用户名: 密码: 验证码:
不同放牧制度对短花针茅荒漠草原碳平衡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用野外调查法测定生物量季节动态,密闭气室法测定土壤呼吸动态。通过对十年(1999~2009)不同放牧利用后,短花针茅荒漠草原碳输入、输出的野外定位观测,分析了划区轮牧、自由放牧和围栏禁牧对荒漠草原生态系统碳平衡的影响。结果表明:
     1)相较于自由放牧,划区轮牧在恢复地上植被方面无明显差别,禁牧能保持较高的植物地上生物量。
     2)放牧制度对不同植物种群地上生物量的影响有差别。自由放牧保持较高的短花针茅地上生物量;无芒隐子草表现出禁牧区>划区轮牧区>自由放牧区的趋势;碱韭地上生物量季节变化趋势基本一致,干旱月份,禁牧能保持较高的生物量。
     3)湿润季节,不同放牧制度下0~30cm土层内的地下生物量季节动态无明显差别。干旱季节,划区轮牧和围栏禁牧较自由放牧能保持较高的地下生物量。
     4)凋落物量的季节动态受到当月放牧状态的影响,划区轮牧和围栏禁牧较自由放牧能保持较高的地上凋落物量。
     5)家畜采食量随地上生物量的季节动态而变化,划区轮牧保持较高的家畜采食量。
     6)围栏禁牧能保持较大的生产力,不同放牧制度间净初级生产力差别不明显。
     7)相较于自由放牧,划区轮牧对土壤呼吸速率及其环境因子效应影响较小,围栏禁牧改变了土壤呼吸日均速率及水热因子效应;土壤呼吸日动态主要受温度因子的影响,季节变化主要受到水分因子的影响;土壤呼吸日均速率与气温的相关性大于与土壤温度的相关性,水温复合模型较单因子模型更好地解释土壤呼吸速率的变化;划区轮牧和自由放牧较围栏禁牧增大了土壤呼吸的温度敏感性(水分充足时),降低了土壤水分对土壤呼吸的影响。
     8)不同放牧制度下,短花针茅荒漠草原都表现为较明显的碳汇。碳汇表现为围栏禁牧>划区轮牧>自由放牧的趋势,但不同放牧制度间碳汇无明显差别。
Using field investigation and enclosed chamber method (IRGA), dynamics of biomass and soil respiration rate was determined in Stipa breviflora desert steppe. The effects of grazing systems on carbon input, carbon output and carbon balance was studied in this paper. The results showed that:
     1) Compared with continuous grazing, community abovebiomass was not superior under rotational grazing, while community abovebiomass was suprrior under non-grazing.
     2) The abovebiomass of Stipa breviflora was greater in continous grazing plot than that in rotational grazing and non-grazing. The abovebiomass of Cleistogenes songorica decreased in the order was non-grazing plot, rotational grazing plot and continuous grazing plot. While, Allium polyrrizum showed little difference between different grazing systems.
     3) The seasonal dynamics of belowground biomass was similar between different grazing systems. The belowground biomass was greater in rotational grazing plot and non-grazing plot than that in continous grazing plot.
     4) The seasonal dynamics of litter fall was mainly affected by the state of grazing. The litter was greater in rotational grazing plot and non-grazing plot than that in continous grazing plot.
     5) Compared with continous grazing plot, the livestock feed intake was greater in rotational grazing plot. Livestock feed intake changed with the seasonal dynamics of aboveground biomass.
     6) Non-grazing maintains greater productivity, while continous graing and rotational grazing were no difference.
     7) The soil respiration rate and effect of environmental factors were similar between rotational grazing and continuous grazing, and there were differences between continuous grazing and non-grazing in daily mean soil respiration rate and effect of environmental factors. The diurnal variation of soil respiration could be expressed as a single peak curve, and the seasonal variation was mainly affected by soil moisture. Correlation of soil respiration diurnal variation with air temperature was greater than that with soil temperature, and water-temperature composite model was better than single-factor model to explain the changes in soil respiration rate. Compared with non-grazing, rotational grazing and continuous grazing elevated the temperature sensitivity of soil respiration (adequate moisture), while reduce the impact of soil moisture on soil respiration.
     8) Stipa breviflora desert steppe emerged to be carbon sinks under different grazing systems. Carbon sinks decreased in turn from non-grazing, rotational grazing to continous grazing, but with little differences.
