用户名: 密码: 验证码:
基于贝叶斯统计推理的结构损伤识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,大跨结构与高耸复杂建筑日益增多,这些结构在建造和使用过程中的损伤识别问题成为当前土木工程领域的热点问题。而利用结构振动特性来进行结构损伤识别的方法被认为是解决这一难题的有效途径之一。
     本文首先简述了当前结构损伤识别领域的研究现状,介绍了不同的结构损伤识别方法,并比较了各种方法的优缺点;接着论述了贝叶斯统计推理的算法与基本原理,阐述贝叶斯原理在结构损伤识别中应用的可行性,与传统损伤识别方法相比,贝叶斯统计推理方法通过不同途径可实现结构在线参数识别与结构损伤模式识别。
     卡尔曼滤波器(KF)的本质是利用递归算法获得贝叶斯推理的最优解,因此,KF是贝叶斯统计推理方法最直观的表达形式。利用传统KF将动力学系统的运动微分方程转换到状态空间中,然后将待识别的参数同结构的响应—并作为系统的状态向量进行识别。
     传统的KF要求系统的状态方程和观测方程都是线性的,然而,现实中许多工程系统往往不能简单的用线性系统来描述。扩展卡尔曼滤波(EKF)采取对非线性系统近似线性化的处理方法,解决了非线性系统滤波问题。而EKF方法具有采用线型化模型不能准确反应结构系统的缺陷,同时不适用于非高斯噪声状况的识别,因此识别效果较差。采用卡尔曼滤波器与扩展卡尔曼滤波器(EKF)对线性和非线性系统进行结构参数的损伤识别,对实验结果进行分析,发现非线性结构参数识别会造成结果发散。揭示了卡尔曼滤波器的固有缺陷。
     卡尔曼滤波在线性高斯模型下能得到最优估计,但在非线性非高斯模型下则无法应用。在这种情况下,粒子滤波(PF)因其适用面广而备受关注。PF是一种基于蒙特卡罗模拟和递推贝叶斯估计的滤波方法。PF和其他预测性滤波一样,可以通过模型方程由测量空间递推得到状态空间。它采用粒子描述状态空间,用由粒子及其权重组成的离散随机测度来近似真实的状态后验分布,并且根据算法递推更新离散随机测度。它可以处理模型方程为非线性、噪声分布为非高斯分布的问题,适合应用于结构损伤识别领域。而传统粒子滤波的缺点是粒子数量固定,不能结合系统进行粒子数量的调节。
     由于传统PF中粒子数量取值为固定值,在计算过程中需要采取较大的粒子数量才能保证结构参数识别精度,不利于非平稳系统的结构系统参数识别。文中提出了采用自适应PF方法进行非平稳结构参数的损伤识别。该方法利用系统后验概率密度与当前粒子集概率密度的KL距离准则更新采样粒子数量,具有根据非平稳系统实时状态自适应调节粒子数量的优点(结构非稳定状态采取较多粒子进行识别,在结构平稳状态采用较少的粒子进行识别),改进了传统PF方法不能调节粒子数量的缺点,能在保证识别精度的同时大大降低识别过程的计算量,因此该方法比传统PF方法更适合进行在线的结构系统参数识别。数值仿真结果证明了此方法在结构损伤在线识别中的有效性。
     贝叶斯概率神经网络(PNN)采用贝叶斯统计理论描述测量数据,因此贝叶斯概率神经网络在有噪声情况下的结构损伤模式识别具有巨大潜力。而小波分析的数据处理能力可以对振动数据进行详尽刻划,结合小波分析与PNN,提出小波概率神经网络对结构损伤模式进行识别,分析小波函数,小波尺度,噪声水平等因素对识别结果的影响,损伤识别结果证明小波神经网络具有抗噪声能力强,识别精度高的优点,在结构损伤模式识别方面具有巨大的潜力。
     本论文基于贝叶斯统计推断理论针对结构系统参数识别与损伤模式识别问题进行了研究,最后对全文的主要工作和研究成果进行总结,并指出了课题中有待进一步改进和研究的问题。
More and more long span structures and high buildings are constructed with science and technique development; it is a hot topic in civil engineering field for structural damage identification in construction and employment. It is an effective approach to solve structural damage identification problem based on the structural dynamic parameters.
