用户名: 密码: 验证码:
中国人2型糖尿病易感基因的定位与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病是多基因复杂病,且在不同人种中遗传异质性较大,本研究采用候选基因和定位克隆两种研究策略,对中国人2型糖尿病的易感基因进行鉴定和定位,同时评价公共数据库中国人SNP数据在上海地区汉族人的应用性。
     1.中国人2型糖尿病的候选基因关联研究
     使用候选基因法,研究了与糖脂代谢相关的转录因子过氧化物酶增殖激活受体(peroxisome proliferator activated receptor delta,PPARD)基因、与内质网应激相关的激活转录因子6(activating transcription factor 6,ATF6)基因和新发现的脂肪细胞因子视黄醇结合蛋白4(retinol binding protein 4,RBP4)基因多态性与中国人2型糖尿病的相关性。对于PPARD和ATF6基因,我们入选287名2型糖尿病患者和376名正常对照者,使用聚合酶链反应限制性片断长度多态性法检测SNP位点基因型,发现PPARD基因-87 T>C多态位点与中国人糖代谢相关,C等位基因携带者的空腹(对照组:4.85±0.04 vs 4.99±0.04,P=0.0078;病例组:6.89±0.12 vs 7.84±0.18,P<0.0001)及糖刺激后2小时血糖水平(病例组:13.53±0.23 vs 14.89±0.33,P<0.0001)显著高于T/T纯合子,且胰岛素抵抗状态显著(胰岛素敏感性指数,对照组:3.29±0.08 vs 3.06±0.07,P=0.0365;病例组:1.51±0.03 vs 1.42±0.03,P=0.0058)。ATF6基因多态位点Ala145Pro与中国人早发2型糖尿病相关,Ala等位基因频率在早发2型糖尿病家系先证者中频率显著高于正常对照人群(77.6% vs 69.4%,P=0.0417)。Ala145Pro与中国人脂代谢相关,Pro等位基因携带者高密度脂蛋白胆固醇水平较低(1.33±0.02 vs 1.25±0.02,P=0.0140)。对于RBP4基因,我们首先在32个样本中对基因外显子、1kb启动子和部分内含子进行测序寻找SNP位点,并进行连锁不平衡分析选取标签SNP,继而在255个2型糖尿病患者和372个正常对照人群检测了5个标签SNP,发现+5388 C>T、+8201 T>A和+8204 T>A组成的单体型CAA在2型糖尿病组中显著高于正常对照组(0.5% vs 1.8%,P=0.0343,经验P值为0.0659),且+5388 C>T与正常对照者中空腹及糖刺激后2小时C肽水平显著相关,T等位基因携带者水平较高(空腹C肽:1.80±0.05 vs 1.56±0.07,P=0.0162;2小时C肽:7.15±0.26 vs 5.71±0.38,P=0.0075)。此外,本研究还见到RBP4基因+5388 C>T等多态位点与血清RBP4水平相关。
     2.国际单体型图谱计划数据在上海汉族人群中的应用性评价
     国际单体型图谱计划,简称HapMap计划,提供了包括中国北方汉族人在内的四个人群全基因组400万个SNP位点的频率及各染色体区域LD和标签SNP的信息,是关联研究设计的重要工具,但其是否能有效代表中国南方汉族人的遗传信息尚未见报道。我们使用国际2型糖尿病染色体1q协作组数据对HapMap计划数据库在上海地区汉族人中进行应用性评价,发现HapMap计划中国人数据与上海地区汉族人在等位基因频率分布、相邻SNP间r2值和单体型频率高度一致(R值依次为0.94、0.97、0.99,P值均<0.0001),且HapMap数据中选取的标签SNP能有效代表上海地区汉族人的遗传信息,r2=0.8时,93.8%的SNP可被标记。因此,HapMap计划可为中国人群多基因疾病遗传关联研究的设计提供初步信息。
     3.1q23.3区域中国人2型糖尿病易感基因的定位
     前期研究中,我们发现在染色体1q21-q25区域存在连锁信号,国际2型糖尿病染色体1q协作组的精细作图研究进一步将其中之一定位于1q23.3区域中,在此基础上,我们对染色体1q23.3区域中国人2型糖尿病易感基因进行了定位研究。本研究从HapMap计划中国人数据库中挑选标签SNP,结合考虑SNP位点所在区域的功能,共选取94个SNP,使用时间飞行质谱技术在1892例2型糖尿病患者和1808例正常对照者中检测各SNP基因型。经过数据质控分析,共3491例样本、73个SNP的数据为有效数据。经单点SNP分析,本研究发现位于NOS1AP基因内含子2中的SNP位点rs12742393与2型糖尿病高度相关,C等位基因在2型糖尿病患者中显著升高(25.2% vs 21.6%,P=0.0004,经验P值为0.0342),由rs4531272 - rs12742393组成的单体型T-C在2型糖尿病组显著高于正常对照组(52.6% vs 49.5%,P=0.0092,经验P值为0.0424)。在正常人群中分析P值小于0.05的SNP位点发现位于NOS1AP基因的rs1415263与血清总胆固醇(TT vs TC vs CC:5.13±0.06 vs 4.99±0.03 vs 4.94±0.09,P < 0.05)和低密度脂蛋白胆固醇(TT vs TC vs CC:3.45±0.05 vs 3.36±0.03 vs 3.24±0.04,P < 0.05)水平相关;rs12029454与低密度脂蛋白胆固醇相关(GG vs GA vs AA:3.27±0.03 vs 3.39±0.03 vs 3.46±0.07,P < 0.05)。
Type 2 diabetes is a complex genetic disease with heterogeneity among populations. In this study, we used the strategy of candidate gene and positional cloning to identify susceptible genes of type 2 diabetes in the Chinese population. We also evaluated the transferability of HapMap Chinese data among Shanghai population.