引文
[1]曹广民,李英年,张金霞,等.高寒草甸不同土地利用格局土壤CO2的释放量[J].环境科学,2001,22(6):14-19.
    [2]常会宁,夏景新,徐照华,等.草地放牧制度及其评价[J].黑龙江畜牧兽医,1994,(12):40-43.
    [3]陈泮勤,王效科,王礼茂,等.中国陆地生态系统碳收支与增汇对策[M].北京:科学出版社,2008.
    [4]陈全胜,李凌浩,韩兴国,等.温带草原11个植物群落夏秋土壤呼吸对气温变化的响应[J].植物生态学报, 2003, 27(4): 44-447.
    [5]陈四清.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率的研究[J].植物学报, 1999, 41(6):645-650.
    [6]崔骁勇,陈四清,陈佐忠.大针茅典型草原土壤CO2排放规律的研究[J].应用生态学报, 2000,11(3):390-394.
    [7]崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展[J].生态学报,2001,21(2):315-325.
    [8]方精云,刘国华,徐嵩龄.中国陆地生态系统的碳库[A].见:王庚辰,温玉璞.温室气体浓度和排放监测及相关过程[M].北京:中国环境科学出版社,1996.
    [9]方精云,郭兆迪,朴世龙,等. 1981-2000年中国陆地植被碳汇的估算[J].中国科学D辑:地球科学,2007,37(6):804-812.
    [10]方精云,柯金虎,唐志尧,等.生物生产力的“4P”概念、估算及其相互关系[J].植物生态学报,2001, 25(4):414-419.
    [11]方精云,王如松,高林等.中国陆地生态系统碳循环及其全球意义[A].见:王如松,方精云.现代生态学的热点问题研究[M].北京:中国科技出版社,1996.
    [12]方精云,王娓.作为地下过程的土壤呼吸:我们理解了多少[J].植物生态学,2007,31(3):345-347.
    [13]冯雨峰.内蒙古灌丛化石生针茅荒漠草原地下生物量与周转值的测定[J].内蒙古草业, 1990(3):27-31.
    [14]伏玉玲,于贵瑞,王艳芬,等.水分胁迫对内蒙古羊草草原生态系统光合和呼吸作用的影响[J].中国科学D辑地球科学,2006, 36 (增刊Ⅰ): 183-193.
    [15]高英志,韩兴国,汪诗平.放牧对草原土壤的影响[J].生态学报,2004,24(4): 790-797.
    [16]耿文诚,马兴跃,马宁.云贵高原人工草地划区轮牧模式研究[J].草业学报,2000,9(3):58-65.
    [17]耿元波,董云社,齐玉春.草地生态系统碳循环研究评述[J].地球科学进展,2004,23(3): 74-81.
    [18]耿元波,董云社,孟维奇.陆地碳循环研究进展[J].地理科学进展,2000,19(4):297-306.
    [19]关德新,吴家兵,于贵瑞,等.气象条件对长白山阔叶红松林CO2通量的影响[J].中国科学(D辑),2004,34(增刊II):103-108.
    [20]郭继勋,祝廷成.羊草草原枯枝落叶积累的研究——自然状态下枯枝落叶的积累及放牧、割草对积累量的影响[J].生态学报,1994,14(3): 255-259.
    [21]郭然,王效科,逯非,等.中国草地土壤生态系统固碳现状和潜力[J].生态学报,2008,28(2): 862-867.
    [22]韩广轩,周广胜.土壤呼吸作用时空动态变化及其影响机制研究与展望[J].植物生态学报, 2009,33(1):197-205.
    [23]韩国栋,卫智军,许志信.短花针茅草原放牧系统对放牧制度的响应[A].见:草业与西部大开发——草业与西部大开发学术研讨会暨中国草原学会2000年学术年会论文集[C].兰州, 2000.
    [24]韩国栋,李勤奋,卫智军,等.家庭牧场尺度上放牧制度对绵羊摄食和体重的影响[J].中国农业科学,2004,37(5):744-750.
    [25]韩国栋,卫智军,许志信.短花针茅草原划区轮牧试验研究[J].内蒙古农业大学学报,2001,(1):60-67.
    [26]韩国栋,许志信,章祖同.划区轮牧和季节连续放牧的比较研究[J].干旱区资源与环境,1990(4):66-70.
    [27]侯向阳.中国草地生态环境建设战略研究[M].北京:中国农业出版社,2005.
