. (2005) Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int J Mol Med, 16, 349-353.
    Widschwendter, M., Fiegl, H., Egle, D., Mueller-Holzner, E., Spizzo, G, Marth, C, Weisenberger, D.J., Campan, M., Young, J., Jacobs, I. and Laird, P.W. (2007) Epigenetic stem cell signature in cancer. Nat Genet, 39, 157-158.
    Wu, X., Gong, Y., Yue, J., Qiang, B., Yuan, J. and Peng, X. (2008) Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing. Nucleic Acids Res, 36, 3590-3599.
    Xi, S., Zhu, H., Xu, H., Schmidtmann, A., Geiman, T.M. and Muegge, K. (2007) Lsh controls Hox gene silencing during development. Proc Natl Acad Sci U S A, 104, 14366-14371.
    Yan, D., Guo, L. and Wang, Y. (2006) Requirement of dendritic Akt degradation by the ubiquitin-proteasome system for neuronal polarity. J Cell Biol, 174, 415-424.
    Zencak, D., Lingbeek, M., Kostic, C., Tekaya, M., Tanger, E., Hornfeld, D., Jaquet, M., Munier, F.L., Schorderet, D.F., van Lohuizen, M. and Arsenijevic, Y. (2005) Bmil loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation. J Neurosci, 25, 5774-5783.
    Zhang, Q., Meng, Y, Zhang, L., Chen, J. and Zhu, D. (2008) RNF13: a novel RING-type ubiquitin ligase over-expressed in pancreatic cancer. Cell Res.
    Zhang, Y. (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev, 17, 2733-2740.
    Zhang, Y, Ng, H.H., Erdjument-Bromage, H., Tempst, P., Bird, A. and Reinberg, D. (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev, 13, 1924-1935.
    Zhou, W., Zhu, P., Wang, J., Pascual, G., Ohgi, K.A., Lozach, J., Glass, C.K. and Rosenfeld, M.G. (2008) Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell, 29, 69-80.
    [1] Lewis, E.B. (1978). A gene complex controlling segmentation in Drosophila. Nature 276, 565-70.
    [2] Valk-Lingbeek, M.E., Bruggeman, S.W. and van Lohuizen, M. (2004). Stem cells and cancer; the polycomb connection. Cell 118, 409-18.
    [3] Haupt, Y., Alexander, W.S., Barri, G, Klinken, S.P. and Adams, J.M. (1991). Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65, 753-63.
    [4] van Lohuizen, M., Verbeek, S., Scheijen, B., Wientjens, E., van der Gulden, H. and Berns, A. (1991). Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65, 737-52.
    [5] Brunk, B.P., Martin, E.C. and Adler, P.N. (1991). Drosophila genes Posterior Sex Combs and Suppressor two of zeste encode proteins with homology to the murine bmi-1 oncogene. Nature 353, 351-3.
    [6] van der Lugt, N.M. et al. (1994). Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 8, 757-69.
    [7] Rajasekhar, V.K. and Begemann, M. (2007). Roles of Polycomb Group Proteins in Development and Disease: A Stem Cell Perspective. Stem Cells 25, 2498-2510.
    [8] Sparmann, A. and van Lohuizen, M. (2006). Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6, 846-56.
    [9] Pietersen, A.M. and van Lohuizen, M. (2008). Stem cell regulation by polycomb repressors: postponing commitment. Curr Opin Cell Biol
    [10] Cohen, K.J., Hanna, J.S., Prescott, J.E. and Dang, C.V. (1996). Transformation by the Bmi-1 oncoprotein correlates with its subnuclear localization but not its transcriptional suppression activity. Mol Cell Biol 16,5527-35.
    
    [11] Itahana, K. et al. (2003). Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 23, 389-401.
    
    [12] Alkema, M.J., Bronk, M., Verhoeven, E., Otte, A., van 't Veer, L.J., Berns, A. and van Lohuizen, M. (1997). Identification of Bmil-interacting proteins as constituents of a multimeric mammalian polycomb complex. Genes Dev 11, 226-40.
    [13] Alkema, M.J. et al. (1997). MPc2, a new murine homolog of the Drosophila polycomb protein is a member of the mouse polycomb transcriptional repressor complex. J Mol Biol 273, 993-1003.
    [14] Gunster, M.J. et al. (1997). Identification and characterization of interactions between the vertebrate polycomb-group protein BMI1 and human homologs of polyhomeotic. Mol Cell Biol 17, 2326-35.
    [15] Satijn, D.P. et al. (1997). RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol 17, 4105-13.
    [16] Hashimoto, N. et al. (1998). RAE28, BMI1, and M33 are members of heterogeneous multimeric mammalian Polycomb group complexes. Biochem Biophys Res Commun 245, 356-65.
    [17] Trimarchi, J.M., Fairchild, B., Wen, J. and Lees, J.A. (2001). The E2F6 transcription factor is a component of the mammalian Bmil-containing polycomb complex. Proc Natl Acad Sci U S A 98, 1519-24.
    [18] Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S. and Zhang, Y. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873-8.
    [19] Satijn, D.P. and Otte, A.P. (1999). Polycomb group protein complexes: do different complexes regulate distinct target genes? Biochim Biophys Acta 1447, 1-16.
    [20] Hernandez-Munoz, I., Taghavi, P., Kuijl, C, Neefjes, J. and van Lohuizen, M. (2005). Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol Cell Biol 25, 11047-58.
    [21] Schwartz, Y.B. and Pirrotta, V. (2008). Polycomb complexes and epigenetic states. Curr Opin Cell Biol
    [22] Gil, J., Bernard, D. and Peters, G. (2005). Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol 24, 117-25.
