用户名: 密码: 验证码:
几种入侵斑潜蝇线粒体全基因组序列分析及种群分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑潜蝇隶属于双翅目(Diptera)潜蝇科(Agromyzidae)斑潜蝇属(Liriomyza)。其中南美斑潜蝇(Liriomyza huidobrensis)、美洲斑潜蝇(L. sativae)和三叶斑潜蝇(L. trifolii)是全世界最危险、发生最严重的三种检疫性害虫。这三种斑潜蝇的入侵给我国农业生产和对外贸易带来重大损失,其暴发为害时甚至造成作物绝产。斑潜蝇具有个体小,近缘种形态极其相似,种内存在高度遗传分化,甚至存在隐种,短期内可以迅速爆发成灾等特点。因此,加深对其遗传背景的认识,弄清其遗传发育关系,对其检验检疫及防控具有重要的意义。同时,斑潜蝇作为入侵害虫,对其传入途径和地理分布与遗传多样性的了解,可为其持续控制提供更多的科学依据。本文对三种斑潜蝇的线粒体全基因组序列进行了测定分析,并联合其它双翅目种类的线粒体基因组数据对双翅目的系统发育关系进行了更全面的探讨。同时对三叶斑潜蝇及南美斑潜蝇的不同种群遗传分化进行了研究,主要研究结果如下:
     1.联合核内rDNA-ITS2序列及核外mtDNA-COI、COII序列对三叶斑潜蝇不同种群的遗传分化研究表明:该种不同种群已产生一定程度的分化,分为美国种群分支和亚欧种群分支。首次对国内三叶斑潜蝇的不同种群分化进行研究,结果表明国内的种群分化水平还很低。并采用分子数据首次推测了我国三叶斑潜蝇的入侵来源。初步认为三叶斑潜蝇是从欧洲传入我国的。
     2.联合本研究及Genbank中的mtDNA-COII数据分析结果显示南美斑潜蝇的不同种群分化也发生了一定的遗传分化,也主要分为两支,美国种群独立为一支,而南美洲、中美洲、欧洲及亚洲种群聚为一支。并对国内不同种群分化进行了更全面的分析,结果显示目前国内不同种群仍基本无遗传分化。结合分子数据推测南美斑潜蝇是由南美洲传入欧洲,再从欧洲传入我国的。
     3.采用L-PCR技术和二次PCR扩增方法,首次获得三种重要入侵斑潜蝇的线粒体全基因组序列。三叶斑潜蝇、美洲斑潜蝇及南美斑潜蝇的线粒体全基因组长度分别为16141 bp、16149 bp和16238 bp。三种斑潜蝇线粒体基因组基因排列次序与Drosphila yakuba相似。均由13个蛋白质编码基因、22个tRNA基因、2个rRNA基因和1个A+T丰富区组成(三叶斑潜蝇和美洲斑潜蝇的A+T丰富区中还分别包含额外的tRNA基因)。各种线粒体基因组碱基组成均有明显的A+T偏好性,A+T含量分别为78.06%、78.10%及78.23%。
     4.首次发现ATCA作为昆虫线粒体基因组蛋白质编码基因的四联起始密码子,三种斑潜蝇的COI基因均采用该密码子,三叶斑潜蝇和美洲斑潜蝇的ND1基因起始密码子为GTG。而三种斑潜蝇的大多数蛋白质编码基因均采用ATN作为起始密码子。三种斑潜蝇除CYTb、ND4基因及三叶斑潜蝇和美洲斑潜蝇的ND5基因使用不完全终止密码子T,其它的终止密码子为TAA或TAG。其氨基酸密码子的使用有明显的偏向性、第三位点为A、T的密码子使用频率远高于G、C。三种斑潜蝇中亮氨酸(Leu)含量最高,在15%-16%之间。半胱氨酸(Cys)含量最低,约为1%。
     5.三种斑潜蝇tRNA基因的二级结构多为典型的三叶草结构,仅tRNASer(AGN)缺失DHU臂。而且多数tRNA的二级结构中存在碱基错配,并且大多数为G-U弱配对。
     6.在三叶斑潜蝇和美洲斑潜蝇的A+T丰富区发现额外tRNA基因的存在。其中三叶斑潜蝇中包括tRNAThr和tRNALeu(UUR),tRNALeu(UUR)在反密码子环后第2-50bp位置存在内含子;而tRNAThr中有一个可变环茎区,由10个碱基配对形成。位于美洲斑潜蝇A+T丰富区的额外tRNAIle,发现其使用非典型的反密码子TAT,tRNAIle也包含一个可变环茎区,由10个碱基配对形成。三种斑潜蝇A+T丰富区的N链和J链中都发现了与线粒体基因组复制起始相关的Poly-T结构。
     7.联合双翅目31种昆虫线粒体基因组数据,对双翅目系统发育关系进行了更全面的分析,绝大部分系统发育树中,支持双翅目、短角亚目、芒角亚目和蚊总科的单系性,同形态分类结果一致。而长角亚目及短角亚目中家蝇次目内部的聚类关系未完全解决,仅在BI树中,不仅短角亚目所有种类聚为一支,而且长角亚目所有种类优先聚类,强烈支持长角亚目的单系性。
     本研究结果丰富了对三种斑潜蝇及整个双翅目昆虫系统发育关系的认识,初步弄清了三叶斑潜蝇与南美斑潜蝇在我国的传入途径与遗传分化多样性。同时为构建快速的分子鉴定体系提供了可靠的实验数据和理论依椐,为检疫性诊断及可持续控制体系的制定具有重要的参考价值。
Liriomyza huidobrensis, L. sativae and L. trifolii are the three dangerous and most serious damage quarantine pest, which belong to Diptera, Agromyzidae. They had caused great losses and even to unproductive in agriculture production and export trade when they break out. The leafminers have the characters of small size, very similar morphology in closely related species, high degree of genetic differentiation even containing cryptic species, and it can also outbreak to be disaster in short time. Therefore, it is very important to study their genetic background and make clear their phylogenetic relationship for the quarantine and intergrated control. Meanwhile, as invasion pests, studies on their invasive pathway, geographic distribution and genetic diversity of knowledge, can provide proofs for more scientific basis for sustainable control. In this paper, the complete mitochondrial genomes of three leafminers were sequcened and phylogeny relationships of Diptera were reconstructed using the genebank data and ours. We also compared the geographic populations’differentiation in L. trifolii and L. huidobrensis. The main results were summarized as follows:
     1. Analysis of nuclear rDNA-ITS2 sequences, and mtDNA-COI, COII sequences of L. trifolii suggested that genetic differentiation appeared in different populations, The results showed that the different populations had separated into two clades: one was the United States clade, and the other was the Asia-Europe clade, while the low level differentiation were showed in domestic populations. According to our molecular data and the quarantine survey, for the first time, we deduced the invasion source and broadcast pathway of L. trifolii in our country, the populations of our country most probably were invaded from Europe.