     1. Candidate gene association study on type 2 diabetes in Chinese
     First, we analyzed the association between diabetes and three candidate genes, peroxisome proliferator activated receptor delta (PPARD), activating transcription factor 6 (ATF6) and retinol binding protein 4 (RBP4). A total of 287 diabetic patients and 376 normal controls were recruited and genotyped for the single nucleotide polymorphisms (SNPs)–87 T>C of PPARD as well as Ala145Pro of ATF6. We found C allele carriers of PPARD–87 T>C had significantly higher plasma glucose levels at both fasting status (controls: 4.85±0.04 vs 4.99±0.04, P = 0.0078; cases: 6.89±0.12 vs 7.84±0.18, P < 0.0001) and 2 hours after glucose stimulation (cases: 13.53±0.23 vs 14.89±0.33, P < 0.0001). Meanwhile, poorer insulin sensitivity (controls: 3.29±0.08 vs 3.06±0.07, P=0.0365; cases: 1.51±0.03 vs 1.42±0.03, P = 0.0058) was detected among them. The Ala allele of ATF6 Ala145Pro was significantly more frequent in the probands of early onset type 2 diabetic pedigrees (77.6% vs 69.4%, P = 0.0417). The Pro allele carriers had significantly lower high-density lipoprotein cholesterol levels (1.33±0.02 vs 1.25±0.02, P = 0.0140). For RBP4, we sequenced exons and the putative promoter region in 32 subjects to identify variants. Taking account of the pairwise linkage disequilibrium (LD) and minor allele frequencies, five SNPs were further genotyped in 255 type 2 diabetes patients and 372 normal controls. We found a rare haplotype CAA formed by +5388 C>T, +8201 T>A and +8204 T>A was more frequent in diabetic patients (P=0.0343, empirical P=0.0659). In the normal controls, the SNP +5388 C>T was associated with serum C-peptide levels at both fasting status (1.80±0.05 vs 1.56±0.07, P=0.0162) and 2-hours after glucose stimulation (7.15±0.26 vs 5.71±0.38, P=0.0075). The non-coding SNPs were also found to be associated with circulating RBP4 concentrations in both groups (P<0.05).
     2. Evaluation the transferability of HapMap Chinese data in a Shanghai population
     The HapMap project catalogs millions of common SNPs in the human genome in four major populations including northern Hans, with the aim to facilitate association studies on complex diseases. In this study, we used genotype data from International Type 2 Diabetes 1q Consortium to examine the transferability of HapMap Chinese data in Shanghai population. The HapMap Chinese data showed high consistence with Shanghai population on allele frequencies, LD coefficient r2 and haplotype frequencies (R=0.94, 0.97, 0.99 respectively, all P<0.0001). In addition, tagging SNP set selected from HapMap Chinese data also performed well in Shanghai population with the threshold 0.8 of r2 to cover 93.8% of the SNPs. The HapMap SNP data performed well in the Shanghai population and thus could be a powerful tool for the genetic studies on complex disease in southern Hans.
     3. Positional cloning study of type 2 diabetes susceptible gene on chromosome 1q23.3 in Chinese
     Previously, we detected a linkage signal of type 2 diabetes on chromosome 1q21-q25. International Type 2 Diabetes 1q Consortium then did a fine mapping analysis and located one of the susceptible genes on chromosome 1q23.3. In this study, we did a positional cloning study based on the previous linkage and fine mapping studies. Considering both LD and potential SNP function, 94 SNP were selected from HapMap data and genotyped in 1892 diabetic patients and 1808 normal controls using matrix-assisted laser desorption inoization-time of flight mass spectrometry. After quality control of genotyping, a total of 3491 individuals and 73 SNPs were analyzed. We found rs12742393, located in intron2 of NOS1AP, was associated with type 2 diabetes, C allele was significantly higher in the cases (25.2% vs 21.6%, P = 0.0004, empirical P = 0.0342). The haplotype TC formed by rs4531272 - rs12742393 was also significantly more frequent in the cases (52.6% vs 49.5%, P = 0.0092, empirical P = 0.0424). In the normal controls, rs1415263 was associated with serum levels of total cholesterol (TT vs TC vs CC: 5.13±0.06 vs 4.99±0.03 vs 4.94±0.09, P < 0.05) and low-density lipoprotein cholesterol (TT vs TC vs CC: 3.45±0.05 vs 3.36±0.03 vs 3.24±0.04, P < 0.05). We also found rs12029454 was associated with serum level of low-density lipoprotein cholesterol (GG vs GA vs AA: 3.27±0.03 vs 3.39±0.03 vs 3.46±0.07, P < 0.05).
引文
1 Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature, 2001,414:782-787.
    2 中国糖尿病协作组. 1994 中国糖尿病患病率及其危险因素. 中华内科杂志, 1997,36:384-388.
    3 李锐 , 卢伟 , 贾伟平 , 等 . 上海市 2 型糖尿病患病情况现状调查 . 中华医学杂志 , 2006,86:1675-1680.
    4 Lander ES. The new genomics: global views of biology. Science, 1996,274:536-539.
    5 Chakravarti A. Population genetics--making sense out of sequence. Nat Genet, 1999,21:56-60.
    6 Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet, 2003,33:177-182.
    7 Risch NJ. Searching for genetic determinants in the new millennium. Nature, 2000,405:847-856.
    8 Lander ES, Schork NJ. Genetic dissection of complex traits. Science, 1994,265:2037-2048.
    9 The International HapMap Consortium. Integrating ethics and science in the International HapMap Project. Nat Rev Genet, 2004,5:467-475.