     The state of arts of researches about structural damage identification is depicted in this dissertation, and the different structural damage identification methods are introduced; the characters of different methods are analyzed. Then the rationale of Bayesian statistics reasoning algorithm is depicted, and the feasibility using Bayesian theory for structural damage identification is expatiated. Compared with traditional damage identification methods, Bayesian statistics reasoning can realize structural parameters identification and structural damage pattern identification by different approachs.
     The essence of Kalman filtering (KF) is to gain the most optimal solution using recursion algorithm; therefore, KF is the most intuitionistic expression of Bayesian statistics reasoning method. Traditional KF is utilized to identify structural parameters by transformation from dynamic system differential equation to state space, and combining structural parameters and responses in system state vectors in this dissertation.
     The state equations and measurement equations of traditional KF are linear. Many engineering systems are not linear systems in reality. The extended Kalman filtering (EKF) method adopts the method to linearize the non-linear system approximately, and the problem of non-linear system filtering is solved. But the EKF method has the disadvantages that the linearization of system is only approximative, and it should have Gaussian noise hypothesis in system. Therefore, the EKF method has low identification precision. KF method and EKF method are adopted to identify structural parameters of liner/non-liner structural system in this paper, and the result of non-liner structural system identification is not converged in experiment. The facts have proved that KF method and EKF method have intrinsic limitation.
     The KF can get the optimal estimate in the Linear-Gaussian model, but it can not be applied in the nonlinear and non-Gaussian model. In this case, Particle filtering (PF) method is studied abroad for its wide application. The PF is a filter method based on Monte-Carlo simulation and recursive Beyesian estimation. As other predictive filters, state space is recursively got from measure space with system model by using the PF. It uses particles to describe the state space. The discretely random measure composed by particles and associated weights approximates to the true posterior state distribution, and is updated by recursion of the algorithm. The PF can resolve the problem of nonlinear model equations and non-Gaussian noise distribution, and is suitable for the structural damage identification fields. The traditional PF method has the disadvantages that the particle numbers is fixed, and the PF can not adjust the particle number in system identification.
     Since the particle numbers are fixed in particle filtering process, in order to guarantee the precision of system identification, the large particle numbers must be used which is not beneficial to the parameter identification of non-stationary system. An adaptive particle filtering (APF) method is proposed to identify non-stationary structural system parameters damage identification. In the APF, the sampling particle numbers are updated by the K-L distance rule between the system posterior probability density and current probability density of sampling particles set; it reduces the computations greatly in system identification by adaptive adjusting particle numbers by the state of non-stationary system (It adopts large particle numbers in non-stationary system state, vice versa.), hence it has a good time tracking ability, and it is more suitable for tracking the non-stationary system than the conventional PF. The numerical simulations confirm the effectiveness of the proposed method for the online structural damage identification.
     The Bayesian probabilistic neural network (PNN) describes measurement data in Bayesian statistics theory; it shows great ability of structural damage pattern recognition with noisy conditions. By combining wavelet analysis with PNN, a wavelet probabilistic neural network (WPNN) is proposed for structural damage identification in the dissertation; and the effect factors to damage identification result of wavelet function, wavelet scales and noise level etc. were analyzed. The identification result shows that the WPNN has high identification accuracy and noise-resistant and, huge structural damage pattern identification future.
     This dissertation focuses on structural system parameters identification and damage pattern identification problems based on Bayesian statistics reasoning theory, and at last, the main contributions and conclusions of this dissertation are summarized and some problems which need further research are put forward.
