用户名: 密码: 验证码:
地闪回击脉冲电磁场空间分布规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闪电脉冲电磁场(LEMP)作为一种全球范围随机发生的高功率辐射源,能够对电子电气设备、输电线路和通信电缆等造成干扰、故障或损坏。但是因为多数与人类日常生活相关的设备、线缆和传感器等都被布置在地表附近空间,所以多数关于LEMP的研究都集中在地表附近空间。然而,随着特高压输电网、低空飞行器、巨型建筑和埋地线缆等越来越多的出现在空中和地下,将对LEMP的研究范围扩展到整个地上与地下空间就显得十分必要。另一方面,由于巨大的计算量和存储量,现有关于LEMP的研究都通过对比个别离散点上的LEMP波形来推测其在空间中粗略的分布。而这显然不能对LEMP防护设计和标准制定提供有力的支持。
     基于以上原因,本文以闪电过程中危害最大的地闪回击LEMP为对象,通过自创的改进型时域有限差分(FDTD)方法,得到了LEMP在整个空间中各个特征参量的详细分布。并通过计算多种工程实用参数条件下的LEMP空间分布,给出了不同情况下LEMP空间分布的变化特点。较为系统和完整的给出了地闪回击脉冲电磁场在整个空间中的分布规律。
     首先,本文通过在FDTD程序的时间步进间加入了一种“处理窗”程序,提出了一种高效的改进型FDTD方法——PWFDTD算法。与其他方法相比,它避免了计算所有位置上LEMP各个参量所需的巨大计算量和存储量,能够方便快速的计算出整个空间每个位置上LEMP的各个特征参量。这也使得获取LEMP在全空间中的详细分布成为可能。通过对比PWFDTD方法在不同空间位置上、不同参数条件下与多种LEMP计算方法以及实际测量的数据,新算法的计算精度和准确性得到了很好的验证。
     其次,本文通过新的PWFDTD方法计算得到了LEMP在地闪周围数千米范围内每一个网格上的特征参量,获得了它们的详细空间分布图。其中的特征参量包含LEMP峰值、电磁场变化率峰值、相应功率密度峰值和能量密度的分布,以及LEMP上升时间T10%-90%(10%极值点至90%极值点的时间)与电磁场变化率的T10%-90%和T50%-50%(50%极值点至50%极值点的时间,即脉冲宽度)。通过对这些特征参量空间分布图的归纳和抽样,从多角度对LEMP在全空间中的分布基本规律进行了总结。
     第三,本文分别讨论了工程实用条件下(多种通道模型、多种底部基电流、多种回击速度、多种大地电参数、大地水平和垂直分层情况以及起伏大地情况)LEMP各特征参量空间分布的变化。通过对比这些结果,本文总结并给出了每种参数对于LEMP空间分布的影响特点,比较系统和全面的勾勒出了工程实际应用时不同情况下LEMP在全空间中分布的变化特性。
     最后,本文计算了雷击建筑物时整个周围空间中每一个网格上的LEMP,并得出了其各个特征参量的空间分布规律。并且通过计算不同建筑物顶部反射率、不同建筑物底部反射率和不同建筑物高度情况时的LEMP,讨论了LEMP各个特征参量在周围空间中分布的变化特点。还给出了导致周围空间中LEMP各参量增强的主要原因和规律。
     文中较为系统和完整的给出了各种情况下LEMP各特征参量在全空间中分布的规律。这些分布图与规律均未在国内外研究中发现,且相比于现有研究中通过个别点波形推测得到的粗略规律,更加准确、完整和直观。它们不仅有助于人类更好地理解地闪发生过程和机理,而且还可以作为设备、线缆等预测LEMP感应电流时的依据以及LEMP防护规则制定时的理论基础,同时还能够对LEMP观测和闪电精确定位提供重要的帮助。
Lightning electromagnetic pulse(LEMP) is a random global high powerradiation source. It can cause interference, failure or damage in electrical andelectronic equipments, transmission lines and communication cables. For mostequipments, cables and sensors which related to human daily life are arranged nearthe ground, the published researches on the attributes of lightning electromagneticfields are confined to the discrete points near the ground. But with more and moreapplications of Ultra-High Voltage(UHV) transmission network, the low-altitudeaircraft, giant buildings and underground cable, it is necessary to make the scope ofthe study on LEMP expand to the entire space. On the other hand,for the hugeamount of computation and storage, the published studies on LEMP are confined tothe rough distribution by comparing diffferent waveforms on discrete points. Itobviously does not provide strong support for LEMP protection design andstandards formulation.