    [23] Cao, R., Tsukada, Y. and Zhang, Y. (2005). Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20, 845-54.
    [24] Vissers, J.H., Nicassio, F., van Lohuizen, M., Di Fiore, P.P. and Citterio, E. (2008). The many faces of ubiquitinated histone H2A: insights from the DUBs. Cell Div 3, 8.
    [25] Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A. and van Lohuizen, M. (1999). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164-8.
    [26] Jacobs, J.J., Scheijen, B., Voncken, J.W., Kieboom, K., Berns, A. and van Lohuizen, M. (1999). Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13, 2678-90.
    [27] Fasano, C.A., Dimos, J.T., Ivanova, N.B., Lowry, N., Lemischka, I.R. and Temple, S. (2007). shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1, 87-99.
    [28] Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H. and Helin, K. (2006). Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20, 1123-36.
    [29] Voncken, J.W., Schweizer, D., Aagaard, L., Sattler, L., Jantsch, M.F. and van Lohuizen, M. (1999). Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status. J Cell Sci 112 ( Pt 24), 4627-39.
    [30] Voncken, J.W. et al. (2005). MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmil. J Biol Chem 280, 5178-87.
    [31] Elderkin, S. et al. (2007). A Phosphorylated Form of Mel-18 Targets the Ring1B Histone H2A Ubiquitin Ligase to Chromatin. Mol Cell 28, 107-20.
    [32] Riising, E.M., Boggio, R., Chiocca, S., Helin, K. and Pasini, D. (2008). The polycomb repressive complex 2 is a potential target of SUMO modifications. PLoS ONE 3, e2704.
    [33] Lee, T.I. et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125,301-13.
    [34] Boyer, L.A. et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349-53.
    [35] Cui, H., Ma, J., Ding, J., Li, T., Alam, G. and Ding, H.F. (2006). Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 281, 34696-704.
    [36] Pasini, D., Bracken, A.P., Hansen, J.B., Capillo, M. and Helin, K. (2007). The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27, 3769-79.
    [37] Leung, C., Lingbeek, M., Shakhova, O., Liu, J., Tanger, E., Saremaslani, P., Van Lohuizen, M. and Marino, S. (2004). Bmil is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337-41.
    [38] Molofsky, A.V., Pardal, R., Iwashita, T., Park, I.K., Clarke, M.F. and Morrison, S.J. (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962-7.
    [39] Molofsky, A.V., He, S., Bydon, M., Morrison, S.J. and Pardal, R. (2005). Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the pl6Ink4a and p19Arf senescence pathways. Genes Dev 19, 1432-7.
    [40] Zencak, D. et al. (2005). Bmil loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation. J Neurosci 25, 5774-83.
    [41] Knoepfler, P.S., Cheng, P.F. and Eisenman, R.N. (2002). N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16, 2699-712.
    [42] Galmozzi, E., Facchetti, F. and La Porta, C.A. (2006). Cancer stem cells and therapeutic perspectives. Curr Med Chem 13, 603-7.
    [43] Bruggeman, S.W., Hulsman, D., Tanger, E., Buckle, T., Blom, M., Zevenhoven, J., van Tellingen, O. and van Lohuizen, M. (2007). Bmil controls tumor development in an ink4a/arf-independent manner in a mouse model for glioma. Cancer Cell 12, 328-41.
    [44] Ohm, J. et al. (2007). A stem cell -like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39, 237-242.
    [45] Bernstein, B.E. et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-26.
    [46] Nunes, M., Blanc, I., Maes, J., Fellous, M., Robert, B. and McElreavey, K. (2001). NSPc1, a novel mammalian Polycomb gene, is expressed in neural crest-derived structures of the peripheral nervous system. Mech Dev 102, 219-22.
    [47] Akasaka, T. et al. (2001). Mice doubly deficient for the Polycomb Group genes Mell8 and Bmil reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development 128, 1587-97.
    [48] Sanchez-Beato, M. et al. (2006). Variability in the expression of polycomb proteins in different normal and tumoral tissues. A pilot study using tissue microarrays. Mod Pathol 19, 684-94.
    [49] Wu, X., Gong, Y., Yue, J., Qiang, B., Yuan, J. and Peng, X. (2008). Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmtl in HOX gene silencing. Nucleic Acids Res 36, 3590-9.
    [50] Pritsker, M., Ford, N.R., Jenq, H.T. and Lemischka, I.R. (2006). Genomewide gain-of-function genetic screen identifies functionally active genes in mouse embryonic stem cells. Proc Natl Acad Sci U S A103, 6946-51.
    [51] Kanno, M, Hasegawa, M., Ishida, A., Isono, K. and Taniguchi, M. (1995). mel-18, a Polycomb group-related mammalian gene, encodes a transcriptional negative regulator with tumor suppressive activity. Embo J 14, 5672-8.
    [52] Liu, L., Andrews, L.G. and Tollefsbol, T.O. (2006). Loss of the human polycomb group protein BMI1 promotes cancer-specific cell death. Oncogene
    [53] Lessard, J. and Sauvageau, G. (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255-60.
    [54] Negishi, M. et al. (2007). Bmil cooperates with Dnmtl-associated protein 1 in gene silencing. Biochem Biophys Res Commun 353, 992-8.
    [55] Xi, S., Zhu, H., Xu, H., Schmidtmann, A., Geiman, T.M. and Muegge, K. (2007). Lsh controls Hox gene silencing during development. Proc Natl Acad Sci U S A 104, 14366-14371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700