    [28]侯向阳.中国草原保护建设技术进展及推广应用效果[J].中国草地学报,2009,31(1):4-12.
    [29]贾丙瑞,周广胜,,王风玉,等.放牧与围栏羊草草原生态系统土壤呼吸作用比较[J].应用生态学报,2004,15(9): 1611-1615.
    [30]贾丙瑞,周广胜,王风玉.放牧与围栏羊草草原土壤呼吸作用及其影响因子[J].环境科学,2005,26(6):1-7.
    [31]李博,雍世鹏,李瑶,等.中国的草原[M] .北京:科学出版社,1990.
    [32]李德新.短花针茅荒漠草原动态规律及其生态稳定性[J].中国草地,1990,(4): 1-5.
    [33]李德新.内蒙古高原荒漠草原生态系统概论[A].荒漠草原生态系统研究[M].呼和浩特:内蒙古人民出版社,1995.
    [34]李东,曹广民,胡启武,等.高寒灌丛草甸生态系统CO2释放的初步研究[J].草地学报, 2005,13(2):144-148.
    [35]李金花,李镇清,任继周.放牧对草原植物的影响[J].草业学报,2002,11(1): 4-11.
    [36]李俊,于强,孙晓敏,等.华北平原农田生态系统碳交换及其环境调控机制[J].中国科学D辑地球科学,2006,36(增刊I):210-223.
    [37]李凌浩,韩兴国,王其兵,等.锡林河流域一个放牧草原群落中根系呼吸占土壤总呼吸比例的初步估计[J].植物生态学报, 2002, 26(1): 29-32.
    [38]李凌浩,李鑫,白文明等.锡林河流域一个放牧羊草群落中碳素平衡的初步估计[J].植物生态学报, 2004, 28(3): 312-317.
    [39]李凌浩,陈佐忠.草地群落的土壤呼吸[J].生态学杂志,1998a,17(4):45-51.
    [40]李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应I.碳循环的分室模型、碳输入与贮量[J].植物学通报,1998b,15(2): 14 -22.
    [41]李凌浩,刘先华,陈佐忠.内蒙古锡林河流域羊草草原生态系统碳素循环的研究[J].植物学报,1998,40(10):955-961.
    [42]李凌浩,王其兵,白永飞,等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J].植物生态学报,2000, 24(6):680-686.
    [43]李玉强,赵哈林,赵学勇,等.不同强度放牧后自然恢复的沙质草地土壤呼吸?碳平衡与碳储量[J].草业学报,2006,15(5): 25-31.
    [44]刘建军,浦野忠朗,鞠子茂,等.放牧对草原生态系统地下生产力及生物量的影响[J].西北植物学报,2005,25(1)88-93.
    [45]刘允芬.中国农业系统碳汇功能[J].农业环境保护,1998,17(5): 197-202.
    [46]马涛,董云社,齐玉春,等.放牧对内蒙古羊草群落土壤呼吸的影响[J].地理研究,2009,28(4):1040-1046.
    [47]马文红,杨元合,贺金生,等.内蒙古温带草地生物量及其与环境因子的关系[J].中国科学C辑生命科学, 2008,38,(1): 84 - 92.
    [48]齐玉春,董云社,耿元波,等.我国草地生态系统碳循环研究进展[J].地理科学进展,2003,22(4):342-352.
    [49]齐志勇,王宏燕,王江丽.陆地生态系统土壤呼吸的研究进展[J].农业系统科学与综合研究,2003,19(2):116-119.
    [50]任继周,朱兴运.中国河西走廊草地农业的基本格局和它的系统相悖——草原退化的机理初探[J].草业学报,1995, 4(1): 69-80.
    [51]任继周,李逸民,郭博.藏羊群自由放牧与分区轮牧的观察研究[J].中国畜牧兽医杂志,1954,(4):143-147.
    [52]任继周,牟新待.试论划区轮牧[J].中国农业科学,1964,(1):21-25.
    [53]任继周.草业科学研究方法[M].北京:中国农业出版社,1998.
    [54]松梅,斯琴高娃,高雅代.放牧家畜采食量测定方法的研究[J].内蒙古草业.2003,15(4): 29-31.
    [55]唐罗忠.土壤中根系呼吸通量的分离测定方法综述[J].南京林业大学学报(自然科学版),2008,32(2):97-102.