     For these reasons, the LEMP induced by lightning return stroke is selected tobe the object of this research. The spatial distribution of characteristic parameterswhich extract from LEMP are calculated in entire space by an originally improvedfinite difference time domain (FDTD) method. The spatial distributions of LEMPunder the condition of different parameters and their change trend are also given inthis paper. And all these distributions constitute the spatial distribution rules ofLEMP systematically and completely.
     First, a "processing window" program is added between the time steps ofFDTD method in this research. This novel approach can be called PWFDTD(processing-window finite difference time domain). For this method avoids thehuge amount of calculation and storage when computing the distribution of LEMPparameters, it can get the LEMP and their spatial distribution fast and conveniently.After comparing the results get from different method with the data from PWFDTDapproach in different positions and different parameters, the precision and accuracyof the new algorithm is demonstrated.
     Second, the characteristic parameters of LEMP at each grid in a few kilometersrange are calculated in this paper with PWFDTD method. For the first time, the exact spatial distribution maps of these LEMP parameters are achieved. thesecharacteristic parameters includes the maximum LEMP, the peak value of LEMPtime derivatives, the maximum power density of LEMP, the energy density, therise-time T10%-90%(The time from10%peak to90%peak)of LEMP, the T10%-90%andhalf-width T50%-50%(The time from50%peak to50%peak again) of LEMP timederivatives. Based on sampling and analyzing to the distribution of theseparameters, the basic distribution rules of LEMP are summarized from differentperspectives.
     Third, the change trend of LEMP parameters are analyzed for the condition ofdifferent model of lightning channel, different base current, different velocity ofcurrent, different conductivity of ground, the horizontal and vertical stratificationground and the uneven feature of terrain. The influence of spatial distribution mapsof these LEMP parameters for different conditions is summarized. Since the basicdistribution rules of LEMP does not change in different conditions, its universalityand practical value is confirmed.
     At last, the LEMP radiated by lightning strikes to tall structures are calculatedat each grid of entire space. The distribution rules of LEMP are summarized in thiscase. And the change trend of distribution are analyzed for the condition ofdifferent height of tower and reflections at the top and bottom of tower. Theinfluence of spatial distribution maps of LEMP for different conditions issummarized.
     All these spatial distribution maps and rules of LEMP were not seen in thedomestic or foreign research. Compared to the existing research, which areconfined to the rough distribution on discrete points, these distribution maps andrules are more accurate, complete and intuitive. They are not only useful to betterunderstand the process and mechanism of lightning, but also can be principles ofshielding design for electrical and electronic equipments, transmission lines andcommunication cables. They could be used as protection design and layout rules inmany aspects, and can also provide important help to the observation of LEMP andlightning location.