引文
[1]谢强,薛松涛.土木工程结构健康监测的研究状况与进展[J].中国科学基金,2001,15(5):285-288
    [2]三田彰著,薛松涛,陈镕译.结构健康监测动力学[M].西安:西安交通大学出版社,2004
    [3]Carden E P,Fanning F.Vibration based condition monitoring:a review[J].Structural Health Monitoring,2004,3(4):355-377
    [4]姜绍飞.基于神经网络的结构优化与损伤检测[M].北京:科学出版社,2002
    [5]Charles R,Hoon S.Condition and Damage Monitoring Methodologies Engineering Science and Applications Division[M].Los Alamos:National Laboratory,1999
    [6]刘济科,汤凯.基于振动特性的损伤识别方法的研究进展[J].中山大学学报(自然科学版),2004,43(06):57-61
    [7]黄天立.结构系统和损伤识别的若干方法研究[D].上海:同济大学博士论文,2007
    [8]Koh C G,et al.Distributive GA for Large System Identification Problems[A].NDE for Health Monitoring and Diagnostics[C],San Diego,2002,4702-52
    [9]尹涛,朱宏平,余岭.运用改进的遗传算法进行框架结构损伤检测[J],振动工程学报,2006,19(4):525-531
    [10]郭国会,易伟建.基于神经网络的框架结构破损评估.重庆建筑大学学报,1999,21(3):106-121
    [11]Specht D F.Probabilistic neural networks[J].Neural Networks,1990(3):109-118
    [12]王柏生,倪一清,高赞明.框架连接损伤识别神经网络输入参数的确定[J].振动工程学报,2000,13(1):137-142
    [13]黄声享等.小波分析在高层建筑动态监测中的应用[J].测绘学报,2003,32(2):153-157
    [14]郭健,顾正维,孙炳楠,陈勇.基于小波分析的桥梁健康监测方法[J].工程力学,2006,23(12):129-135
    [15]Hansang K,Hani M.Damage detection of structures by wavelet analysis[J].Engineering Structures,2004,26:347-362
    [16]Hou Z,Noori M,Amand R S.Wavelet-Based Approach for Structural Damage Detection[J].ASCE,Journal of Engineering Mechanics,2000,126(7):677-683
    [17]唐和生,薛松涛,陈镕,王远功.基于小波多分辨滤波特性的结构损伤识别[J],力学季刊,2004,25(1):152-155
    [18]Dang N H,Rao V S.Embedded Systems for the Assessment of Structural Damage[A].NDE for Health Monitoring and Diagnostics[C],San Diego,2002,4701-18.CD version
    [19]Amaravadi V K,Rao V S,Mitchell K,et al.Structural Integrity Monitoring of Composite Patch Repairs Using Wavelet Analysis and Neural Network[A].NDE for Health Monitoring and Diagnostics[C],San Diego,2002,4702-17.CD version
    [20]Lovse J W,Teskey W F,et al.Dynamic Deformation Monitoring of a Tall Structure Using GPS Technology[J].Journal of Surveying Engineering,1995,121(1):35-40
    [21]Guo J,GE S J.Research on Displacement and Frequency of Tall Building under Wind Load Using GPS[A].Proceedings of ION GPS'97[C].1997:1385-1388
    [22]黄斌,瞿伟廉.结构损伤的统计诊断[A].中日第三届中国结构抗振控制年会[C],上海,2002
    [23]姜德生等.工程结构健康监测和诊断的光纤光栅振动传感技术研究[A].中日第三届中国结构抗振控制年会[C],上海,2002
    [24]姜绍飞,付春,陈仲堂.基于WPNN与数据融合的损伤检测方法[J].沈阳建筑大学学报(自然科学版),2005,21(2):86-90.
    [25]张清华,李乔,唐亮.基于证据理论的结构损伤识别研究[J].振动工程学报,2007,20(02):200-205
    [26]程磊,瞿伟廉.基于Hilbert-Huang变换理论的结构损伤检测[J].防灾减灾工程学报,2007,27(3):318-322
    [27]周建庭,向毓志,郝袆等.在役大跨径桥梁基于远程监测的可靠性评价[J].重庆交通大学学报(自然科学版),2007,26(4):32-35
    [28]喻言,欧进萍.海洋平台结构振动监测的无线传感实验研究[J].哈尔滨工业大学学报,2007.39(2):187-190
    [30]Kruger M,Grosse C U,Marron P J.Wireless structural health monitoring using MEMS[J].Key Engineering Materials,2005,(293):625-634
    [31]Igusa T,Buonopane S G,Ellingwood B R.Bayesian analysis of uncertainty for structural engineering applications[J].Structural Safety,2002,24(2):165-186
    [32]Yuen K V,Beck J L,Au S K.Structural damage detection and assessment by adaptive Markov chain Monte Carlo simulation[J].Structural Control and Health Monitoring,2004,11(4):327-347