    [56]田汉勤,万师强,马克平.全球变化生态学:全球变化与陆地生态系统[J].植物生态学报,2007,31(2):173-174.
    [57]汪诗平,陈佐忠,王艳芳,等.绵羊生产系统对不同放牧制度的响应[J].中国草地,1999,(3):42-50.
    [58]王庚辰,杜睿,孔琴心,等.中国温带草原土壤呼吸特征的实验研究[J].科学通报,2004,49(7):692-696.
    [59]王庚辰.陆地生态系统温室气体排放(吸收)测量方法简评[J].气候与环境研究,1997,2(3):251-362.
    [60]王淼,姬兰柱,李秋荣,等.土壤温度和水分对长白山不同森林类型土壤呼吸的影响[J].应用生态学报,2003,14(8):1234-1238.
    [61]王跃思,薛敏,黄耀,等.内蒙古天然与放牧草原温室气体排放研究[J].应用生态学报,2003,14(3):372-376.
    [62]王忠武,焦树英,韩国栋,等.短花针茅荒漠草原土壤呼吸对载畜率的响应(英文)[J].内蒙古大学学报(自然科学版), 2009, 40(2):186-193.
    [63]卫智军,白云军,乌日图,等.荒漠草原不同放牧方式绵羊牧食策略研究[J].草地学报,增刊, 2005,13(1): 57-61.
    [64]卫智军,韩国栋,邢旗,等.短花针茅草原划区轮牧与自由放牧比较研究[J].内蒙古农业大学学报,2000,21(4): 46-49.
    [65]卫智军,韩国栋,昭和斯图.短花针茅草原放牧强度对绵羊生产性能的影响[J].草地学报,1995,(1):23-25.
    [66]卫智军,乌日图,达布希拉图,等.荒漠草原不同放牧制度对土壤理化性质的影响[J].草地学报,2005,27(5):6-10.
    [67]卫智军,杨静,杨尚明.荒漠草原不同放牧制度群落稳定性研究[J].水土保持学报,2003,17(6):121-124.
    [68]卫智军.荒漠草原放牧制度与家庭牧场可持续经营研究[D].内蒙古农业大学,2003.
    [69]邢旗,双全,金玉,等.草甸草原不同放牧制度群落物质动态及植物补偿性生长研究[J].中国草地,2004,26(5):26-31.
    [70]邢旗,双全,那日苏,等.草原划区轮牧技术应用研究[J].内蒙古草业,2003,15(1):1-3.
    [71]熊小刚,韩兴国,周才平.平衡与非平衡生态学下的放牧系统管理[J].草业学报,2005,14(6):1-6.
    [72]闫瑞瑞.不同放牧制度对短花针茅荒漠草原植被与土壤影响的研究[D].内蒙古农业大学,2008.
    [73]杨持.生态学[M].北京:高等教育出版社,2008.
    [74]杨昕,王明星.陆地碳循环研究中若干问题的评述[J].地球科学进展,2001,16(3):427-435.
    [75]姚爱兴,李平,王培,等.不同放牧制度下奶牛对多年生黑麦草/白三叶草地土壤特性的影响[J].草地学报,1996,4(2):95-102.
    [76]姚爱兴,王培.牧强度和放牧制度对草地土壤及植被的影响[J].国外畜牧学-草原与牧草,1993,63(4):1-7.
    [77]于贵瑞,孙晓敏,主编.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社, 2008.
    [78]于贵瑞,王绍强,陈泮勤,等.碳同位素技术在土壤碳循环研究中的应用[J].地球科学进展,2005,20(5):568-577.
    [79]张雷明,于贵瑞,孙晓敏,等.中国东部森林样带典型生态系统碳收支的季节变化[J].中国科学(D辑),2006,36(增刊I):45-59.
    [80]张宪洲,石培礼,刘允芬,等.青藏高原高寒草原生态系统土壤CO2排放及其碳平衡[J].中国科学D辑,2004,34 (增刊Ⅱ): 193-199.
    [81]周萍,刘国彬,薛萐.草地生态系统土壤呼吸及其影响因素研究进展[J].草业学报,2009,18(2):184-193.
    [82]周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [83] Anderson D W,Coleman D C. The dynamics of organic matter in grassland soils [J]. Journal ofSoil and Water Conservation, 1985, 40:211-216.