引文
[1] D. J. Boccippio, K. L. Cummins, H. J. Christian,S. J. Goodman. Combinedsatellite-and surface-based estimation of the intracloud-cloud-to-groundlightning ratio over the continental United States[J]. Monthly WeatherReview.2001,129(1):108-122
    [2]丁同禹.闪电脉冲电磁场及其耦合效应的研究[D].哈尔滨工业大学硕士论文.2011:70-71
    [3]马明,吕伟涛,张义军,孟青,杨晶.1997—2006年我国雷电灾情特征[J].应用气象学报.2008,04):393-400
    [4] M. A. Uman. The art and science of lightning protection[M]. CambridgeUniversity Press.2008:3-20
    [5] http://photo.net/photodb/photo?photo_id=16386172
    [6]虞昊,物理学家,藏庚媛,赵大铜.现代防雷技术基础[M].气象出版社.1995:35-57
    [7]卢兴来,陆人治.一次雷达站雷击灾害事故分析及补救防雷工程设计[C].第七届中国国际防雷论坛,2008,北京:289-292
    [8] V. A. Rakov,F. Rachidi. Overview of Recent Progress in Lightning Researchand Lightning Protection[J]. IEEE Transactions on ElectromagneticCompatibility.2009,51(3):428-442
    [9] V. A. Rakov,M. A. Uman. Review and evaluation of lightning return strokemodels including some aspects of their application[J]. IEEE Transactions onElectromagnetic Compatibility.1998,40(4):403-426
    [10] C. Bruce,R. Golde. The lightning discharge[J]. Electrical Engineers-Part II:Power Engineering, Journal of the Institution of.1941,88(6):487-505
    [11] M. A. Uman,D. K. McLain. Magnetic field of lightning return stroke[J].Journal of Geophysical Research.1969,74(28):6899-6910
    [12] F. Heidler. Traveling current source model for LEMP calculation[C]. Proc.6th Int. Zurich Symp. Electromagn. Compat,1985, Zurich:157-162
    [13] V. A. Rakov,A. A. Dulzon. Calculated electromagnetic fields of lightningreturn stroke[J]. Tekh. Elektrodinam.1987,1:87-89
    [14] C. A. Nucci, C. Mazzetti, F. Rachidi,M. Ianoz. On lightning return strokemodels for LEMP calculations[C].19th International Conference onLightning Protection, Graz,1988:113-117
    [15] G. Diendorfer,M. A. Uman. An improved return stroke model with specifiedchannel-base current[J]. Journal of Geophysical Research.1990,95(D9):13621-13613,13644
    [16] C. Nucci, G. Diendorfer, M. Uman, F. Rachidi, M. Ianoz,C. Mazzetti.Lightning return stroke current models with specified channel-base current:A review and comparison[J]. Journal of Geophysical Research.1990,95(D12):20395-20320,20408
    [17] F. Santamaria, J. Alarcon,C. Vargas. Engineering return stroke models areview and evaluation[C]. Lightning Protection (XI SIPDA),2011International Symposium on,2011:117-122
    [18] G. Maslowski,V. A. Rakov. Equivalency of lightning return-stroke modelsemploying lumped and distributed current sources[J]. ElectromagneticCompatibility, IEEE Transactions on.2007,49(1):123-132
    [19] V. Cooray. On the concepts used in return stroke models applied inengineering practice[J]. Electromagnetic Compatibility, IEEE Transactionson.2003,45(1):101-108
    [20] F. Rachidi,C. Nucci. On the Master, Uman, Lin, Standler and the modifiedtransmission line lightning return stroke current models[J]. Journal ofGeophysical Research.1990,95(D12):20389-20320,20393
    [21] G. Maslowski,V. A. Rakov. New insights into lightning return-stroke modelswith specified longitudinal current distribution[J]. ElectromagneticCompatibility, IEEE Transactions on.2009,51(3):471-478
    [22]陈亚洲,刘尚合,张飞舟,魏明,伍小蓉.基于脉冲函数电流模型对闪电回击电磁场的计算[J].电波科学学报.2002,2:119-124
    [23]田明宏,魏光辉,刘尚合.用击穿电流和电晕电流表示雷电回击标准电流[J].高电压技术.2002,4:33-35,38
    [24]张飞舟,陈亚洲,魏明,刘尚合.雷电电流的脉冲函数表示[J].电波科学学报.2002,1:51-53
    [25]田明宏,魏光辉,刘尚合,毕增军.基于IEC标准雷电后续回击电磁场的计算[J].电子学报.2003,6:951-954