    10 The International HapMap Consortium. The International HapMap Project. Nature, 2003,426:789-796.
    11 The International HapMap Consortium. A haplotype map of the human genome. Nature, 2005,437:1299-1320.
    12 Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet, 2000,26:76-80.
    13 Flavell DM, Ireland H, Stephens JW, et al. Peroxisome proliferator-activated receptor alpha gene variation influences age of onset and progression of type 2 diabetes. Diabetes, 2005,54:582-586.
    14 Heid IM, Wagner SA, Gohlke H, et al. Genetic architecture of the APM1 gene and its influence onadiponectin plasma levels and parameters of the metabolic syndrome in 1,727 healthy Caucasians. Diabetes, 2006,55:375-384.
    15 Florez JC, Burtt N, de Bakker PI, et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes, 2004,53:1360-1368.
    16 Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet, 2000,26:163-175.
    17 Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet, 2006,38:320-323.
    18 Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med, 2006,355:241-250.
    19 Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet, 2007, 39:770-775.
    20 Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 2007, 316:1341-1345.
    21 Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science, 2007, 316:1331-1336.
    22 Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science, 2007,316:1336-1341.
    23 Mayans S, Lackovic K, Lindgren P, et al. TCF7L2 polymorphisms are associated with type 2 diabetes in northern Sweden. Eur J Hum Genet, 2007,15:342-346.
    24 Hayashi T, Iwamoto Y, Kaku K, et al. Replication study for the association of TCF7L2 with susceptibility to type 2 diabetes in a Japanese population. Diabetologia, 2007,50:980-984.
    25 Helgason A, Palsson S, Thorleifsson G, et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet, 2007,39:218-225.
    26 Damcott CM, Pollin TI, Reinhart LJ, et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for arole in both insulin secretion and insulin resistance. Diabetes, 2006,55:2654-2659.
    27 Munoz J, Lok KH, Gower BA, et al. Polymorphism in the transcription factor 7-like 2 (TCF7L2) gene is associated with reduced insulin secretion in nondiabetic women. Diabetes, 2006,55:3630-3634.
    28 Cauchi S, Meyre D, Choquet H, et al. TCF7L2 variation predicts hyperglycemia incidence in a French general population: the data from an epidemiological study on the Insulin Resistance Syndrome (DESIR) study. Diabetes, 2006,55:3189-3192.
    29 Daly MJ, Rioux JD, Schaffner SF, et al. High-resolution haplotype structure in the human genome. Nat Genet, 2001,29:229-232.
    30 Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 2005,365:1333-1346.
    31 Barroso I, Luan J, Sandhu MS, et al. Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes. Diabetologia, 2006,49:501-505.
    32 Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev, 2001,81:1269-304.
    33 Ferre P. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes, 2004,53 Suppl 1:S43-50.
    34 Schmuth M, Haqq CM, Cairns WJ, et al. Peroxisome proliferator-activated receptor (PPAR)-beta/delta stimulates differentiation and lipid accumulation in keratinocytes. J Invest Dermatol, 2004,122:971-83.
    35 Harman FS, Nicol CJ, Marin HE, et al. Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis. Nat Med, 2004,10:481-483.
    36 Gupta RA, Wang D, Katkuri S, et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-delta accelerates intestinal adenoma growth. Nat Med, 2004,10:245-247.
    37 Oliver WR Jr, Shenk JL, Snaith MR, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A,2001,98:5306-5311.
    38 van der Veen JN, Kruit JK, Havinga R, et al. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res, 2005,46:526-534.
    39 Muoio DM, MacLean PS, Lang DB, et al. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta. J Biol Chem, 2002,277:26089-26097.
    40 Wang YX, Lee CH, Tiep S, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell, 2003,113:159-170.
    41 Tanaka T, Yamamoto J, Iwasaki S, et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A, 2003,100:15924-15929.
    42 Lee CH, Olson P, Hevener A, et al. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A, 2006,103:3444-3449.
    43 Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell, 2001,104:531-43.
    44 Kannisto K, Chibalin A, Glinghammar B, et al. Differential expression of peroxisomal proliferator activated receptors alpha and delta in skeletal muscle in response to changes in diet and exercise. Int J Mol Med, 2006,17:45-52.
    45 Novoa I, Zeng H, Harding HP, et al. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol, 2001,153:1011-1022.
    46 Travers KJ, Patil CK, Wodicka L, et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell, 2000,101:249-258.
    47 McCullough KD, Martindale JL, Klotz LO, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol, 2001,21:1249-1259.
    48 Yoshida H, Okada T, Haze K, et al. ATF6 activated by proteolysis binds in the presence of NF-Y(CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol, 2000,20:6755-6767.
    49 Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell, 2000,6:1099-1108.
    50 Wang XZ, Harding HP, Zhang Y, et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J, 1998,17:5708-5717.
    51 Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev, 2002,16:1345-1355.
    52 Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000,287:664-666.
    53 Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000,403:98-103.
    54 Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem, 2004,279:25935-25938.
    55 Zhao L, Ackerman SL. Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol, 2006,18:444-452.
    56 Ron D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J Clin Invest, 2002,109:443-445.
    57 Delepine M, Nicolino M, Barrett T, et al. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet, 2000,25:406-409.
    58 Thornton CM, Carson DJ, Stewart FJ. Autopsy findings in the Wolcott-Rallison syndrome. Pediatr Pathol Lab Med, 1997,17:487-496.