    [84] Bahn M, Rodeghiero M, Anderson-Dunn M, et al. Soil Respiration in European Grasslands in Relation to Climate and Assimilate Supply [J]. Ecolosystems, 2008, 11:1352-1367.
    [85] Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland [J]. Nature, 2004, 431(9):181-184.
    [86] Bai Y F, Wu J G, Pan Q M, et al. Positive linear relationship between productivity and diversity: evidence from the Eurasian steppe [J]. Appl Ecol, 2007, 44(5): 1023-1034.
    [87] Belsky A J. The effects of grazing: confounding of ecosystem, community, and organism scales [J].American Naturalist, 1987, 129: 777-783.
    [88] Briske D D & Richards J H. Plant responses to defoliation:a morphological, physiological and demographic evaluation[A]. In: Wildland plants: physiological ecology and developmental morphology [M]. USA: Society for Range Management. 1995, 635-710.
    [89] Briske D D, Heitschmidt R K. An ecological perspective [A]. In: Grazing management: an ecological perspective [M]. Portland: Timber Press, 1991. 11-26.
    [90] Briske D D,Derner J D,Brown J R,et al. Rotational Grazing on Rangelands: Reconciliation of Perception and Experimental Evidence [J]. Rangeland Ecol Manage, 2008, 61:3-17.
    [91] Caldwell, M M, Richards J H, Johnson D A, et al. Coping with herbivory: photosynthetic capacity and resource allocation in two semiarid Agropyron bunchgrasses[J]. Oecologia, 1981, 50:14-24.
    [92] Clements F E. Plant Succession: an Analysis of the Development of Vegetation [M]. Washington: Carnegie Institute, 1916, 1-512.
    [93] Dermody D. Mucking through multifactor experiments: design and analysis of multifactor studies in global change research [R]. ESA, 91st annual meeting, Memphis, TN, USA, 2006.
    [94] Derner J D & Hart R H. Grazing-induced modifications to peak standing crop in northern mixed-grass prairie [J]. Rangeland Ecology and Management, 2007, 60:270-276.
    [95] Derner J D,Gillen R L,Mccollum F T,et al. Little bluestem tiller defoliation patterns under continuous and rotational grazing [J]. Journal of Range Management, 1994, 47:220-225.
    [96] Dong Y S, Zhang S, Qi Y C, et al. Fluxes of CO2, N2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation [J]. Chinese Science Bulletin, 2000, 45:1590-1594.
    [97] Driscoll R S.Managing public rangelands: effective livestock grazing practices and systems for national forests and national grassland.U.S.Dept [J].Agr.AIB, 1967, 315.
    [98] Dyer M I, Bokhari U G. Plant animal interactions: studies of the effects of grasshopper grazing in blue grama grass [J]. Ecology, 1976, 57: 762-772.
    [99] Dyer M I, DeAngelis D L, Post W M. A model of herbivore feedback on plant productivity [J]. Mathematical Biosciences, 1986, 79: 171-184.
    [100] Dysterhuis E J. Condition and management of rangeland based on quantitative ecology [J]. Range Management, 1949, 2: 104-115.
    [101] Edelstein-Keshet L. Mathematical theory for plant herbivore systems [J]. Journal of Mathematical Biology, 1986, 24: 25-58.
    [102] Ewel K C,Cropper J W P, Gholz H L. Soil CO2 evolution in Florida slash pine plantations [J]. Canadian Journal of Forest Research, 1987, 17:325-329.
    [103] Fierer N, Craine J M, Mclauchlan K, et al. Litter quality and the temperature sensitivity of decomposition [J]. Ecology, 2005, 86: 320-326.
    [104] Frank A B. Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains [J]. Environmental Pollution, 2002, 116: 397-403.
    [105] Frank D & McNaughton S J. Evidence for the promotion of aboveground grassland production by native large herbivores in Yellowstone National Park [J]. Oecologia, 1993, 96: 157-161.
    [106] Fuls E R. Semi-arid and arid rangelands: a resource under siege due to patch-selective grazing [J]. Journal of Arid Environments, 1992, 22: 191-193.
    [107] Georgiandis N J& McNaughton S J. Elemental and fiber contents of savanna grasses: variation with grazing, soil type, season and species [J]. Journal of Applied Ecology, 1990, 27: 623-634.
    [108] Gillen R L, Mccollun F T, Brummer J E. Tiller defoliation patterns under short duration grazing in tall grass prairie [J]. Journal of Range Management, 1990, 43: 95-99.