    [26]张其林,郄秀书,孔祥贞,周筠珺,杨静,张廷龙,冯桂力,肖庆复.人工引发闪电和自然闪电回击电流波形的对比分析[J].中国电机工程学报.2007,6:67-71
    [27]张其林,郄秀书,张廷龙,赵阳,杨静.雷电流波形的观测及沿通道时空分布的数值模拟[J].电子学报.2008,9:1829-1832
    [28]赵阳,郄秀书,孔祥贞,张广庶,张彤,杨静,冯桂力,张其林,王东方.人工触发闪电电流波形特征参数分析[J].物理学报.2009,9:6616-6626
    [29]陈亚洲,刘尚合,魏明,孙永卫.回击参数对闪电电磁场的影响[J].高电压技术.2002,10:28-29,34
    [30]田明宏,魏光辉,刘尚合.通道高度对雷电回击电磁场的影响研究[J].电波科学学报.2002,5:499-504
    [31]田明宏,盛松林,魏光辉,刘尚合.雷电回击参数对回击电磁场计算的影响研究[J].强激光与粒子束.2003,6:599-603
    [32]甘文强,李性太,张其林.闪电通道垂直假定引起回击辐射场峰值计算误差分析[J].气象科技.2009,6:748-752
    [33] T. Ding, S. Zhang,Q. Wu. Effects of channel length on calculation accuracyof lightning return stroke electromagnetic fields[C]. ElectromagneticCompatibility (EMC),2010IEEE International Symposium on,2010, FortLauderdale:374-377
    [34] C. Wilson. On some determinations of the sign and magnitude of electricdischarges in lightning flashes[J]. Proceedings of the Royal Society ofLondon. Series A.1916,92(644):555-574
    [35] G. Lupo, C. Petrarca, V. Tucci,M. Vitelli. EM fields associated withlightning channels: on the effect of tortuosity and branching[J]. IEEETransactions on Electromagnetic Compatibility.2000,42(4):394-404
    [36] Z. K. Zhao,Q. L. Zhang. Influence of channel tortuosity on the lightningreturn stroke electromagnetic field in the time domain[J]. AtmosphericResearch.2009,91(2-4):404-409
    [37] S. L. Meredith, S. K. Earles, I. N. Kostanic, N. E. Turner,C. E. Otero. Howlightning tortuosity affects the electromagnetic fields by augmenting theireffective distance[J]. Progress In Electromagnetics Research B.2010,25:155-169
    [38]任顺平,迟建平,庄洪春,刘来存.分形闪道及其电磁场辐射仿真[J].电网技术.1999,4:13-16,20
    [39]苟学强,张义军,董万胜,郄秀书.基于小波的地闪首次回击辐射场的多重分形分析[J].地球物理学报.2007,1:101-105
    [40]张其林,冯建伟,赵中阔,卞建春.分形闪电通道模型的建立及其电磁辐射特征[J].大气科学学报.2010,6:719-724
    [41] F. Delfino, R. Procopio,M. Rossi. Lightning return stroke current radiationin presence of a conducting ground:1. Theory and numerical evaluation ofthe electromagnetic fields[J]. Journal of Geophysical Research.2008,113(D5):D05110
    [42] R. Vladimir,R. Farchad. Overview of Recent Progress in LightningResearch and Lightning Protection[J]. IEEE Transactions onElectromagnetic Compatibility.2009,51(3):428-442
    [43] F. Delfino, R. Procopio, M. Rossi, F. Rachidi,C. A. Nucci. An algorithm forthe exact evaluation of the underground lightning electromagnetic fields[J].IEEE Transactions on Electromagnetic Compatibility.2007,49(2):401-411
    [44] K. A. Norton. Propagation in the FM broadcast band[J]. Advances inElectronics, Academic Press.1948,1:381-421
    [45] R. King. Electromagnetic wave propagation over a constant impedanceplane[J]. Radio Science.1969,4(3):255-268
    [46] J. R. Wait. Transient fields of a vertical dipole over a homogeneous curvedground[J]. Canadian Journal of Physics.1956,34(1):27-35
    [47] J. R. Wait. The magnetic dipole over the horizontally stratified earth[J].Canadian Journal of Physics.1951,29(6):577-592
    [48] A. Mimouni, F. Delfino, R. Procopio,F. Rachidi. On the computation ofunderground electromagnetic fields generated by lightning: A comparisonbetween different approaches[C].2007IEEE Lausanne POWERTECH, July1,2007-July5,2007,2007, Lausanne, Switzerland:772-777
    [49] F. Delfino, R. Procopio,M. Rossi. Lightning return stroke current radiationin presence of a conducting ground:1. Theory and numerical evaluation ofthe electromagnetic fields[J]. Journal of Geophysical Research-Atmospheres.2008,113(D5): D05110