     2. The results combined our study and Genbank data of mtDNA-COII showed different populations had genetic differentiation and can be divided into two clades, the USA population as one, and South America, Central America, Europe and Asia combined as the other. We also did more comprehensive analysis for the populations of our country and the result showed that there is still no genetic differentiation. Molecular data and Survey findings proved that the population of L. huidobrensis in China was invaded from Europe, which introduced from South America.
     3. Using the strategy of sub-PCR based on the long PCR, The complete mitochondrial genome of the three leafminers were sequenced and annotated. The genome lengths were 16141 bp, 16149 bp and 16238 bp respectively. The gene numbers and organization were similar to Drosphila yakuba contains one encoding region including 37 genes and one non-coding A+T-rich region, except that three additional tRNA genes (tRNAThr and tRNALeu(UUR), tRNAIle) were found in the A+T-rich region of L.trifolii and L. sativae respectively. The nucleotide compositions of the mitogenome of three leafminers were biased toward adenine and thymine, and the overall A+T contents were 78.06%, 78.1% and 78.23% respectively.
     4. For the first time, the quadruplet ATCA is used as protein start codon of mitogenome in insect, ND1 in L. trifolii and L. sativae which begins with GTG, the other protein initiation codons are ATN. Ten genes share the typical termination codons TAA and TAG, and ND4, CYTb of three species and ND5 in L. trifolii and L. sativae have incomplete codons of T. The usages of synonymous codons are showed a remarkable bias in the third codon position for A or T than to G or C. The amin acid content of Leu (15%-16%) is the highest and that of Cys (about 1%) is the lowest.
     5. All of tRNAs in three leafminers form the typical cloverleaf structure except for tRNASer (AGN), which has lost the DHU-arm. There are mismatchs with most of G-U in the secondary structures of majority tRNAs.
     6. The new additional tRNAs are predicted in A+T region of L.trifolii and L.sativae, the anticodons loop of tRNALeu(UUR) in L. trifolii contains a 50 bp intron located between the anticodon loop and arm. The tRNAThr in L. trifolii has one extra variable arm with a five-base-pair arm between the anticodon loop and the TψC loop. The additional tRNAIle containing one extra five-base-pairs variable arm is also found in the same region of L. sativae. The A+T region in both strands of three leafminers also contains a highly conserved polyT, which is correlated with the origin of mitochondrial genome replication.
     7. The overall phylogenetic relationships based on mitogenome of 31 Dipterans were reconstructed: the monophyly of Diptera, Brachyceran, Aristocera and Culicoideae are proved, which is consisitent with morphological classification. The relationships of Nematocera and interrelation of Brachycera were not fully resolved. Only in the BI tree, all the species of Nematocera priority clustered into one clade and this result strongly supports the monophyly of Nematocera.
     These results enrich the theory of phylogenetic relationship in three leafminers and Dipterans, make clear the broadcasting pathways, geodistribution and genetic diversity of L. trifolii and L. huidobrensis initially, and also provide the reliable proofs for building rapid molecular identification system. Our results will also play important role in quarantine diagnosis and sustainable control.
引文
1.陈洪俊,李镇宇,骆有庆.检疫性有害生物三叶斑潜蝇.植物检疫, 2005, 19(2): 99~102.
    2.陈萍,温硕洋,曾玲. PCR~RFLP技术应用于鉴定美洲斑潜蝇和番茄潜蝇的初步研究.武夷科学, 2002, 18 (12): 60~64.
    3.陈萍,温硕洋,曾玲. PCR~RFLP用于5种斑潜蝇的诊断和鉴别.植物检疫, 2009, 23(5): 22~24.
    4.陈文龙,李子忠,顾丁等.中国斑潜蝇属种类和2新纪录种记述(双翅目,潜蝇科).西南大学学报(自然科学版), 2007, 29(4): 154~158.
    5.杜予州,陆亚娟,时敏等.美洲斑潜蝇种群分化研究.当代昆虫学研究—中国昆虫学会成立60周年纪念大会暨学术讨论会论文集.北京:中国农业科学技术出版社, 2004: 137.
    6.杜予洲,王莉萍,陆亚娟等.美洲斑潜蝇不同寄主种群及地理种群的β~tubulin基因序列分析.中国农业科学, 2008, 41(5): 1542~1547.
    7.段惠,强胜,苏秀红等.用AFLP技术分析紫茎泽兰的遗传多样性.生态学报, 2005, 25(8): 2109~21l1.
    8.范京安,顾海丰,陈世界等.实蝇科昆虫mtDNA~COI基因序列分析及系统发育研究.西南大学学报(自然科学版) , 2009, 31(10): 88~95.
    9.管维,王章根,蔡先全等.三叶草斑潜蝇和美洲斑潜蝇的分子鉴定.昆虫知识, 2006, 43(4): 558~561.
    10.桂富荣,郭建英,万方浩. ISSR分子标记在入侵植物研究中的应用.应用生态学报, 2007,18(4): 919~927.
    11.国家林业局.我国新发现重大外来有害生物—三叶斑潜蝇.中国植保导刊, 2006, 26 (5): 55.