    [109] Graetz D. Changes in land-use and land cover: A global perspective [A]. In: Meyer Band Turner Bled [M]. London: Cambridge University Press, 1994, 125-145.
    [110] Han G X, Zhou G S, Xu Z Z, et al. Soil temperature and biotic factors drive the seasonal variation of soil respiration in maize (Zeamays L.) agricultural ecosystem [J]. Plant and Soil, 2007, 291: 15-26.
    [111] Hart R H & Mary M A. Grazing intensities, vegetation, and heifer gains: 55 years on short grass [J].Range Manage, 1998, 51:392-3984.
    [112] Hart R H, Bissio J, Samuel M J, et al. Grazing systems, pasture size, and cattle grazing behavior, distribution and gains [J]. Journal of Range Management, 1993, 46:81-87.
    [113] Heady H F. Continuous vs specialized grazing systems: a review and application to California annual type [J]. Journal of Range Management, 1961, 14: 182-193.
    [114] Heady H F. Grazing systems: terms and definitions [J]. Journal of Range Management, 1970, 23: 59-61.
    [115] Heitschmidt R K&Taylor C A. Livestock production [A]. In: Grazing management: an ecological perspective [M]. Portland, OR, USA: Timber Press, 1991, 161-177.
    [116] Hilbert D W, Swift D M, Detling J K, et al. Relative growth rates and the grazing optimization hypothesis [J] . Oecologia (Berlin), 1981, 51: 14-18.
    [117] Holechek J L, Pieper R D, Herbel C H. Range management: principles and practices [M]. 4th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2001.
    [118] Holechek, J L, Gomez H, Molinar F, et al. Short-duration grazing: the facts in 1999 [J]. Rangelands, 2000, 22: 18-22.
    [119] Holland E A, Detling J K. Plant response to herb ivory and belowground nitrogen cycling [J].Ecology, 1990, 7: 1040-1049.
    [120] Hollinger S E, Bernacchi C J & Meyers T P. Carbon budget mature no-till ecosystem in North Central Regional of the United States [J]. Agricultural and Forest Meteorology, 2005, 130: 59-69.
    [121] Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000 [J]. Tellus B, 2003, 55: 378-390.
    [122] Hunt J E, Kelliher F M, Mcseveny T M et al. Long-term carbon dioxide exchange in a sparse seasonally fry tussock grassland. Globle Change Biology, 2004, 10: 1785-1800.
    [123] Huston M. A general hypo thesis of species diversity [J]. Am. N at, 1979, 13: 81-101.
    [124] Illius A W & O’Connor T G. On the relevance of non-equilibrium concepts to arid and semi-arid grazing systems [J]. Ecological Applications, 1999, 9: 798-813.
    [125] IPCC. Climate change 2001: The Scientific Basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change[R]. UK: Cambridge University Press, 2001
    [126] IPCC. Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. UK&USA: Cambridge University Press, 2007a
    [127] IPCC. Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. UK&USA: Cambridge University Press, 2007b
    [128] IPCC.国家温室气体清单指南:农业、林业和其他土地利用[R].日本:全球环境战略研究所, 2006.
    [129] Janssens I A, Pilegaard K. Large seasonal changes in Q10 of soil respiration in a beech forest [J].Global Change Biology, 2003, 9: 911-918.
    [130] Jobbágy E G, Sala O E, Paruelo J M. Patterns and controls of primary production in the Patagonian steppe: A remote sensing approach[J].Ecology, 2002, 83(2): 307-319.
    [131] Lambert M G, Clark D A., Grant D A., et al. Influence of fertilizer and grazing management on North Island moist hill country.Pasture species abundance [J].New Zealand Journal of Agricultural Research, 1986, 29:23-31.
    [132] Li L H, Han X G, Wang Q B, et al. Soil carbon balance in native temperate grassland in Xilin river basin of Inner Monglia [J]. Acta Botanica Sinica. 2002, 44(6): 740-742.
    [133] McNaughton S J, Chapin F S. Effects of phosphorus nutrition and defoliation on C4 graminoids from the Serengeti plants [J]. Ecology, 1985, 66: 1617-1629.
    [134] McNaughton S J. Grazing as an optimization process: grassungulate relationships in the Serengti [J]. American Naturalist, 1979, 5: 691-703.