    [50] F. Delfino, R. Procopio, M. Rossi,F. Rachidi. Prony series representationfor the lightning channel base current[J]. IEEE Transactions onElectromagnetic Compatibility.2012,54(2):308-315
    [51] V. Cooray. Horizontal fields generated by return strokes[J]. Radio Science.1992,27(4):529-537
    [52] M. Rubinstein. An approximate formula for the calculation of the horizontalelectric field from lightning at close, intermediate, and long range[J].Electromagnetic Compatibility, IEEE Transactions on.1996,38(3):531-535
    [53] J. R. Wait. Concerning the horizontal electric field of lightning[J].Electromagnetic Compatibility, IEEE Transactions on.1997,39(2):186
    [54] V. Cooray. Some considerations on the "Cooray-Rubinstein" formulationused in deriving the horizontal electric field of lightning return strokes overfinitely conducting ground[J]. IEEE Transactions on ElectromagneticCompatibility.2002,44(4):560-566
    [55] A. Shoory, R. Moini, S. H. H. Sadeghi,V. A. Rakov. Analysis of lightning-radiated electromagnetic fields in the vicinity of lossy ground[J]. IEEETransactions on Electromagnetic Compatibility.2005,47(1):131-145
    [56] V. Cooray. Horizontal electric field above-and underground produced bylightning flashes[J]. IEEE Transactions on Electromagnetic Compatibility.2010,52(4):936-943
    [57] C. F. Barbosa,J. O. S. Paulino. An approximate time-domain formula for thecalculation of the horizontal electric field from lightning[J]. IEEETransactions on Electromagnetic Compatibility.2007,49(3):593-601
    [58] C. Caligaris, F. Delfino,R. Procopio. Cooray-Rubinstein formula for theevaluation of lightning radial electric fields: Derivation and implementationin the time domain[J]. IEEE Transactions on Electromagnetic Compatibility.2008,50(1):194-197
    [59] D. Li, C. Wang,X. Liu. General Time-Domain Formula for HorizontalElectric Field Excited by Lightning[J]. IEEE Transactions onElectromagnetic Compatibility.2011,53(2):395-400
    [60] Y. Baba,V. A. Rakov. Applications of electromagnetic models of thelightning return stroke[J]. Ieee Transactions on Power Delivery.2008,23(2):800-811
    [61] R. Moini, B. Kordi, G. Z. Rafi,V. A. Rakov. A new lightning return strokemodel based on antenna theory[J]. Journal of Geophysical Research.2000,105(D24):29693-29629,29702
    [62] S. Miyazaki,M. Ishii. Role of steel frames of buildings for mitigation oflightning-induced magnetic fields[J]. IEEE Transactions on ElectromagneticCompatibility.2008,50(2):333-339
    [63] K. Yee. Numerical solution of initial boundary value problems involvingMaxwell's equations in isotropic media[J]. Antennas and Propagation, IEEETransactions on.1966,14(3):302-307
    [64] C. A. F. Sartori,J. R. Cardoso. An analytical-FDTD method for near LEMPcalculation[J]. Magnetics, IEEE Transactions on.2000,36(4):1631-1634
    [65] J. J. Simpson,A. Taflove. Two-dimensional FDTD modeling of impulsiveELF antipodal propagation about the earth-sphere[C].2002IEEE Antennasand Propagation Society International Symposium, June16,2002-June21,2002,2002, San Antonio, TX, United states:678-681
    [66] J. J. Simpson. Current and future applications of3-D global earth-ionosphere models based on the full-vector Maxwell's equations FDTDmethod[J]. Surveys in Geophysics.2009,30(2):105-130
    [67] J. J. Simpson,A. Taflove. A review of progress in FDTD Maxwell'sequations modeling of impulsive subionospheric propagation below300kHz[J]. Antennas and Propagation, IEEE Transactions on.2007,55(6):1582-1590