    [33]Jiang S,Harry Z.Full Bayesian network classifiers[A].ACM International Conference Proceeding Series,v148,ACM International Conference Proceeding Series-Proceedings of the 23rd International Conference on Machine Learning[C],ICML2006,2006,897-904
    [34]Dellaert F,Thorpe C.Robust Car Tracking Using Kalman Filtering and Bayesian Templates[J].Intelligent Transportation Systems,2000,19(3):72-82
    [35]罗传翼,程桂芬.随机信号处理与控制基础[M].北京:化学工业出版社,2002
    [36]Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[R].Oxfird:Department of Engineering Science,University of Oxford,1996
    [37]李烨,基于粒子滤波器的结构系统识别研究[D].上海:同济大学硕士论文,2007
    [38]Doucet A N,de Freitas,Gordon N,Sequential Monte Carlo Methods in Practice[M].New York,USA:Sprinker,2001
    [39]夏克寒,许化龙,张朴睿.粒子滤波的关键技术及应用[J].电光与控制,2005,12 (6):1-4
    [40]Yang J N,Lin S,On-line identification of non-linear hysteretic structures using an adaptive tracking technique[J].International Journal of Non-Linear Mechanics,2004,39:1481-1491
    [41]Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEEE Proceedings Part F:Radar and Signal Processing,1993,140(2):107-113
    [42]Steven M K.Fundamentals of statistical signal processing:estimation theory[M].NJ,USA:Prentice-Hall Inc,1993
    [43]Rugh W J.Linear System Theory[M].NJ,USA:Prentice Hall,second edition,1996
    [44]Kailath T.Linear systems[M].NJ,USA:Prentice Hall,Englewood Cliffs,1980
    [45]Kailath T,Sayed A H,Hassibi B.Linear Estimation[M].NJ,USA:Prentice Hall,2000
    [46]Gut A.An Intermediate Course in Probability[M].Berlin,Heidelberg:Springer Verlag,1995
    [47]Jazwinski A H.Stochastic processes and filtering theory[M].New York,USA:athematics in science and engineering Academic Press,1970
    [48]Papoulis A.Probability,Random Variables,and Stochastic Processes[M],New York,USA:McGraw-Hill,1991
    [49]Soderstrom T.Discrete-time Stochastic Systems[M].Cambridge,UK:Prentice Hall.1994
    [50]Jian Y C,Irving S R.A detection algorithm for optical targets in clutter[J].IEEE Trans Aerosp Electron Syst,1987,23(1):46-59
    [51]Hoshiya M,Satio E.Structural identification by extended Kalman filter[J].Journal of Engineering Mechanics,1984,110(12):1757-1770
    [52]Kalman R E.A New Approach to Linear Filtering and Prediction Problems[J].Journal of Basic Engineering Series D,1960,(1):35-45
    [53]钟伟才,刘芳.二阶卡尔曼滤波分布估计算法[J].计算机学报,2004,27(9):1272-1277
    [54]雷明,韩崇昭,肖梅,扩展卡尔曼粒子滤波算法的一种修正方法[J].西安交通大学学报,2005,39(8):824-827
    [55]Caughey T K.Random excitation of a system with bilinear hysteresis[J].ASME Journal of Applied Mechanics,1960,27(12):649-652
    [56]Wen Y K.Method for random vibration of hysteretic systems[J].ASCE Journal of the Engineering Mechanics Division,1976,102(2):249-263
    [57]Wen Y K.Equivalent Linearization for Hysteretic Systems Under Random Excitation[J].Journal of Applied Mechanics,1980,47:150-155
    [58]丁幼亮,李爱群,缪长青.基于Bonc-Wen模型的非线性结构多尺度损伤分析研究[J],振动与冲击,2007,26(4):81-85
    [59]吕西林,金国芳.钢筋混凝土非线性有限元理论与应用[M].上海:同济大学出版社,1996.