    12.何恒果.分子标记技术在昆虫种群遗传学研究中的应用.西华师范大学学报(自然科学版), 2008, 29(4): 342~346.
    13.黄华平,杨腊英,王国芬等. rDNA和mtDNA在昆虫系统发育与区系研究中的应用.华南热带农业大学学报, 2006, 12(4): 45~49.
    14.江世宏,孟子烨,陈晓琴等.核糖体DNA序列分析在昆虫系统学研究中的应用.昆虫分类学报, 2008, 30(3): 225~238.
    15.姜玉锁,刘文忠,张春香等.中国境内不同地理型东方蜜蜂遗传多样AFLP分析.昆虫学报, 2007, 50(2): 144~152.
    16.康乐.斑潜蝇的生态学与持续控制.北京:科学出版社, 1996.
    17.雷仲仁,王音.蔬菜上11种潜叶蝇的鉴别.植物保护, 1996, 22(6): 40~43.
    18.雷仲仁,姚君明,朱灿健等.三叶斑潜蝇在中国的适生区预测.植物保护, 2007, 33(5): 100~103.
    19.雷仲仁.应用RAPD分析棉铃虫不同地理种群的DNA多态性.昆虫学报, 1997, 40(增): l3~19.
    20.李爱玲,张志芳,潘沈元.昆虫线粒体DNA A+T富集区的研究及其在分子进化中的应用.中国蚕业, 2004, 25(l): 70~72.
    21.刘殿锋,蒋国芳.核基因序列在昆虫分子系统学上的应用.动物分类学报, 2005, 30(3): 484~492.
    22.刘佳妮,桂富荣,李正跃. SSR分子标记技术在入侵昆虫学研究中的运用.植物保护, 2008, 34(3): 7~11.
    23.刘念,胡婧,黄原.应用长PCR扩增蝗虫线粒体全基因组.动物学杂志, 2006, 41(2): 61~65.
    24.陆庆元. 50年来中国生物防治回顾.世界知识, 1999, (9): 10~11.
    25.彭居俐,王绪桢,何舜平. DNA条形码技术的研究进展及其应用.水生生物学报, 2008, 32(6): 916~919.
    26.彭炜,范京安,赵学谦等.四川省美洲斑潜蝇发生与综合防治初步研究.植物检疫, 1998, 12(3): 135~138.
    27.邱一中,吴文哲,萧旭峰等. RAPD~PCR在六种斑潜蝇(Liriomyza spp)(双翅目:潜蝇科)快速鉴定技术之应用.中华昆虫, 2000, 20: 293~309.
    28.时敏,杜予洲,陆自强等.三种斑潜蝇的酯酶同工酶比较研究.武夷科学, 2002, 18(1): 84~85.
    29.陶滔,张智英,佘宇平等.拉美斑潜蝇的发生与防治.植物保护, 1996, 22(1): 41~42.
    30.王春林,照守岐.蔬菜病虫害的综合治理(九):美洲斑潜蝇的发生及控制.中国蔬菜, 1998, (3): 54~56.
    31.王莉萍,杜予州,何娅婷等.不同地理种群美洲斑潜蝇及近缘种的rDNA~ITS1序列分析和比较.昆虫学报, 2007, 50(6): 597~604.
    32.王青山,李葱葱,王晶等. AFLP分子标记技术及应用研究进展.吉林农业科学, 2005, 30(6): 29~34.
    33.温硕洋,何晓芳.一种适用于昆虫微量DNA模板制备的方法.武夷科学, 2002, 18: 69~72.
    34.王音,雷仲仁,问锦曾.温度对美洲斑潜蝇发育、取食、产卵和寿命的影响.植物保护学报, 2000, 27(3): 3~8.
    35.问锦曾,王音,雷仲仁等.美洲斑潜蝇中国新纪录.昆虫分类学报, 1996, 18(4): 311~31.
    36.熊立仲,王石平,刘克德等.微卫星和AFLP标记在水稻分子标记连锁图上的分布.植物学报, 1998, 40(7): 605~614.
    37.余道坚,邓中平,陈志奔等.昆虫分子标记基因和序列及应用.植物检疫, 2003, 17(3): 156~159.
    38.张崇珍,曾庆韬.应用线粒体CYTb基因序列探讨果蝇科部分属间的系统发育关系.湖北大学学报(自然科学版), 2004, 26(4): 344~349.
    39.张桂芬,朱伟旗,刘春晖等.美洲斑潜蝇发育历期和有效积温的研究.河北农业大学学报, 1997, 20(2): 29~32.
    40.张四才,李正跃,肖春.几种常用分子标记及其在昆虫学研究中的应用.江西农业学报, 2006, 18(4): 66~71.
    41.赵永旭,商晗武,崔旭红.三叶草斑潜蝇及其近缘种的形态鉴别.浙江农业学报, 2008, 20 (5): 362~366.
    42.祝军.苹果M系矮化砧木AFLP指纹图谱的构建与分析.农业生物技术学报, 2000(1): 59~62.
    43. Ballard JWO.Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup. Journal of Molecular Evolution, 2000, 51: 48~63.
    44. Beard CB, Mills D, Collins FH. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Molecular Biology, 1993, 2: 103~124.
    45. Bernays EA, Chapman RF. Host plant selection by phytophagous insects. New York: Chapman & Hall, 1994, 312.
    46. Blanchard E. A dipterous leaf miner on Cineraria, new to science. Rev. Soc. Entomol Argent. 1926, 1: 10~11.
    47. Boore JL,Collins TM, Stanton D, et al. Deducing the Pattern of Arthropod phylogeny from mitochondrial DNA Rearrangements. Nature, 1995, 376: 163~167.
    48. Boore JL. Animal mitochondrial genomes. Nucleic Acid Research, 1999, 27: 1767~1780.
    49. Boore JL, Macey JR, Medina M. Sequencing and comparing whole mitochondrial genomes of animals. Methods in Enzymology, 2005, 395: 311~348.