    [68] C. Yang,B. Zhou. Calculation methods of electromagnetic fields very closeto lightning[J]. IEEE Transactions on Electromagnetic Compatibility.2004,46(1):133-141
    [69] H. Ren,B. Zhou. Calculation of lightning induced voltages on a line overfinitely conducting ground[C].4th Asia-Pacific Conference onEnvironmental Electromagnetics, CEEM'2006, August1,2006-August4,2006,2006, Dalian, China:38-42
    [70] H. M. Ren, B. H. Zhou, V. A. Rakov, L. H. Shi, C. Gao,J. H. Yang. Analysisof lightning-induced voltages on overhead lines using a2-D FDTD methodand Agrawal coupling model[J]. IEEE Transactions on ElectromagneticCompatibility.2008,50(3):651-659
    [71] B. Yang, B. H. Zhou, C. Gao, L. H. Shi, B. Chen,H. L. Chen. Using a Two-Step Finite-Difference Time-Domain Method to Analyze Lightning-InducedVoltages on Transmission Lines[J]. IEEE Transactions on ElectromagneticCompatibility.2011,53(1):256-260
    [72] X.-J. Li, B.-H. Zhou, T.-B. Yu, G. Cheng, L.-H. Shi,C.-L. Lu. Coupled fieldinside shielding enclosure with an aperture due to nearby lightning[J]. IEEETransactions on Electromagnetic Compatibility.2007,49(1):133-142
    [73] B. Yang, B. H. Zhou, B. Chen, J. B. Wang,X. Meng. Numerical Study ofLightning-Induced Currents on Buried Cables and Shield Wire ProtectionMethod[J]. IEEE Transactions on Electromagnetic Compatibility.2012,54(2):323-331
    [74] Y. Baba,V. A. Rakov. On the mechanism of attenuation of current wavespropagating along a vertical perfectly conducting wire above ground:Application to lightning[J]. IEEE Transactions on ElectromagneticCompatibility.2005,47(3):521-532
    [75] Y. Baba,V. A. Rakov. On the interpretation of ground reflections observed insmall-scale experiments simulating lightning strikes to towers[J]. IEEETransactions on Electromagnetic Compatibility.2005,47(3):533-542
    [76] Y. Baba,V. A. Rakov. Electromagnetic fields at the top of a tall buildingassociated with nearby lightning return strokes[J]. IEEE Transactions onElectromagnetic Compatibility.2007,49(3):632-643
    [77] A. Mimouni, F. Rachidi,Z.-e. Azzouz. A finite-difference time-domainapproach for the evaluation of electromagnetic fields radiated by lightningstrikes to tall structures[J]. Journal of Electrostatics.2008,66(9-10):504-513
    [78] Y. Liu, N. Theethayi,R. Thottappillil. An engineering model for transientanalysis of grounding system under lightning strikes: Nonuniformtransmission-line approach[J]. Ieee Transactions on Power Delivery.2005,20(2):722-730
    [79] M. Apra, M. D'Amore, K. Gigliotti, M. S. Sarto,V. Volpi. Lightning indirecteffects certification of a transport aircraft by numerical simulation[J]. IEEETransactions on Electromagnetic Compatibility.2008,50(3):513-523
    [80]陈亚洲,刘尚合,张飞舟,魏明,乔志军.用偶极子法对闪电电磁场的计算[J].高电压技术.2001,(3):50-52,54
    [81]田明宏,盛松林,魏明,魏光辉.基于DU模型雷电回击电磁场的计算[J].高电压技术.2002,(9):34-36
    [82] J. Dai, D. Su,X. Zhao. A scheme of lightning pulse source for the FDTDanalysis of near-field interaction with airplane[C].8th InternationalSymposium on Antennas, Propagation and EM Theory, ISAPE2008,November2,2008-November5,2008,2008, Kunming, China:843-846
    [83] T. Ding, S. Zhang,Q. Wu. Effects of channel length on calculation accuracyof lightning return stroke electromagnetic fields[C].2010IEEEInternational Symposium on Electromagnetic Compatibility, EMC2010,July25,2010-July30,2010,2010, Fort Lauderdale, FL, United states:374-377
