用户名: 密码: 验证码:
对牙槽骨固有牙槽骨与松质骨骨微结构和骨细胞密度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:骨改建是骨吸收与骨形成之间的一种动态平衡。以往的研究认为骨改建主要是成骨细胞和破骨细胞相互作用。随着研究的深入,已证实在骨组织的生长发育过程中,生物力学作用是影响其形状、内部结构、分布和微结构的完整性变化等最主要的因素。目前的研究证实,存在于骨组织中的骨细胞是应力感受细胞。成熟的骨细胞有传递应力的作用。当骨组织在机械应力作用下时,骨细胞能将力学信号识别整合后,通过隙缝连接以及旁分泌等形式传递到破骨或成骨效应细胞,然后引起骨的吸收或骨的生成。在人体骨骼系统中,牙槽骨是骨改建最活跃的组织,能在应力作用下发生快速的改建。其原因有可能是牙槽骨内骨结构、骨细胞的分布规律以及密度不同,所形成的网络结构能对应力作出不同程度地反映。
     研究目的:研究正常人牙槽骨硬骨板区和松质骨区的扫描电镜图像特点,从其骨微结构形态的角度进行电镜图像的描述和比较;通过对正常牙槽骨硬骨板区和松质骨区的骨细胞密度进行对比性研究,为探讨骨细胞密度与骨改建速度是否具有一定相关性打下基础。为进一步探索牙槽骨改建的生物力学性能提供理论依据。
     材料和方法: 1实验选用人下颌骨前磨牙区部位,经X线检查硬骨板显示为连续清晰组织块,沿垂直于牙体长轴将牙槽骨修整为约5mm×5mm大小骨试件,通过扫描电镜观察硬骨板区和松质骨区骨微结构并进行描述。
     2将5例含完整第一磨牙的牙槽骨骨块修整为1.2cm×1.2cm×1.2cm大小,硬组织包埋切片,HE染色,用生物显微镜BH-2观察切片,然后分别计算出硬骨板区和松质骨区骨细胞密度并进行统计学分析。
     研究结果:扫描电镜观察显示松质骨区骨小梁表面胶原纤维排列整齐紧密且有方向性,硬骨板区骨小梁胶原纤维排列密集、紊乱无规则,并相互交错形成约直径为5.0~6.0μm大小不等的孔隙;对硬组织HE染色切片观察和统计分析,硬骨板区骨细胞密度明显高于松质骨区骨细胞密度。
     结论:正常人牙槽骨硬骨板区骨细胞密度明显高于松质骨区骨细胞密度。两个区域骨胶原纤维的排列有明显不同。骨细胞密度可能是潜在的评价骨力学性能的重要指标。为今后进一步对颌骨骨细胞生物特性的研究提供理论依据。
Background: Bone formation is a dynamic equilibrium between bone resorption and bone remodeling .Previous studies showed that bone formation was a interaction between osteoblasts and osteoclasts .With a detailed study, it has been confirmed that vitodynamics is a main factor which impact its shape, internal structure, distribution and micro-changes during the growth and development of bone tissue .Present study has confirmed that bone cell which exists in bone tissue is stress cell. Mature bone cells can transfer stress. When the bone under mechanical stress ,after bone cell integrated the sign ,it can transfer osteoblasts and osteoclasts by the form of slit connecting and paracrine. Then it can lead the bone resorption or bone formation. In the human skeletal system, the alveolar bone remodeling is the most active organization. It can change quickly by stress. Maybe the reason is that the Alveolar bone structure and the distribution and density of bone cell are different so that network structure can reflect quickly on stress.
     Purpose: To observe the bone microstructure of the proper alveolar bone and the cancellous bone of the normal human alveolar bone by scanning electron micrograph and describe and compare it on the aspect of microarchitecture. By contrasting the bone cell density of the proper alveolar bone and the cancellous bone of the normal human alveolar bone to study the relativity of the bone cell density and the bone construction rate, in order to explore the biomechanics base of the alveolar construction.
     Material and Method: The area of the mandibular including premolars was studied in this experiment, to make sure the proper alveolar bone was continuous and obvious by X-ray, then to trim the alveolar into size of 5mm×5mm bone cakes following the tooth axis. To observe the bone microstructure of the proper alveolar bone and the cancellous bone of the normal human alveolar bone by scanning electron micrograph; Five alveolar bones including the first molar were trimmed into small bone cakes which sized in 1.2cm×1.2cm×1.2cm and made from the fractured sclerous tissue. The samples was stained by Haematoxylin Eosin, and then observed the sections by electron micrograph to calculate the bone cell density of the proper alveolar bone and the cancellous bone. Then made a statistic.