    50. Bordat D, Robert P, Renand M. Susceptibility of Liriomyza trifolii (Burgess) and L sativae Blanchard (Diptera: Agromyzidae) to eleven strains of entomopathogenic fungi. Agronomia Tropical, 1988, 43(11): 68~73.
    51. Borisov BA, Ushchekov AT. Entomogenous fungi Hyphomycetes against the nightshade leaf miner. Zashchitai Karantin Rastenii, 1997, 5: 10~11.
    52. Botstein D, White RL, Skolnick MH, et a1. Construction of a genetic linkage map in man using restriction fragment length polymorphlsms. American Journal of Human Genetics, 1980, 31: 314~331.
    53. Brehm A, Harris DJ, Hernandez M, et al. Structure and evolution of the mitochondrial DNA complete control region in the Drosophila subobscura subgroup. Insect Molecular Biology, 2001, 10: 573~578.
    54. Brown WM, George M, Wilson AC. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences USA, 1979, 76(4): 1967~1971.
    55. Bruce TJA, Wadhams J, Woodcock CM. Insect host location: a volatile situation. Trends in Plant Science, 2005, 10: 269~274.
    56. Cameron SL, Lambkin CL, Barker SC, et al. A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision. Systematic Entomology, 2007, 32 (1): 40~59.
    57. Cameron SL, Whiting MF. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta (Inseeta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and boths. Gene, 2008, 408(l~2): 112~124.
    58. Campbell NJH, Barker SC. The novel mitochondrial gene arrangement of the cattle tick,boophilus microplus: five fold tandem repetition of a coding region. Molecular Biology Evolution, 1999, 16: 732~740.
    59. Cantatore P, Gadaleta MN, Roberti M, et al. Duplication and remodeling of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature, 1987, 329: 853~855.
    60. Carapelli A, LiòP, Nardi F, et al. Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea. BMC Evolutionary Biology, 2007, 7 (2): S8.
    61. Carolina JCH, Marshall MJ. Host plant preference of Liriomyza sativae populations infesting green onion in Hawaii. Environmental Entomology, 1992, 21(5): 1097~1102.
    62. Castro LR,Ruberu K., Dowton M. Mitochondrial genomes of Vanhornia eucnemidarum (Apoerita:Vanhorniidae) and Primeuchroeus spp. (Aculeata:Chrysididae): evidence of rearranged mitochondrial genomes within the Apocrita (Insecta:Hymenoptera).Genome, 2006, 49: 752~766.
    63. Caterino MS, Cho S, Sperling FAH. The current state of insect molecular systematics: a thriving tower of Babel. Annual Review of Entomology, 2000, 45: 1~54.
    64. Cha SY, Yoon HJ, Lee EM, el at. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignites (Hymenoptera: Apidae). Gene, 2007, 392: 206~220.
    65. Clary DO, Wolstenholme DR. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Molecular evolution, 1985, 22: 252~271.
    66. Coates BS, Sumerford DV, Hellmieh RL, et al. Partial mitochondrial genome sequences of ostrinia nubilalis and ostrinia furnicalis.International Joural of Biology Science, 2005, l: 13~18.
    67. Crozier RH, Crozier YC. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics, 1993, 133(1): 97~117.
    68. Cummings DJ, MeNally KL, Domenieo JM, et al. The complete DNA sequenee of the mitochondrial genome of Podospora anserina. Current Genetics, 1990, 17(5): 375~402.
    69. David C, Lynn S. Kimseye. 18S rDNA sequences and the holometabolous insects. Molecular Phylogenetics and Evolution. 1992, 1(4): 270~278.
    70. Dosantos VM, Maeoris ML, Andrigherf MT, et a1. Analysis of genetic relatedness between populations of Aedes aegypti from different geographic regions of Sao Paulo state Brazil. Revista do Instituto de Medicina Tropical de S?o Paulo, 2003, 45(2): 99~101.
    71. Dotson EM, Beard CB. Sequence and organization of the mitochondrial genome of the chagas disease vector, Triatoma dimidiata. Insect Molecular Biology, 2001, 10: 205~215.
    72. Eisuke H, Eiiti K. Phylogenetic analysis of the insect order Odonata using 28S and 16S rDNA sequences: a comparison between data sets with different evolutionary rates. Entomological Science, 2006, 9(1): 55~66.
    73. Excoffier L, Smouse PE, Quattiro JM. Analysis of molecule variance inferred from matrix distances among DNA haplotypes: application to human mitochondrial DNA restriction data.Genetics, 1992, 131: 479~491.
    74. Excoffier L, Laval G, Schneider S. Arlequin ver.3.0: An integrated software Package for population genetics data analysis. Evolution Bioinformatics Online, 2005, l: 47~50.
    75. Facknath S, Lalljee B. Effect of soil-applied complex fertiliser on an insect-host plant relationship: Liriomyza trifolii on Solanum tuberosum. Entomologia experimentalis et applicata, 2005, 115: 67~77.
    76. Favia G, Torre A, Bagayoko M, et al. Mocular identification of sympatric chromosomal forms of Anophdes gambiae and further evidence of their reproductive isolation. Insect Molecular Biology, 1997, 6(4):377~383.
    77. Feng X, Chen NZ, Ma J, et al. Molecular identification of Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) based on real~time PCR. Journal of Applied Entomology, 2007, 131(8): 548~552.
    78. Flook PK, Rowell CHF, Gellissen G. The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome. Molecular evolution, 1995, 41: 928~941.
    79. Frick KE. A synopsis of agromyzid leaf miners described from North America (Diptera). Proceedings of the United States National Museum, 1959, 108: 347~465.
    80. Galhsser S, Guadagnuolo R, Rahier M. Genetic (RAPD) diversity between Oleria agarista and Oleria spp. (Ithomiinae, Nymphalidae, Lepidoptera) in northeastern Peru. Genetica, 2004, 121(1): 65~74.
    81. Gary MW. The endosymbiont hypothetis revisited. International Review of Cytology, 1992, 141: 233~357.
    82. Gillespie JJ, Johnston JS, Cannone JJ, et al. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Molecular Biology, 2006, 15(5): 657~686.