    [84]文武.感应雷电磁干扰及其防护研究[D].武汉大学博士论文.2004:120-121
    [85]邹相国.雷电电磁场空间分布的研究与计算[D].华中科技大学硕士论文.2006:53-54
    [86]董建.闪电回击通道周围电磁场分布特性研究[D].哈尔滨工业大学硕士论文.2009:51-52
    [87]张明霞.雷电电磁场计算方法及沿地表传播特性的研究[D].华北电力大学(北京)博士论文.2010:79-80
    [88] J. A. W. Zenneck. Wireless telegraphy[M]. McGraw-Hill Book Company,inc.1915:10-25
    [89]张其林,郄秀书,王振会,杨仲江,李霞,施广全.地面电导率对地闪回击辐射场传输的影响[J].高电压技术.2008,No.191(10):2036-2040
    [90] V. Cooray. Propagation effects on radiation field pulses generated by cloudlightning flashes[J]. Journal of Atmospheric and Solar-Terrestrial Physics.2007,69(12):1397-1406
    [91]刘晓东,张其林,冯旭宇.有限电导率对地闪回击辐射场上升沿时间和场强幅值的影响[J].高电压技术.2012,v.38;No.231(02):457-463
    [92] M. Fernandoa,V. Cooray. Propagation effects on the electric field timederivatives generated by return strokes in lightning flashes[J]. Journal ofAtmospheric and Solar-Terrestrial Physics.2007,69(12):1388-1396
    [93] F. Delfino, R. Procopio, M. Rossi, A. Shoory,F. Rachidi. The effect of ahorizontally stratified ground on lightning electromagnetic fields[C].Electromagnetic Compatibility (EMC),2010IEEE International Symposiumon,2010:45-50
    [94]赵志斌,张明霞,崔翔,陈家宏.混合路径土壤对雷电辐射磁场的影响分析[J].高电压技术.2010,v.36;No.214(09):2291-2296
    [95] A. Sommerfeld. Propagation of waves in wireless telegraphy[J]. Ann. Phys.1909,28(3):665-736
    [96] V. Cooray,S. Lundquist. Effects of propagation on the rise times and theinitial peaks of radiation fields from return strokes[J]. Radio Science.1983,18(3):409-415
    [97] J. Wait. Propagation effects for electromagnetic pulse transmission[J].Proceedings of the IEEE.1986,74(9):1173-1181
    [98] A. Shoory, A. Mimouni, F. Rachidi, V. Cooray, R. Moini,S. H. H. Sadeghi.Validity of Simplified Approaches for the Evaluation of LightningElectromagnetic Fields Above a Horizontally Stratified Ground[J]. IEEETransactions on Electromagnetic Compatibility.2010,52(3):657-663
    [99]张明霞,崔翔,陈家宏,赵志斌.水平多层土壤对雷电定量精度的影响[J].高电压技术.2009,v.35;No.205(12):2937-2943
    [100] Q. Zhang, J. Yang, D. Li,Z. Wang. Propagation effects of a fractal roughocean surface on the vertical electric field generated by lightning returnstrokes[J]. Journal of Electrostatics.2011,70:54-59
    [101] S. Zhang, T. Ding,Q. Wu. Analysis of lightning-induced electromagneticfields near rugged terrain in cylindrical coordinates[C]. ElectromagneticCompatibility (APEMC),2010Asia-Pacific Symposium on,2010:1490-1493
    [102] M. A. Uman, D. K. McLain,E. P. Krider. The electromagnetic radiationfrom a finite antenna[J]. Am. J. Phys.1975,43(1):33-38
    [103] E. P. Krider, R. C. Noggle,M. A. Uman. A gated, wideband magneticdirection finder for lightning return strokes[J]. Journal of AppliedMeteorology.1976,15:301-306
    [104]陈家宏,张勤,冯万兴,方玉河.中国电网雷电定位系统与雷电监测网[J].高电压技术.2008,No.184(03):425-431
    [105]陈维江,陈家宏,谷山强,钱冠军.中国电网雷电监测与防护亟待研究的关键技术[J].高电压技术.2008,No.191(10):2009-2015
    [106] A. Hussein, W. Janischewskyj, M. Milewski, V. Shostak, W. Chisholm,J.Chang. Current waveform parameters of CN Tower lightning returnstrokes[J]. Journal of Electrostatics.2004,60(2):149-162
    [107] H. Pichler, G. Diendorfer,M. Mair. Some parameters of correlated currentand radiated field pulses from lightning to the Gaisberg tower[J]. IeejTransactions on Electrical and Electronic Engineering.2010,5(1):8-13