    59 Wang J, Takeuchi T, Tanaka S, et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest, 1999,103:27-37.
    60 Leroux L, Desbois P, Lamotte L, et al. Compensatory responses in mice carrying a null mutation for Ins1 or Ins2. Diabetes, 2001,50 Suppl 1:S150-S153.
    61 Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 2005,436:356-362.
    62 Graham TE, Yang Q, Bluher M, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med, 2006,354:2552-2563.
    63 Balagopal P, Graham TE, Kahn BB, et al. Reduction of elevated serum retinol binding protein in obese children by lifestyle intervention: association with subclinical inflammation. J Clin Endocrinol Metab, 2007,92:1971-1974.
    64 Weiping L, Qingfeng C, Shikun M, et al. Elevated serum RBP4 is associated with insulin resistance in women with polycystic ovary syndrome. Endocrine, 2006,30:283-287.
    65 Stefan N, Hennige AM, Staiger H, et al. High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care, 2007,30:1173-1178.
    66 Gavi S, Stuart LM, Kelly P, et al. Retinol-binding protein 4 is associated with insulin resistance and body fat distribution in nonobese subjects without type 2 diabetes. J Clin Endocrinol Metab, 2007,92:1886-1190.
    67 Jia W, Wu H, Bao Y, et al. Association of Serum Retinol Binding Protein 4 and Visceral Adiposity in Chinese Subjects with and without Type 2 Diabetes. J Clin Endocrinol Metab, 2007,92:3224-3229.
    68 Lee DC, Lee JW, Im JA. Association of serum retinol binding protein 4 and insulin resistance in apparently healthy adolescents. Metabolism, 2007,56:327-331.
    69 Cho YM, Youn BS, Lee H, et al. Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes. Diabetes Care, 2006,29:2457-2461.
    70 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med, 1998,15:539-553.
    71 中华医学会糖尿病学分会代谢综合征研究协作组. 中华医学会糖尿病学分会关于代谢综合征的建议. 中华糖尿病杂志, 2004,12:156-161.
    72 陈蕾 , 贾伟平 , 陆俊茜 , 等 . 上海市成人代谢综合征流行调查 . 中华心血管病杂志 , 2003,31:909-912.
    73 Gutt M, Davis CL, Spitzer SB, et al. Validation of the insulin sensitivity index (ISI(0,120)): comparison with other measures. Diabetes Res Clin Pract, 2000,47:177-184.
    74 Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005,21:263-265.
    75 Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science, 2002,296:2225-2229.
    76 Qin ZS, Niu T, Liu JS. Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms. Am J Hum Genet, 2002,71:1242-1247.
    77 Carlson CS, Eberle MA, Rieder MJ, et al. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet, 2004,74:106-120.
    78 Shin HD, Park BL, Kim LH, et al. Genetic polymorphisms in peroxisome proliferator-activated receptor delta associated with obesity. Diabetes, 2004,53:847-851.
    79 Skogsberg J, McMahon AD, Karpe F, et al. Peroxisome proliferator activated receptor delta genotype in relation to cardiovascular risk factors and risk of coronary heart disease in hypercholesterolaemic men. J Intern Med, 2003,254:597-604.
    80 Thameem F, Farook VS, Bogardus C, et al. Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on 1q21-q23 with type 2 diabetes in Pima Indians. Diabetes, 2006,55:839-842.
    81 Chu WS, Das SK, Wang H, et al. Activating transcription factor 6 (ATF6) sequence polymorphisms in type 2 diabetes and pre-diabetic traits. Diabetes, 2007,56:856-862.
    82 Chen S, Tsybouleva N, Ballantyne CM, et al. Effects of PPARalpha, gamma and delta haplotypes on plasma levels of lipids, severity and progression of coronary atherosclerosis and response to statin therapy in the lipoprotein coronary atherosclerosis study. Pharmacogenetics, 2004,14:61-71.
    83 Andrulionyte L, Peltola P, Chiasson JL, et al. Single nucleotide polymorphisms of PPARD in combination with the Gly482Ser substitution of PGC-1A and the Pro12Ala substitution of PPARG2 predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes, 2006,55:2148-2152.
    84 Skogsberg J, Kannisto K, Cassel TN, et al. Evidence that peroxisome proliferator-activated receptor delta influences cholesterol metabolism in men. Arterioscler Thromb Vasc Biol, 2003,23:637-643.
    85 Vanttinen M, Nuutila P, Kuulasmaa T, et al. Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor delta gene are associated with skeletal muscle glucose uptake. Diabetes, 2005,54:3587-3591.
    86 Meex SJ, van Greevenbroek MM, Ayoubi TA, et al. ATF6 polymorphisms and haplotypes are associated with impaired glucose homeostasis and type 2 diabetes in Dutch Caucasians. J Clin Endocrinol Metab, 2007,92:2720-2725.
    87 Zeng L, Lu M, Mori K, et al. ATF6 modulates SREBP2-mediated lipogenesis. EMBO J, 2004,23:950-958.
    88 Duggirala R, Blangero J, Almasy L, et al. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet, 1999,64:1127-1140.
    89 Meigs JB, Panhuysen CI, Myers RH, et al. A genome-wide scan for loci linked to plasma levels of glucose and HbA(1c) in a community-based sample of Caucasian pedigrees: The Framingham Offspring Study. Diabetes, 2002,51:833-840.
    90 Ost A, Danielsson A, Liden M, et al. Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. FASEB J, 2007.Epub
    91 Munkhtulga L, Nakayama K, Utsumi N, et al. Identification of a regulatory SNP in the retinol binding protein 4 gene associated with type 2 diabetes in Mongolia. Hum Genet, 2007,120:879-888.