    [60]姚谦峰,苏三庆.地震工程[M].西安:陕西科学技术出版社,2000
    [61]Choi S B,Lee S K,Park Y P.A hysteresis model for the field-dependent damping force of a magnetorheological damper[J].Journal of Sound and Vibration,2001,245(2):375-383
    [62]Stanway R,Sproston J L,Stevens N G.Non-linear modeling of an electro-rheological vibration damper[J].Journal of Electrostatics,1987,20(2):167-184
    [63]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150
    [64]杨叔子,史铁林.基于知识的诊断推理[M].北京:清华大学出版社,1993
    [65]吴金培,肖健华.智能故障诊断与专家系统[M].北京:科学出版社,1997
    [66]Ramachandran S.Theory refinement of Bayesian networks with hidden variables[D].Austin:The University of Texas at Austin,1998
    [67]Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer,2002
    [68]Lam W,Bacchus F.Learning Bayesian belief networks:An approach based on the MDL principle[J].Computational Intelligence,1994,10(4):269-293
    [69]Huang C,Darwiche A.Inference in belief networks:A procedural guide[J].International Journal of Approximate Reasoning,1996,15(3):225-263
    [70]Binder K,Heermann D W,著.秦克诚,译.统计物理学中的蒙特卡罗模拟方法[M].北京:北京大学出版社,1993:1
    [71]裴鹿成.蒙特卡罗方法及其应用(1993~1997)[A].第六届全国蒙特卡罗方法学术交流会[C].北京:海洋出版社,1998:3
    [72]徐钟济.蒙特卡罗方法[M].上海科学技术出版社,1985
    [73]Pitt M K,Shephard N.Filtering via simulation:Auxiliary particle filters[J].Journal of the American Statistical Association,1999,94:590-608
    [74]Beadle E R,Djuric P M.A fast weighted Bayesian bootstrap filter for nonlinear model state estimation[J].IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):338
    [75]Doucet J F G.,de Freitas,Gordon N J.An introduction to sequential Monte Carlo methods:Sequential Monte Carlo Methods in Practice[M].New York,USA:Springer-Verlag,2001
    [76]Li S J,Suzuki Y,Noori M.Identification of hysteretic systems with slip using bootstrap filter[J].Mechanical Systems and Signal Processing,2004,18(4):781-793
    [77]Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208
    [78]Doucet A.On sequential simulation-based methods for Bayesian filtering[R].Technical Report CUED/FINFENG/ TR 310,Department of Engineering,Cambridge University,1998
    [79]Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-192
    [80]Zhang J L,Liu J S.A New Sequential Importance Sampling Method and its Application to the Two-Dimensional Hydrophobic-Hydrophilic Model[J].Journal of Chemical Physics.2002,117(7):3492-3498
    [81]Geweke J.Bayesian inference in econometrics models using Monte Carlo integration[J].Econometrics,1989,57(6):1317-1339
    [82]Berzuini C,Best N G,Gilks W R,et al.Dynamic conditional independence models and Markov Chain Monte Carlo methods[J].J of the American Statistical Association,1997,92(440):1403-1412
    [83]Dieter F.Adapting the sample size in particle filters through KLD-sampling[J].The Int J of Robotics Research,2003,22(12):985-1003
    [84]Rice J A.Mathematical Statistics and Data Analysis[M].Duxbury Press,second edition,1995
    [85]Zacks S.The theory of statistical inference[M].New York,USA:Wiley Press,1971
    [86]Shin H S,Salas J D.Spatial analysis of hydrologic and environmental data based on artificial neural networks[A].Artificial Neural Networks in Hydrology,Series:Water Science and Technology Library[C].2000
    [87]商杰,刘明.BP算法的改进及在模式识别中的应用[J].合肥学院学报,2007,17(3):15-18
    [88]刘学敏,万磊,徐玉如.模糊神经网络技术在水下机器人运动控制器设计中的应用[J].中南工业大学学报,2000,31:182-184
    [89]边肇祺,张学工.模式识别(第二版)[M].北京:清华大学出版社,2000
    [90]Yang J,Frangi A F,Yang J Y,et al.KPCA plus LDA:a complete kernel fisher discriminant framework for feature extraction and recognition[J],IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):230-244
    [91]程剑,应自炉.基于二维主分量分析的面部表情识别[J].计算机工程与应用,2006,42(5):32-33
    [92]Scholkopf B,Smola A,Muller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319