    83. Gillott C. Entomology. Plenum press, 1980, New york and London.
    84. Griffiths GCD. Studies on boreal Agromyzidae (Diptera), V–VIII. Quaest Entomology, 1974, 10: 35~314.
    85. Gyllensten U, Wharton D, Wilson AC. Maternal inheritance of mitochondrial DNA during backcrossing of two species of mice. Journal of Heredity, 1985, 76(5): 321~324.
    86. Hall HG. Parental analysis of introgressive hybridization between African and European honeybees using nuclear DNA RFLPs. Genetics, 1990, 125: 61l~621.
    87. Hassanin A. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Molecular Phylogenetics and Evolution, 2006, 38, 100~116.
    88. Hennig W. Diptera (Zweitltigler). Handbuch der zoologie, 1973, 4(2): 337.
    89. Hickerson MJ, Cunningham CW. Dramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus (Crustacea, Anomura). Molecular Biology and Evolution, 2000, 17: 639~644.
    90. Hickson RE. Conserved sequenee motifs, alignment and secondary structure for the third domain of animal 12srRNA. Molecular Biology and Evolution, 1996, 13(l): 150~169.
    91. Hodkinson ID. Species response to global environmental change or why ecophysiological models are important: a reply to Davis et al. Journal of Animal Ecology, 1999, 68: 1259~1262.
    92. Hondelmann P, Borgemeister C, Poehling HM. Restriction fragment length polymorphisms of diferent DNA regions as genetic markers in the hoverfly Episyrphus baheatus (Diptera:Syrphidae). Bulletin of Entomological Research, 2005, 95(4): 349~359.
    93. Hoskins RA, Phan AC, Naeemuddin M, et a1. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Reseach, 2001, 11(6): l100~lll4.
    94. Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference of phylogeny tree. Bioinformatics, 2001, 17(8):754~755.
    95. James B, Stewart A, Andrew T, et al. Characterization of mature mitochondrial transcripts in Drosophila, and the implications for the tRNA punctuation model in arthropods. Gene, 2009, 49~57.
    96. Jeanmougin F, Thompson JD, Gouy M, et al. Multiple sequence alignment with Clustal X. Trends in Biochemical Sciences, 1998, 23: 403~405.
    97. Junqueira AC, Lessinger AC, Torres TT, et al. The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera: Calliphoridae). Gene, 2004, 339: 7~15.
    98. Kang L, Chen B, Wei JN, et al. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annual Review of Entomology, 2009, 54: 127~145.
    99. Kashiwagi TY, Horibata DB, Mekuria S. Ovipositional deterrent in the sweet pepper, Capsicum annuum, at the mature stage against Liriomyza trifolii (Burgess). Biosciences Biotechnology and Biochemistry, 2005, 69: 1831~1835.
    100. Kaspi R, Parrella MP. Improving the biological control of leafminers (Diptera: Agromyzidae) using the sterile insect technique. Journal of Economic Entomology, 2006, 99(4): 1168~1175.
    101. Kim HJ, Han JH, Kwon JK, et al. Fine mapping of pepper trichome locus 1 controlling trichome formation in Capsicum annuum CM334. Theoretical Applied Genetics, 2010, 120: 1099~1106.
    102. Kim I, Cha SY, Yoon MH, The complete nucleotide sequence and gene organisation of the mitochondrial genome of the oriental mole cricket Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Gene, 2005, 353, 155~168.
    103. Kim SR, Kim MI, Hong MY, et al. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae). Molecular Biology Reports, 2009, 36(7):1871~1880.
    104. Kondo R, Satta Y, Matsuura ET, et al. Ineomplete maternal transmission of mitochondrial DNA in Drosphila. Genelics, 1990, 126(3):657~664.
    105. Krzeminski W. Triassic and lower Jurassic stage of Diptera evolution. Mitteilungen der schweizerischen entomologischen Gesellschaft, 1992, 65: 39-59.
    106. Krzywinski J, Grushko OG, Besansky NJ. Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporaldimension of mosquito evolution. Molecular Phylogenetics and Evolution, 2006, 39: 417~423.
    107. Lee ES,Shin KS,Kim MS,et al. The mitochondrial Genome of the smaller Tea Tortrix Adoxophye shonmai (Lepidoptera:Tortricidae).Gene, 2006, 373: 52~55.
    108. Lessinger AC, Martins Junqueira AC, Lemos TA, et al. The mitochondrial genome of the primary screwworm fly Cochliomyia hominivorax (Diptera: Calliphoridae). Insect Molecular Biology, 2000, 9(5): 521~529.
    109. Levinson G,Gutman GA.Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular Biology and Evolution, 1987, 4: 203~211.
    110. He L P, Zhan YP, Xiao NN, et a1. Liriomyza huidobrensis in Yunnan, China: current distribution and genetic structure of a recently established population. Entomologia Experimentalis et Applicata, 2002, 102: 213~219.
    111. Liao F, Wang L, Wu S, et al. The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). International Journal of Biologic Sciences. 2010, 6(2): 172~186.
    112. Lima LHC, Navia D, Oliveira MRV. Survey of Bemisia tabaci (Genn) (Hemiptera Aleyrodiae) biotypes in Brazil using RAPD markers. Gengtics and Molecular Biology, 2000, 23:1~5.
    113. Linden A, van der Linden WJ. Overwintering of Liriomyza bryoniae and Liriomyza huidobrensis (Diptera: Agromyzidae) in the Netherlands. Proceedings of Experimental and Applied Entomology of the Netherlands Entomological Society, 1993, 4: 145~150.
    114. Lowe TM, Eddy SR. tRNAscan~SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Reseach, 1997, 25: 955~964.
    115. Maarten H. L, de Bruijn. Drosophila melanogaster mitochondrial DNA, a novel organization and genetic code. Nature, 1983, 304(5923): 234~241.
    116. Machida RJ, Miya MU, Nishida M, et al. Complete mitochondrial DNA sequences of Tigriopus japonicas (Crustacea: Copepoda). Marine Biotechnology, 2002, 4(4): 406~417.