    92 Craig RL, Chu WS, Elbein SC. Retinol binding protein 4 as a candidate gene for type 2 diabetesand prediabetic intermediate traits. Mol Genet Metab, 2007,90:338-344.
    93 Broch M, Vendrell J, Ricart W, et al. Circulating retinol-binding protein-4, insulin sensitivity, insulin secretion, and insulin disposition index in obese and nonobese subjects. Diabetes Care, 2007,30:1802-1806.
    94 Goldstein DB, Cavalleri GL. Genomics: understanding human diversity. Nature, 2005,437:1241-2.
    95 Chapman JM, Cooper JD, Todd JA, et al. Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Hum Hered, 2003,56:18-31.
    96 Weale ME, Depondt C, Macdonald SJ, et al. Selection and evaluation of tagging SNPs in the neuronal-sodium-channel gene SCN1A: implications for linkage-disequilibrium gene mapping. Am J Hum Genet, 2003,73:551-565.
    97 Stram DO, Haiman CA, Hirschhorn JN, et al. Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Hum Hered, 2003,55:27-36.
    98 Ribas G, Gonzalez-Neira A, Salas A, et al. Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes. Hum Genet, 2006,118:669-679.
    99 Willer CJ, Scott LJ, Bonnycastle LL, et al. Tag SNP selection for Finnish individuals based on the CEPH Utah HapMap database. Genet Epidemiol, 2006,30:180-190.
    100 Smith EM, Wang X, Littrell J, et al. Comparison of linkage disequilibrium patterns between the HapMap CEPH samples and a family-based cohort of Northern European descent. Genomics, 2006,88:407-14.
    101 Service S, Sabatti C, Freimer N. Tag SNPs chosen from HapMap perform well in several population isolates. Genet Epidemiol, 2007,31:189-194.
    102 Montpetit A, Nelis M, Laflamme P, et al. An evaluation of the performance of tag SNPs derived from HapMap in a Caucasian population. PLoS Genet, 2006,2:e27.
    103 Mueller JC, Lohmussaar E, Magi R, et al. Linkage disequilibrium patterns and tagSNP transferability among European populations. Am J Hum Genet, 2005,76:387-98.
    104 Lim J, Kim YJ, Yoon Y, et al. Comparative study of the linkage disequilibrium of an ENCODE region, chromosome 7p15, in Korean, Japanese, and Han Chinese samples. Genomics, 2006,87:392-8.
    105 Mahasirimongkol S, Chantratita W, Promso S, et al. Similarity of the allele frequency and linkage disequilibrium pattern of single nucleotide polymorphisms in drug-related gene loci between Thai and northern East Asian populations: implications for tagging SNP selection in Thais. J Hum Genet, 2006,51:896-904.
    106 Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet, 2001,2:91-9.
    107 Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association. Nat Rev Genet, 2004,5:89-100.
    108 Gordon D, Finch SJ. Factors affecting statistical power in the detection of genetic association. J Clin Invest, 2005,115:1408-18.
    109 Pfeiffer RM, Gail MH. Sample size calculations for population- and family-based case-control association studies on marker genotypes. Genet Epidemiol, 2003,25:136-48.
    110 Gu S, Pakstis AJ, Li H, et al. Significant variation in haplotype block structure but conservation in tagSNP patterns among global populations. Eur J Hum Genet, 2007,15:302-12.
    111 Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001,409:860-921.
    112 Thomson G. Identifying complex disease genes: progress and paradigms. Nat Genet, 1994,8:108-110.
    113 Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet, 1995,11:241-247.
    114 Hanis CL, Boerwinkle E, Chakraborty R, et al. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet, 1996,13:161-166.
    115 Malecki MT, Moczulski DK, Klupa T, et al. Homozygous combination of calpain 10 gene haplotypes is associated with type 2 diabetes mellitus in a Polish population. Eur J Endocrinol, 2002,146:695-699.
    116 Elbein SC, Chu W, Ren Q, et al. Role of calpain-10 gene variants in familial type 2 diabetes in Caucasians. J Clin Endocrinol Metab, 2002,87:650-654.
    117 Evans JC, Frayling TM, Cassell PG, et al. Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. Am J Hum Genet, 2001,69:544-552.
    118 Iwasaki N, Horikawa Y, Tsuchiya T, et al. Genetic variants in the calpain-10 gene and the development of type 2 diabetes in the Japanese population. J Hum Genet, 2005,50:92-98.
    119 del Bosque-Plata L, Aguilar-Salinas CA, Tusie-Luna MT, et al. Association of the calpain-10 gene with type 2 diabetes mellitus in a Mexican population. Mol Genet Metab, 2004,81:122-126.
    120 纪立农,陈陵霞,韩学尧,等. Calpain10 基因多态性与中国人 2 型糖尿病遗传易感性的相关性研究. 中国糖尿病杂志, 2002,10:7-10.
    121 项坤三,方启晨,郑泰山,等. Calpain-10 基因的 SNP 组合变异与 2 型糖尿病及其临床代谢性状的关系. 中华医学遗传学杂志, 2001,18:426-430.
    122 Sun HX, Zhang KX, Du WN, et al. Single nucleotide polymorphisms in CAPN10 gene of Chinese people and its correlation with type 2 diabetes mellitus in Han people of northern China. Biomed Environ Sci, 2002,15:75-82.
    123 Carafoli E, Molinari M. Calpain: a protease in search of a function?. Biochem Biophys Res Commun, 1998,247:193-203.
    124 Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains. Biochem J, 1997,328(Pt 3):721-32.
    125 Sreenan SK, Zhou YP, Otani K, et al. Calpains play a role in insulin secretion and action. Diabetes, 2001,50:2013-2020.