    [93]Haddadnia J,Ahmadi M,Faez K.A hybrid learning RBF neural network for human face recognition with pseudo zemike moment invariant[A]//IEEE Int Joint conf on Neural Network[C],Honolulu,HI,USA,2002
    [94]Kivanc K,Smail H B,Hamit K.A classification system for beans using computer vision system and artificial neural networks[J].Journal of Food Engineering,2006,from online
    [95]Nicolelis M A.Brain-machine interface to restore motor function and probe neural circuits[J].Nature Reviews Neuroscience,2003,4(5):417-422
    [96]Jung K.Neural network-based text location in color images[J].Pattern Recognition Letters,2001,22(14):1503-1515
    [97]Zhu H,Zhang X M,Taniguchi K,et al.A method of binalization for renal images using the self-organized neural network[J].Trans IEE of Japan,1998,118(9):1397-1398
    [98]夏长亮,王明超.基于RBF神经网络的开关磁阻电机单神经元PID控制[J].中国电机工程学报,2005,25(15):161-165
    [99]Rehman K M,Suresh G,Fahimi B,et al.Optimized torque control of switched reluctance motor at all operational regimes usingneural network[J].IEEE Transactions on Industry Applications,2001,37(3):904-913
    [100]Yuan Z,Guo X.Back propagation neural networks for the inverse control of discrete-time nonlinear plant[J].Advances in Modeling & Analysis,1994,40(4):13-23
    [101]吕大刚,邢方亮,张世海,王光远.基于神经模式识别的建筑结构选型方案研究[J].哈尔滨工业大学学报,2003,35(12):1153-1155
    [102]吕大刚.结构智能选型设计研究[D].哈尔滨:哈尔滨工业大学,2001
    [103]杨启红,尉强.基于神经网络的结构优化设计[J].山西建筑,2006,32(22):74-75
    [104]于得介,雷慧.用BP神经网络诊断结构破损[J].工程力学,2001,18(1):56-61
    [105]杨晓楠,姜绍飞等.基于特征向量简化的复杂土木结构损伤检测[J].沈阳建筑工程学院学报,2003,19(2):81-84
    [106]Chen C H.Fuzzy logic and neural network handbook[M],New York,USA:McGraw-Hill,1996
    [107]Wang J Y,Ko J M,Ni Y Q.Modal sensitivity analysis of Tsing Ma Bridge for structural damage detection[A].Nondestructive Evaluation of Highways,Utilities,and Pipelines Ⅳ[C],SPIE,2000,3995:300-311
    [108]姜绍飞,杨晓楠,陈兆才,倪一清,高赞明.基于主组分分析的概率神经网络损伤定位研究[J].地震工程与工程振动,2004,24(2):187-191
    [109]Flood I,Kartam N.Neural networks in civil engineering.Systems and application[J].Comput,Civil Engng,ASCE,1994,8:148-162
    [110]欧进萍.结构振动控制-主动、半主动和智能控制[M].北京:科学出版社,2003
    [111]郑毅强.模糊神经网络在结构振动控制中的应用研究[J].工程与建设,2007,21(2):113-117
    [112]Kim J,Jung H,Lee W.Optimal structural control using neural networks[J].Journal of Engineering Mechanics,2000,126(2):201-205
    [113]蒋元平,胡晓炎.用人工神经网络模拟土体塌陷的可行性分析[J],长江大学学报,2007,4(2):101-104
    [114]谢强.建筑结构健康监测若干基础问题的实验研究及分析[D],上海:同济大学博士论文,2001
    [115]Sathish R,Anand G V.Improved Direction-of-Arrival Estimation Using Wavelet Based Denoising Techniques[J].Journal of VLSI Signal Processing Systems,2006,45(2):29-48
    [116]陈长征,罗跃纲等.结构损伤检测与智能诊断[M].北京:科学出版社,2001
    [117]李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与实验分析[J].土木工程学报,2003,36(5):52-57
    [118]丁宇新,沈雪勤.基于能量密度的小波神经网络[J].计算机学报,1997,20(9):832-838
    [119]李世玲,李治,李和生.基于小波包能量特征的滚动轴承故障监测方法[J].系统仿真学报,2003,15(1):76-80
    [120]姜绍飞,刘明等.大跨悬索桥损伤定位的自适应概率神经网络研究[J].土木工程学报,2003,36(8):74-78
    [121]李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2003
    [122]Quek S T,Wang Q,Zhang L,et al.Sensitivity analysis of crack detection in beams by wavelet technique[J].International Journal of solids and structures,2001,(43):2899-2910
    [123]陈建云,王志华,张伟伟,马宏伟.小波分析在圆柱壳结构损伤检测中的应用研究[J].应用力学学报,2007,24(3):456-459
    [124]Sone A,et al.Health Monitoring System of Structures Based on Orthonormal Wavelet Transform.Seismic Engineering[J].Transactions of ASME,1995,312:161-167
    [125]唐和生,薛松涛,陈镕,王远功.小波基带宽的变化对结构损伤识别的影响[J].同济大学学报,2003,31(8):883-887
    [126]飞思科技产品研发中心.MATLAB6.5辅助小波分析与应用[M].北京:电子工业出版社,2003
    [127]李凯,唐和生,陈镕,薛松涛,杨晓楠.结构损伤识别中小波尺度的选择方法研究[J].结构工程师(增刊),2007(s):294-300
    [128]杨晓楠,唐和生,陈铬,薛松涛.钢结构损伤识别中Db族小波函数选择[J].同济大学学报(自然科学版),2006,34(12):1568-1572
    [129]杨晓楠,姜绍飞,唐和生等.小波函数的选择对结构损伤识别的影响[J],沈阳建筑大学学报(自然科学版),2005,21(6):635-639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700