    117. Margulis L. Symbiotic theory of the origin of eukaryotic organelles: criteria for proof. Symposia of the Society for experimental Biology, 1975, 29: 21~38.
    118. Masetti A, Luchetti A, Mantovani B, et al. Polymerase chain reaction-restriction fragment length polymorphism assays to distinguish Liriomyza huidobrensis (Diptera:Agromyzidae) from associated species on lettuce cropping systems in Italy. Journal of Economic Entomology, 2006, 99(4): 1268~1272.
    119. Masta SE. Mitochondrial rRNA secondary structures and genome arrangements distinguish chelicerates: Comparisons with a harvestman (Arachnida: Opiliones: Phalangium opilio). Gene, 2009, 449(1~2): 9~21.
    120. Mathews DH, Disney MD, Childs JL, et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences USA, 2004, 101: 7287~7292.
    121. Matsumoto Y, Yanase T, Tsuda T, et al. Species-specific mitochondrial gene rearrangements inbiting midges and vector species identification. Medical and Veterinary Entomology, 2009, 23(1): 47~55.
    122. Mcalpine JF, Wood DM. Manual of Neartic Diptera Volume 3. Research Branch Agriculture Canada, Ottawa, Ontario. 1989. 1492~1502.
    123. Mekuria DB, Kashiwagi T, Tebayashi SI, et al. Cucurbitane triterpenoid oviposition deterrent from Momordica charantia to the leafminer, Liriomyza trifolii. Bioscience, Biotechnology, and Biochemistry, 2005, 69: 1706~1710.
    124. Meusel MS, Moritz RFA. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs. Current Genetics, 1993, 24(6):539~544.
    125. Millar CL,Libby WJ. Strategies for conserving clinal, ecotypic, and disjunct population diversity in widespread species. In: Fald DA, Holsinger KE. Genetics and conservation of rare plants. Oxford: Oxford University Press, 1991, 149~170.
    126. Mitchell SE, Cockburn AF. Seawright JA. The mitochondrial genome of Anopheles quadrimaculatus species: a complete nucleotide sequence and gene organization. Genome, 1993, 36: 1058~1073.
    127. Miura K, Tagami Y, Ohtaishi M, et al. Application of molecular techniques to distinguish Liriomyza trifolii from Liriomyza sativae (Diptera: Agromyzidae) on tomato cultivation in Japan. Journal of Economic Entomology, 2004, 97(3): 964~969.
    128. Morgan DJW,Reitz RS, Atkinson PW,et a1.The resolution of Californian population of Liriomyza huidobrensis and Liriomyza trifolii (Diptera: Agromyzidae) using PCR. Heredity, 2000, 85(1): 53~61.
    129. Muraji M, Nakahara S. Phylogentic relationships among fruit flies, Bactrocera (Diptear: Tephritidae), based on the mitochondrial rDNA sequence. Insect Molecular Biology, 2001, 10(6): 549~559.
    130. Naeole CKM, Haymer DS. Use of oligo nucleotide arrays for molecular taxonomic studies of closely related species in the oriental fruit flies (Bactrocera dorsalis). Complex Molecular Ecology Notes, 2003, (3): 662~665.
    131. Nagatomi A. Notes on the phylogeny of various taxa of the orthorraphous Brachycera (Insecta: Diptera). Zoological Science, 1992, 9: 843~857.
    132. Nardi F, Carapelli A, Dallai R, et al. The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Molecular Biology, 2003, 12(6): 605~611.
    133. Nardi F, Carapelli A, Fanciulli PP, et al. The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: evidence for heteroplasmy and tRNA translocations. Molecular Biology and Evolution, 2001, 18: 1293~1304.
    134. Nardi F, Spinsanti G, Boore JL, et al. 2003. Hexapod origins: monophyletic or paraphyletic? Science, 2003, 299(5614): 1887~1889.
    135. Nass MK, Nass S. Intramitochondrial fibers with DNA characteristics. The Joural of CellBiology, 1963, 19(3): 593~611.
    136. Nowakowski JT. Introduction to a systematic revision of the family Agromyzidae (Diptera) with some remarks on host plant selection by these flies. Annual Zoology of Warszawa, 1962, 20: 67~183.
    137. Ochando MD, Callejas C. Molecular identification of insect quarantine pests by RAPD-PCR. Bulletin Oilb Srop, 2004, 26(10): 181~186.
    138. Ode PJ, Heinz KM. Host-size-dependent sex ratio theory and improving mass-reared parasitoid sex ratios. Biological Control, 2002, 24:31~41.
    139. Ojala D, Montoya JL, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature, 1981, 290: 470~474.
    140. Oliveira MT, Azeredo Espin AML, Lessinger AC. Evolutionary and structural analysis of the cytochrome c oxidase subunit I (COI) gene from Haematobia irritans, Stomoxys calcitrans and Musca domestica mitochondrial DNA. DNA Sequencing, 2005, 16: 156~160.
    141. Oliveira MT, Barau JG, Junqueira AC, et al. Structure and evolution of the mitochondrial genomes of Haematobia irritans and Stomoxys calcitrans: the Muscidae (Diptera: Calyptratae) perspective. Molecular Phylogenetics and Evolution, 2008, 48(3): 850~857.
    142. Oosterbroek P, Courtney G. Phylogeny of the nematocerous families of Diptera (Insecta). Zoological Journal of the Linnean Society, 1995, 115: 267-311.
    143. Ota M, Seki T, Nomura N, et a1. Modified PCR-RFLP method for HLA-DPB1 and -DQA1 genotyping. Tissue Antigens, 1991, 38(2): 60~71.
    144. Parrella MP. Biology of Liriomyza. Annu Rev Entomol, 1987, 32: 201~224.
    145. Patel KJ, Schuster DJ, Smerge GH. Density dependent parasitism and host-killing of Liriomyza trifolii (Diptera: Agromyzidae) by Diglyphus intermedius (Hymenoptera: Eulophidae). Florida Entomologist, 2003, 86: 8~14.