    126 Reynisdottir I, Thorleifsson G, Benediktsson R, et al. Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2. Am J Hum Genet, 2003,73:323-335.
    127 Kimber CH, Doney AS, Pearson ER, et al. TCF7L2 in the Go-DARTS study: evidence for a genedose effect on both diabetes susceptibility and control of glucose levels. Diabetologia, 2007,50:1186-1191.
    128 Horikoshi M, Hara K, Ito C, et al. A genetic variation of the transcription factor 7-like 2 gene is associated with risk of type 2 diabetes in the Japanese population. Diabetologia, 2007,50:747-751.
    129 Cauchi S, Meyre D, Dina C, et al. Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes, 2006,55:2903-2908.
    130 Humphries SE, Gable D, Cooper JA, et al. Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women. J Mol Med, 2006,84:1-10.
    131 Cauchi S, El Achhab Y, Choquet H, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med, 2007,85:777-782.
    132 Watanabe RM, Allayee H, Xiang AH, et al. Transcription Factor 7-like 2 (TCF7L2) is Associated with Gestational Diabetes and Interacts with Adiposity to Alter Insulin Secretion in Mexican Americans. Diabetes, 2007,56:1481-1485.
    133 Melzer D, Murray A, Hurst AJ, et al. Effects of the diabetes linked TCF7L2 polymorphism in a representative older population. BMC Med, 2006,4:34.
    134 Etheridge SL, Spencer GJ, Heath DJ, et al. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells, 2004,22:849-60.
    135 Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science, 2000,289:950-953.
    136 Papadopoulou S, Edlund H. Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function. Diabetes, 2005,54:2844-2851.
    137 Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem, 2005,280:1457-1464.
    138 Mahtani MM, Widen E, Lehto M, et al. Mapping of a gene for type 2 diabetes associated with aninsulin secretion defect by a genome scan in Finnish families. Nat Genet, 1996,14:90-94.
    139 Shaw JT, Lovelock PK, Kesting JB, et al. Novel susceptibility gene for late-onset NIDDM is localized to human chromosome 12q. Diabetes, 1998,47:1793-1796.
    140 Bektas A, Suprenant ME, Wogan LT, et al. Evidence of a novel type 2 diabetes locus 50 cM centromeric to NIDDM2 on chromosome 12q. Diabetes, 1999,48:2246-2251.
    141 Ehm MG, Karnoub MC, Sakul H, et al. Genomewide search for type 2 diabetes susceptibility genes in four American populations. Am J Hum Genet, 2000,66:1871-1881.
    142 Duggirala R, Blangero J, Almasy L, et al. A major locus for fasting insulin concentrations and insulin resistance on chromosome 6q with strong pleiotropic effects on obesity-related phenotypes in nondiabetic Mexican Americans. Am J Hum Genet, 2001,68:1149-64.
    143 Vionnet N, Hani EH, Dupont S, et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet, 2000,67:1470-80.
    144 Parker A, Meyer J, Lewitzky S, et al. A gene conferring susceptibility to type 2 diabetes in conjunction with obesity is located on chromosome 18p11. Diabetes, 2001,50:675-680.
    145 Hanson RL, Ehm MG, Pettitt DJ, et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am J Hum Genet, 1998,63:1130-1138.
    146 Elbein SC, Hoffman MD, Teng K, et al. A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes, 1999,48:1175-1182.
    147 Das SK, Hasstedt SJ, Zhang Z, et al. Linkage and association mapping of a chromosome 1q21-q24 type 2 diabetes susceptibility locus in northern European Caucasians. Diabetes, 2004,53:492-499.
    148 Wiltshire S, Hattersley AT, Hitman GA, et al. A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. Am J Hum Genet, 2001,69:553-569.
    149 Hsueh WC, St Jean PL, Mitchell BD, et al. Genome-wide and fine-mapping linkage studies oftype 2 diabetes and glucose traits in the Old Order Amish: evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24. Diabetes, 2003,52:550-557.
    150 Xiang K, Wang Y, Zheng T, et al. Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes, 2004,53:228-234.
    151 Ng MC, So WY, Cox NJ, et al. Genome-wide scan for type 2 diabetes loci in Hong Kong Chinese and confirmation of a susceptibility locus on chromosome 1q21-q25. Diabetes, 2004,53:1609-1613.
    152 Wallace KJ, Wallis RH, Collins SC, et al. Quantitative trait locus dissection in congenic strains of the Goto-Kakizaki rat identifies a region conserved with diabetes loci in human chromosome 1q. Physiol Genomics, 2004,19:1-10.
    153 Genschel J, Schmidt HH. Mutations in the LMNA gene encoding lamin A/C. Hum Mutat, 2000,16:451-459.
    154 Weyer C, Wolford JK, Hanson RL, et al. Subcutaneous abdominal adipocyte size, a predictor of type 2 diabetes, is linked to chromosome 1q21--q23 and is associated with a common polymorphism in LMNA in Pima Indians. Mol Genet Metab, 2001,72:231-238.
    155 Steinle NI, Kazlauskaite R, Imumorin IG, et al. Variation in the lamin A/C gene: associations with metabolic syndrome. Arterioscler Thromb Vasc Biol, 2004,24:1708-1713.
    156 Wegner L, Andersen G, Sparso T, et al. Common variation in LMNA increases susceptibility to type 2 diabetes and associates with elevated fasting glycemia and estimates of body fat and height in the general population: studies of 7,495 Danish whites. Diabetes, 2007,56:694-698.