    [135] McNaughton S J. Serengeti migratory wildebeest facilitation of energy flow by grazing [J].Science, 1976, 191: 92-94.
    [136] Mcnaughton S J. Compensatory plant growth as a response to herbivory [J]. Oikos, 1983, 40:329-336.
    [137] Merrill L B. A variation of deferred rotation grazing for use under southwest range conditions [J]. Journal of Range Management, 1954, 7: 152-154.
    [138] Milchunas D G & Lauenroth W K. Quantitative effects of grazing on vegetation and soils over a global range of environments [J]. Ecological Monographs, 1993, 63:327-366.
    [139] Ni J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China [J]. Plant Ecol, 2004, 174 (2): 217-234.
    [140] Norton, B E. Spatial management of grazing to enhance both livestock production and resource condition: a scientific argument [A]. In: Durban, South Africa: Proceedings of the VII International Rangeland Congress[M]. 2003, 810-820.
    [141] O’Reagain P J & Turner J R. An evaluation of the empirical basis for grazing management recommendations for rangeland in South Africa [J]. Journal of the Grassland Society of South Africa, 1992, 9: 38-49.
    [142] Obta G, Stenseth N C, Lusigi W J. New perspectives on sustainable grazing management in arid zones of sub-saharan Africa [J]. BioScience, 2000, 50: 35-51.
    [143] Ojima D S, Parton W J, Schimel D S, et al. Modeling the effects of climate and CO2 changes on grassland storage of soil carbon [J]. Water, Air and Soil Pollution, 1993, 70: 643-657.
    [144] Parsons A J, Leafe E L, Collett B, et al. The physiology of grass production under grazing. II. Photosynthesis, crop growth and animal intake of continuously grazed swards [J]. Journal of Applied Ecology, 1993, 20: 127-139.
    [145] Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China [J]. Nature, 2009, 458: 1009-1014.
    [146] Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils [J]. Global Biogeochemical Cycles, 1994, 9: 23-36.
    [147] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus, 1992, 44B: 81-99.
    [148] Ryan M G, Law B E. Interpreting, measuring, and modeling soil respiration [J]. Biogeochemistry, 2005, 73: 3-27.
    [149] Sampson A W. Range improvement by deferred and rotation grazing [J]. USDA Bulletin, 1913, 34.
    [150] Savory A & Parsons S. The Savory grazing method [J]. Rangelands, 1980, 2: 234-237.
    [151] Savory A. The Savory grazing method or holistic resource management [J].Rangelands, 1983, 5: 155-159.
    [152] Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000, 48: 7-20.
    [153] Sharrow S H. Rotation vs.continuous grazing affects animal performance on annual grass-subclove pasture [J].Range Manage, 1983, 36: 593-595.
    [154] Suyker A E, Shashibb B V, Geogre B. Interannual variability in net CO2 exchange of a nativetallgrass prairie [J]. Global Change Biology, 2003, 9: 255-265.
    [155] Tainton N M, Aucamp A J, Danckwerts J E. Principles of managing veld[A]. In: Tainton N M. Veld management in South Africa [M]. Pietermaritzburg, South Africa: University of Natal Press, 1999, 169-193.
    [156] Taylor, C A, JR., Brooks T D, Garza N E. Effects of short duration and high-intensity, low-frequency grazing systems on forage production and composition [J]. Journal of Range Management, 1993, 46: 118-121.
    [157] Teague, W R, Dowhower S L, Waggoner J A. Drought and grazing patch dynamics under different grazing management [J]. Journal of Arid Environments, 2004, 58: 97-117.
    [158] Thurow T. Hydrology and erosion [A]. In: Grazing management: an ecological perspective [M]. Portland, OR, USA: Timber Press, 1991, 141-159.
    [159] Walker, J W, Heitschmidt R K, et al. Quality and botanical composition of cattle diets under rotational and continuous grazing treatments [J]. Journal of Range Management, 1989, 42: 239-242.
    [160] Ward D D. Salt Z, Ngairorue B T. Spatio-temporal rainfall variation and stock management in arid Namibia [J]. Journal of Range Management, 2004, 57: 130-140.
    [161] Wassmann R, Neue H U, Lantin R S, et al. Temporal patterns of methane emission from rice fields treater by different modes of N application [J]. Journal of Geophysical Research, 1994, 99: 16457-16462.
    [162] White R P, Murray S, Rohweder M. Grassland Ecosystems[R]. World Resources Institute. 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700