    146. Paupy C, Orsoni A, Mousson L, Huber K. Comparisons of amplified fragment length polymorphism (AFLP), microsatellite and isoenzyme markers: population genetics of Aedes aegypti (Diptera:Culicidae) from Phnom Penh (Cambodia). Journal of Medical Entomology, 2004, 41(4):664~71.
    147. Perna NT, Kocher TD. Patterns of nucleotide composition at fourfold degenerated sites of animal mitochondrial genomes. Journal of Molecular Evolution, 1995, 41: 353~359.
    148. Reitz SR, Trumble JT. Interspecific and intraspecific differences in two Liriomyza leafminer species in California. Entomologia Experimentalis et Applicata, 2002, 102(2), 101~113.
    149. Remsen J, O’Grady PM. Phylogeny of Drosophilinae (Diptera: Drosophilidae), with comments on combined analysis and character support. Molecular Phylogenetics and Evolution, 2002, 24, 249~264.
    150. Saccone C, De GC, Gissi C, et al. Evolutionary genomicsin Metazoa: the mitochondrial DNA as a model system. Gene, 1999, 238, 195~209.
    151. Sakamaki Y, Miura K, Chi YH. Interspecific hybridization between Liriomyza sativaeBlanchard and L. trifolii (Burgess) (Diptera: Agromyzidae). Annals of the Entomological Society of America, 2005, 98(4): 470~474.
    152. Sasakawa M. Oriental Agromyzidae (Diptera) in Bishop Museum, Part. 1. Pac Insects, 1963, 5: 23~50.
    153. Sathees BC, Chandra1, Jennifer L, et al. Comparative insect mitochondrial genomes: differences despite conserved genome synteny. African Journal of Biotechnology, 2006, 5 (14): 1308~1318.
    154. Schawaroch V. Phylogeny of a paradigm lineage: the Drosophila melanogaster species group (Diptera: Drosophilidae). Biological Journal of the Linnean Society, 2002, 76, 21~37.
    155. Scheffer SJ. Molecular evidence of cryptic species within the Liriomyza huidobrensis (Diptera: Agromyzidae). Journal of Economic Entomology, 2000, 93: 1146~1151.
    156. Scheffer SJ, Lewis ML. Two nuclear genes confirm mitochondrial evidence of cryptic species within Liriomyza huidobrensis (Diptera: Agromyzidae). Annals of the Entomological Society of America, 2001, 94(5): 648~654.
    157. Scheffer S J, Lewis M L. Mitochondrial phylogeography of the vegetable pest Liriomyza trifolii (Diptera: Agromyzidae): diverged clades and invasive populations. Annals of the Entomological Society of America, 2006, 99(6): 991~998.
    158. Shao RF,Barker SC. The highly rearranged mitochondrial genome of the plague thrips, Thrips imagines (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Molecular Biology and Evolution, 2003, 20(3): 362~370.
    159. Sheffield NC, Song H, Cameron L, et al. A comparative Analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Molecular Biology and Evolution, 2008, 25(11): 2499~2509
    160. Shiao SF. Morphological diagnosis of six Liriomyza species (Diptera: Agromyzidae) of quarantine importance in Taiwan. Applied Entomology and Zoology, 2004, 39(1): 27~39.
    161. Simon C, Buckley TR, Frati F, et al. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. The Annual Review of Ecology, Evolution, and Systematics, 2006, 37: 545~579.
    162. Simon C, Frati F, Beckenbach A, et al. Evolution, weighting, and phylogenetics utility of mitochondrial gene sequences and compilation of conserved polymerase chain reaction primers, Annals of the Entomological Society of America, 1994, 87(6): 651~701.
    163. Smith DR, Palmer MR, Otis G, et a1. Mitochondrial DNA and AFLP markers support species status of Apis nigrocincta. Insectes sociaux, 2003, 50: 185~190.
    164. Smith P T. Phylogenetic relationships among Bactroceras pecies (Diptera: Tephritidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 2003, 26: 8217.
    165. Spanos L, Koutroumbas G, Kotsyfakis M, et al. The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata. Insect Molecular Biology, 2000, 9(2): 139~144.
    166. Spencer KA, Steyskal GC. Manual of the Agromyzidae (Diptera) of the United States US Dept of Agric, A RS, Agriculture Handbook No. 638, 1986, 478.
    167. Spencer KA. A synopsis of the Neotropical Agromyzidae. Trans R Ent. Soc. Lond, 1963, 115: 291~389.
    168. Spencer KA. Agromyzidae (Diptera) of economic importance. Series Entomological 9. Junk W., The Hague, 1973, 418.
    169. Spencer KA. Host specialization in the world Agromyzidae (Diptera). Netherlands: Kluwer academic publishers, 1990, 444.
    170. Spencer KA. Morphological characteristics and brief taxonomic history of Liriomyza, pp. 12~23 in DJ Schuster (ed.), Proc. IFAS-Industry Conf. on Biology and Control Liriomyza Leafminers. 1981. Lake Buena Vista, Florida.
    171. Sperling F A, Anderson GS, Hickey DA. A DNA-based approach to the identification of insect species used for postmortem interval estimation. Journal of Forensic Science, 1994, 39: 418~427.
    172. Staden R, Beal KF, Bonfield J K. The staden package. Methods in Molecular Biology, 2000, 132: 115~130.
    173. Steinberg S, Leelerc F, Cedergren R. Struetural rules and conformational compensations in the tRNAL-Form, Journal of Molecular Biology, 1997, 266: 269-282.
    174. Stevens JR, West H, Wall R. Mitochondrial genomes of the sheep blowfly, Lucilia sericata, and the secondary blowfly, Chrysomya megacephala. Medical and Veterinary Entomology, 2008, 22(1): 89~91.
    175. Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim et Biophys Acta, 1999, 1410(2): 103~123.
    176. Tagami Y, Doi M, Sugiyama K, et al. Wolbachia-induced cytoplasmic incompatibility in Liriomyza trifolii and its possible use as a tool in insect pest control. Biological Control, 2006, 38(2):205~209.