    157 Owen KR, Groves CJ, Hanson RL, et al. Common variation in the LMNA gene (encoding lamin A/C) and type 2 diabetes: association analyses in 9,518 subjects. Diabetes, 2007,56:879-883.
    158 Vozarova B, Weyer C, Hanson K, et al. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res, 2001,9:414-417.
    159 Hamid YH, Urhammer SA, Jensen DP, et al. Variation in the interleukin-6 receptor geneassociates with type 2 diabetes in Danish whites. Diabetes, 2004,53:3342-3345.
    160 Wang H, Zhang Z, Chu W, et al. Molecular screening and association analyses of the interleukin 6 receptor gene variants with type 2 diabetes, diabetic nephropathy, and insulin sensitivity. J Clin Endocrinol Metab, 2005,90:1123-1129.
    161 Wolford JK, Colligan PB, Gruber JD, et al. Variants in the interleukin 6 receptor gene are associated with obesity in Pima Indians. Mol Genet Metab, 2003,80:338-343.
    162 Wolford JK, Hanson RL, Kobes S, et al. Analysis of linkage disequilibrium between polymorphisms in the KCNJ9 gene with type 2 diabetes mellitus in Pima Indians. Mol Genet Metab, 2001,73:97-103.
    163 Wang H, Chu W, Wang X, et al. Evaluation of sequence variants in the pre-B cell leukemia transcription factor 1 gene: a positional and functional candidate for type 2 diabetes and impaired insulin secretion. Mol Genet Metab, 2005,86:384-391.
    164 Thameem F, Wolford JK, Bogardus C, et al. Analysis of PBX1 as a candidate gene for type 2 diabetes mellitus in Pima Indians. Biochim Biophys Acta, 2001,1518:215-220.
    165 Das SK, Chu WS, Hale TC, et al. Polymorphisms in the glucokinase-associated, dual-specificity phosphatase 12 (DUSP12) gene under chromosome 1q21 linkage peak are associated with type 2 diabetes. Diabetes, 2006,55:2631-2639.
    166 Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev, 2007,87:315-424.
    167 Forstermann U, Closs EI, Pollock JS, et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension, 1994,23:1121-1131.
    168 Panaro MA, Brandonisio O, Acquafredda A, et al. Evidences for iNOS expression and nitric oxide production in the human macrophages. Curr Drug Targets Immune Endocr Metabol Disord, 2003,3:210-221.
    169 Kaneko Y, Ishikawa T, Amano S, et al. Dual effect of nitric oxide on cytosolic Ca2+ concentration and insulin secretion in rat pancreatic beta-cells. Am J Physiol Cell Physiol, 2003,284:C1215-C1222.
    170 Smukler SR, Tang L, Wheeler MB, et al. Exogenous nitric oxide and endogenous glucose-stimulated beta-cell nitric oxide augment insulin release. Diabetes, 2002,51:3450-3460.
    171 Lajoix AD, Reggio H, Chardes T, et al. A neuronal isoform of nitric oxide synthase expressed in pancreatic beta-cells controls insulin secretion. Diabetes, 2001,50:1311-1323.
    172 Rizzo MA, Piston DW. Regulation of beta cell glucokinase by S-nitrosylation and association with nitric oxide synthase. J Cell Biol, 2003,161:243-248.
    173 Hao M, Head WS, Gunawardana SC, et al. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes, 2007,56:2328-2338.
    174 Jaffrey SR, Snowman AM, Eliasson MJ, et al. CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron, 1998,20:115-124.
    175 Brzustowicz LM, Simone J, Mohseni P, et al. Linkage disequilibrium mapping of schizophrenia susceptibility to the CAPON region of chromosome 1q22. Am J Hum Genet, 2004,74:1057-1063.
    176 Zheng Y, Li H, Qin W, et al. Association of the carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase gene with schizophrenia in the Chinese Han population. Biochem Biophys Res Commun, 2005,328:809-815.
    177 Arking DE, Pfeufer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet, 2006,38:644-651.
    178 Aarnoudse AJ, Newton-Cheh C, de Bakker PI, et al. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam Study. Circulation, 2007,116:10-16.
    179 Post W, Shen H, Damcott C, et al. Associations between genetic variants in the NOS1AP (CAPON) gene and cardiac repolarization in the old order Amish. Hum Hered, 2007,64:214-219.
    180 Xu B, Wratten N, Charych EI, et al. Increased expression in dorsolateral prefrontal cortex of CAPON in schizophrenia and bipolar disorder. PLoS Med, 2005,2:e263.
    1 Reynisdottir I, Thorleifsson G, Benediktsson R, et al. Localization of a susceptibility gene for type
    2 diabetes to chromosome 5q34-q35.2. Am J Hum Genet, 2003,73: 323-335.
    2 Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet, 2006,38: 320-323.
    3 Helgason A, Palsson S, Thorleifsson G, et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet, 2007,39:218-225.
    4 Kimber CH, Doney AS, Pearson ER, et al. TCF7L2 in the Go-DARTS study: evidence for a gene dose effect on both diabetes susceptibility and control of glucose levels. Diabetologia, 2007.
    5 Horikoshi M, Hara K, Ito C, et al. A genetic variation of the transcription factor 7-like 2 gene is associated with risk of type 2 diabetes in the Japanese population. Diabetologia, 2007,50:747-751.
    6 Cauchi S, Meyre D, Choquet H, et al. TCF7L2 variation predicts hyperglycemia incidence in a French general population: the data from an epidemiological study on the Insulin Resistance Syndrome (DESIR) study. Diabetes, 2006,55: 3189-3192.
    7 Humphries SE, Gable D, Cooper JA, et al. Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women. J Mol Med, 2006,84:1-10.