    [108] M. Miki, V. Rakov, T. Shindo, G. Diendorfer, M. Mair, F. Heidler, W.Zischank, M. Uman, R. Thottappillil,D. Wang. Initial stage in lightninginitiated from tall objects and in rocket-triggered lightning[J]. Journal ofGeophysical Research.2005,110(D2):D02109
    [109] S. Visacro,F. H. Silveira. Lightning current waves measured at shortinstrumented towers: The influence of sensor position[J]. GeophysicalResearch Letters.2005,32(18):L18804
    [110] http://www.photographersdirect.com/buyers/stockphoto.asp?imageid=2114
    [111] http://en.wikipedia.org/wiki/File:Toronto's_CN_Tower.jpg
    [112] http://de.structurae.de/structures/data/index.cfm?id=s0041996
    [113] M. A. Uman, V. A. Rakov, G. H. Schnetzer, K. J. Rambo, D. E. Crawford,R.J. Fisher. Time derivative of the electric field10,14, and30m fromtriggered lightning strokes[J]. Journal of Geophysical Research-Atmospheres.2000,105(D12):15577-15595
    [114] V. A. Rakov, M. A. Uman,K. J. Rambo. A review of ten years of triggered-lightning experiments at Camp Blanding, Florida[J]. Atmospheric Research.2005,76(1-4):503-517
    [115] E. Petrache, M. Paolone, F. Rachidi, C. A. Nucci, V. Rakov, M. Uman, D.Jordan, K. Rambo, J. Jerauld, M. Nyffeler,J. Schoene. Lightning-inducedcurrents in buried coaxial cables: A frequency-domain approach and itsvalidation using rocket-triggered lightning[J]. Journal of Electrostatics.2007,65(5-6SPEC. ISS.):322-328
    [116] M. Bejleri, V. A. Rakov, M. A. Uman, K. J. Rambo, C. T. Mata,M. I.Fernandez. Triggered lightning testing of an airport runway lightingsystem[J]. Electromagnetic Compatibility, IEEE Transactions on.2004,46(1):96-101
    [117] J. Schoene, M. Uman, V. Rakov, K. Rambo, J. Jerauld, C. Mata, A. Mata,D. Jordan,G. Schnetzer. Characterization of return-stroke currents in rocket-triggered lightning[J]. Journal of Geophysical Research.2009,114(D3):D03106
    [118]张义军,周秀骥.雷电研究的回顾和进展[J].应用气象学报.2006,6:829-834
    [119]李俊,吕伟涛,张义军,董万胜,郑栋,陈绍东,邱实,王涛,刘恒毅,陈绿文.一次多分叉多接地的空中触发闪电过程[J].应用气象学报.2010,v.21(01):95-100
    [120]郄秀书,杨静,蒋如斌,王俊芳,刘冬霞,王彩霞,宣越健.新型人工引雷专用火箭及其首次引雷实验结果[J].大气科学.2010,v.34(05):937-946
    [121]郄秀书,杨静,蒋如斌,王彩霞,冯桂力,吴书君,张广庶.山东人工引发雷电综合观测实验及回击电流特征[J].大气科学.2012,v.36(01):77-88
    [122] F. Delfino, P. Girdinio, R. Procopio, M. Rossi,F. Rachidi. Time-domainimplementation of Cooray-Rubinstein formula via convolution integral andrational approximation[J]. IEEE Transactions on ElectromagneticCompatibility.2011,53(3):755-763
    [123] P. P. Barker, T. A. Short, A. Eybert-Berard,J. Berlandis. Induced voltagemeasurements on an experimental distribution line during nearby rockettriggered lightning flashes[J]. Power Delivery, IEEE Transactions on.1996,11(2):980-995
    [124] A. K. Agrawal, H. J. Price,S. H. Gurbaxani. Transient response ofmulticonductor transmission lines excited by a nonuniform electromagneticfield[J]. Electromagnetic Compatibility, IEEE Transactions on.1980,2:119-129
    [125] T. Novak,T. J. Fisher. Lightning propagation through the earth and itspotential for methane ignitions in abandoned areas of underground coalmines[J]. Ieee Transactions on Industry Applications.2001,37(6):1555-1562
    [126] H. K. Sacks,T. Novak. A method for estimating the probability of lightningcausing a methane ignition in an underground mine[J]. Ieee Transactions onIndustry Applications.2008,44(2):418-423
    [127] Y. Baba,V. A. Rakov. On the use of lumped sources in lightning returnstroke models[J]. Journal of Geophysical Research.2005,110(D3):D03101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700