    177. Takano SI, Iwaizumi R, Nakanishi Y, et al. Genetic differentiation and morphological comparison between two clades of Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae). Research Bulletin of the Plant Protection Service, Japan, 2005, 41: 43~46.
    178. Takano S I, Iwaizumi R, Nakanishi Y, et al. Laboratory hybridization between the two clades of Liriomyza huidobrensis (Diptera: Agromyzidae). Applied Entomology and Zoology. 2008, 43: 3, 397~402.
    179. Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596~1599.
    180. Thompson JD, Gibson TJ, Plewniak F, et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25: 4876~4882.
    181. Tokumaru S, Yoshihisa A. Interspecific hybridization between Liriomyza sativae Blanchard and L. trifolii (Burgess) (Diptera: Agromyzidae). Applied Entomology and Zoology, 2005, (40):551~555.
    182. Gabaldon T, Huynen MA. Reconstruction of the Proto-mitochondrial metabolism. Science, 2003, 301(5633): 609~609.
    183. Van LJC. Parasitoids in the greenhouse: successes with seasonal inoculation release systems. In: Waage J, Greathead D, editors. Insect Parasit oids. Academic Press, London, 1986, 341~74.
    184. Vigilant L, Stoneking M, Harpending H, et al. African populations and the evolution of human mitochondrial DNA. Science, 1991, 253: 1503~1507.
    185. Wang G, Mahalingam R, Knap HT. (C-A) and (G-A) anchored simple sequence repeats (ASSRs) generated polymorphism in soybean, Glycine max (L.)Merr. Theoretical Applied Genetics, 1998, 96: 1086~1096.
    186. Wang LP, Du YZ, He YT, et al. Genetic variation of host populations of Liriomyza sativae Blanchard. Agricultrual Sciences in China, 2008, 7(5): 101~105.
    187. Wang SY, Yin YP, Shi FM, et al. A molecular phylogeny of four species of genus phaneroptera based on mitochondrial cytochrome b sequences (Orthoptera: Phaneropteridae). Acta Zootaxonomica Sinica (Chinese), 2005, 30(2): 239~243.
    188. Wei SJ, Tang P, Zheng LH, et al. The complete mitochondrial genome of Evania appendigaster (Hymenoptera: Evaniidae) has low A+T content and a long intergenic spacer between atp8 and atp6. Molecular Biology Reports, 2010, 37(4): 1931~42.
    189. Wei JN, Kang L. Electrophysiological and behavioral responses of a parasitic wasp to plant volatiles induced by two leafminer species. Chemical Senses, 2006, 31: 467~477.
    190. Weising K, Wintr P, Huttel B, et al. Microsatellite markers for molecular breeding. Journal of Crop Production, 1998, 1: 113~144.
    191. Welsh J, Meclelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 1990, 18(24): 7213~7218.
    192. Wicht B, Ruggeri-Bernardi N, Yanagida T, et al. Inter- and intra-specific characterization of tapeworms of the genus Diphyllobothrium (Cestoda: Diphyllobothriidea) from Switzerland, using nuclear and mitochondrial DNA targets. Parasitology International, 2010, 59(1): 35~39.
    193. Wiegmann BM, Yeates DK, Thorne JL, et al. Time flies, a new molecular time scale for Brachyceran fly evolution without a clock. Systematic Biology, 2003, 52: 745~756.
    194. Williams JSK, Kubelik AR. DNA polymorphisisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18: 6531~6535.
    195. Wo1stenholme DR. Animal mitochondrial DNA: structure and evolution. International Review of Cytology, 1992, 141: 173~216.
    196. Woese CR, Gutell R, Gupta R, et al. Detailed analysis of the higher-order structure of l6s-like ribosomal ribonucleic acids. Microbiology and Molecular Biolgy Reviews, 1983, 47(4):621~669.
    197. Wood DM, Borkent A. 1989. Phylogeny and classification of the Nematocera. In: Mcalpine JF, Wood DM.Manual of Nearctic Diptera 3. Research Branch, Agriculture Canada, Monograph 32: 133~1370.
    198. Woodley NE. Phylogeny and classification of the“Orthorrhaphous”Brachycera. In: McAlpine JF, Wood DM, eds. Manual of Nearctic Diptera 3. Research Branch, Agriculture Canada, Monograph. 1989, 32: 1371~1395.
    199. Yang L, Wei ZJ, Hong GY, et al. The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera: Geometridae). Molecular Biology Reports, 2009, 36(6): 1441~1449.
    200. Yeates DK, Wiegmann BM. Congruency and controversy: toward a higherlevel phylogeny of Diptera. Annual Review of Entomology, 1999, 44, 397~428.
    201. Yeates DK, and Wiegmann BM. Phylogeny and evolution of Diptera: recent insights and new perspectives insights and new perspectives. In: Yeates DK, Wiegmann BM (Eds.), Evolutionary Biology of Flies. New York: Columbia University Press, 2005, 14~44.
    202. Yoshihisa A, Tokumaru S. Displacement in two invasive species of leafminer fly in different localities. Biological Invasions, 2008, 10: 951~953.
    203. Yu DJ, Xu L, Nardi F, et al. The complete nucleotide sequence of the mitochondrial genome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Gene, 2007, 396(1): 66~74.
    204. Zabeau M ,Vos P,1993.Selective restriction fragment am plification:a general method for DNA fingerprinting.Eumpe an patent application,publication no EP 0534858
    205. Zhang DX, Hewitt GM. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematics and Ecology, 1997, 25: 99~120.
    206. Zhang DX, Szymura JM, Hewitt GM. Evolution and structural conservation of the control region of insect mitochondrial DNA. Journal of Molecular Evolution, 1995, 40: 382~391.
    207. Zhou ZZ, Huang Y, Shi FM. The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome, 2007, 50(9): 855~866.
    208. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994, 20: 176~183.
    209. Zraket CA, Barth JL, Heckel DG, et a1. Genetic linkage mapping with restriction segment length polymorphisms in the tobacco budworm Heliothis virescens. Molecular Insect Science, 1990, 13~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700