    8 Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes inthe Diabetes Prevention Program. N Engl J Med, 2006,355:241-250.
    9 Cauchi S, El Achhab Y, Choquet H, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med, 2007.
    10 Melzer D, Murray A, Hurst AJ, et al. Effects of the diabetes linked TCF7L2 polymorphism in a representative older population. BMC Med, 2006,4: 34.
    11 Watanabe RM, Allayee H, Xiang AH, et al. Transcription Factor 7-like 2 (TCF7L2) is Associated with Gestational Diabetes and Interacts with Adiposity to Alter Insulin Secretion in Mexican Americans. Diabetes, 2007.
    12 Damcott CM, Pollin TI, Reinhart LJ, et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes, 2006,55:2654-2659.
    13 Papadopoulou S, Edlund H. Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function. Diabetes, 2005,54: 2844-2851.
    14 Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science, 2000,289: 950-953.
    15 Etheridge SL, Spencer GJ, Heath DJ, et al. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells, 2004,22: 849-860.
    16 Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem, 2005,280: 1457-1464.
    17 Cauchi S, Meyre D, Dina C, et al. Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes, 2006,55: 2903-2908.
    18 Xiang K, Wang Y, Zheng T, et al. Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes, 2004,53: 228-234.
    19 Ng MC, So WY, Cox NJ, et al. Genome-wide scan for type 2 diabetes loci in Hong Kong Chineseand confirmation of a susceptibility locus on chromosome 1q21-q25. Diabetes, 2004,53:1609-1613.
    20 Wiltshire S, Hattersley AT, Hitman GA, et al. A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. Am J Hum Genet, 2001,69:553-569.
    21 Vionnet N, Hani EH, Dupont S, et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet, 2000,67:1470-1480.
    22 Hanson RL, Ehm MG, Pettitt DJ, et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am J Hum Genet, 1998,63:1130-1138.
    23 Wallace KJ, Wallis RH, Collins SC, et al. Quantitative trait locus dissection in congenic strains of the Goto-Kakizaki rat identifies a region conserved with diabetes loci in human chromosome 1q. Physiol Genomics, 2004,19:1-10.
    24 Ron D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J Clin Invest, 2002,109:443-445.
    25 Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem, 2004,279:25935-25938.
    26 Thameem F, Farook VS, Bogardus C, et al. Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on 1q21-q23 with type 2 diabetes in Pima Indians. Diabetes, 2006,55:839-842.
    27 Chu WS, Das SK, Wang H, et al. Activating transcription factor 6 (ATF6) sequence polymorphisms in type 2 diabetes and pre-diabetic traits. Diabetes, 2007,56:856-862.
    28 Meex SJ, van Greevenbroek MM, Ayoubi TA, et al. ATF6 polymorphisms and haplotypes are associated with impaired glucose homeostasis and type 2 diabetes in Dutch Caucasians. J Clin Endocrinol Metab, 2007.
    29 胡承,贾伟平,万慧,等. 激活转录因子 6 基因 Ala145Pro 变异与中国人糖脂代谢的关联研究. 中华内分泌代谢杂志,2007,23:319 – 322.
    30 Genschel J, Schmidt HH. Mutations in the LMNA gene encoding lamin A/C. Hum Mutat, 2000,16:451-459.
    31 Weyer C, Wolford JK, Hanson RL, et al. Subcutaneous abdominal adipocyte size, a predictor of type 2 diabetes, is linked to chromosome 1q21-q23 and is associated with a common polymorphism in LMNA in Pima Indians. Mol Genet Metab, 2001,72:231-238.
    32 Steinle NI, Kazlauskaite R, Imumorin IG, et al. Variation in the lamin A/C gene: associations with metabolic syndrome. Arterioscler Thromb Vasc Biol, 2004,24:1708-1713.
    33 Wegner L, Andersen G, Sparso T, et al. Common variation in LMNA increases susceptibility to type 2 diabetes and associates with elevated fasting glycemia and estimates of body fat and height in the general population: studies of 7,495 Danish whites. Diabetes, 2007,56:694-698.
    34 Owen KR, Groves CJ, Hanson RL, et al. Common variation in the LMNA gene (encoding lamin A/C) and type 2 diabetes: association analyses in 9,518 subjects. Diabetes, 2007,56:879-883.
    35 Vozarova B, Weyer C, Hanson K, et al. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res, 2001,9:414-417.
    36 Hamid YH, Urhammer SA, Jensen DP, et al. Variation in the interleukin-6 receptor gene associates with type 2 diabetes in Danish whites. Diabetes, 2004,53:3342-3345.
    37 Wang H, Zhang Z, Chu W, et al. Molecular screening and association analyses of the interleukin 6 receptor gene variants with type 2 diabetes, diabetic nephropathy, and insulin sensitivity. J Clin Endocrinol Metab, 2005,90:1123-1129.
    38 Wolford JK, Colligan PB, Gruber JD, et al. Variants in the interleukin 6 receptor gene are associated with obesity in Pima Indians. Mol Genet Metab, 2003,80:338-343.
    39 The International HapMap Consortium. A haplotype map of the human genome. Nature, 2005,437:1299-1320.
    40 Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 2007,445:881-885.
    41 Zeggini E, Weedon MN, Lindgren CM, et al. Replication of Genome-Wide Association Signals in U.K. Samples Reveals Risk Loci for Type 2 Diabetes. Science, 2007.
    42 Saxena R, Voight BF, Lyssenko V, et al. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science, 2007.
    43 Scott LJ, Mohlke KL, Bonnycastle LL, et al. A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants. Science, 2007.
    44 Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700