     Results: Scanning electron micrograph showed that collagen fibers which located on the surface of the trabecular cancellous bone was aligned tightly and having direction. The collagen fibers of the trabecular proper alveolar bone aligned tightly but disorderly and the collagen fibers were alternate permutation forming amount of holes ,the diameter of which was about 5.0~6.0μm; HE staining of sclerous tissue sections showed that the bone cell density in the proper alveolar bone area was much denser than which in the cancellous bone area.
     Conclusion: In normal human alveolar, the bone cell density in the proper alveolar bone area was denser than which in the cancellous bone area. The arrangement mode of the collagen fibers in these two areas was obviously different. Bone cell density may be a potential index to evaluate the capability of the biomechanics. There was basic significance to study biological character of the alveolar bone cells.
引文
[1]谷国良.骨细胞的功能:生物学研究和机理探讨[J].中华骨质疏松和骨矿盐疾病,2009,2:1-12.
    [2] Jee WS.Principles in bone physiology[J]. Musculoskelet Neuronal Interact.2000,1(1):11-13.
    [3] Frost HM.The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs[J]. Bone Miner Metab. 2000,18(6):305-316.
    [4] Bélanger LF,Bélanger C,Semba T.Technical approaches leading to the concept of osteocytic osteolysis [J].Clin Orthop Relat Res,1967,54:187-196.
    [5] Baund CA. Submicroscopic structure and functional aspects of the osteocyte [J]. Clin Orthop Relat Res,1968,56:227-236.
    [6] Parfitt AM. The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption—bone flow theory [J]. Clin Orthop Relat Res,1977,127:236-247.
    [7] Weinbaum S,Cowin SC,Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses [J]. J Biomech,1994,27:339-360.
    [8] Boyde A,Jones S. Estimation of the size of resorption lacunae in mammalian calcified tissues using SEM stereophotogrammetry [J]. Scan Electron Microsc,1980,2:393-402.
    [9] Frost H. Bone“mass”and the“mechanostat”:a proposal [J]. Anat Rec,1987,219:1-9
    [10] Turner CH,Forwood MR,Otter MW,et al. Mechanotransduction in bone:do bone cells act as sensors of fluid flow [J]. Faseb J,1994,8:875-878.
    [11] Pead M,Skerry TM,Lanyon LE. Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading [J]. J Bone Miner Res,1988,3:647-656.
    [12] Skerry T,Betensky L,Chayen J,et al. Early strain-related changes in enzymeactivity in osteocytes following bone loading in vivo [J]. J Bone Miner Res,1989,4:783-788.
    [13] Dallas S,Zaman G,Pead MJ,et al. Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modelling in vivo [J]. J Bone Miner Res,1993,8:251-259.
    [14] Tatsumi S,Ishii K,Amiauka N,et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction [J]. Cell Metab,2007,5:464-475.
    [15] Glodstein SA. The mechanical properties of tranbecular bone dependence on anatomic location and function. [J].Biomech,1987,20:1050.
    [16]郑江,吴起宁,秦四清等.扫描电镜下老年性骨质疏松患者骨微结构的变化[J].陕西医学.2003,32(5):400-403.
    [17] Meunier PJ. Anabolic agents for treating postmenopausal osteoporosis [J]. Joint Bone Spine: Revue du Rhumatisme, 2001, 68 (6): 576-581.
    [18] Whitehouse W, Dyson E, Jackson C.A fine structure in trabeculation of the human rib. [J].Radiol,1979,44:367.
    [19] Whitehouse W, Dyson E, Jackson C. The scanning electron microscope in atudiea of trabecular bone from human femur[J].Anat,1974,118:417.
    [20] Martin RB, Lau ST, Mathews PVCollagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods[J]. Biomech. 1996,29(12):1515-1521.
    [21] Mansell JP, Bailey AJ.Increased metabolism of bone collagen in post-menopausal female osteoporotic femoral heads[J]. Biochem Cell Biol. 2003 ,35(4):522-529.
    [22] Erben RG. Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry[J]. Histochem. Cytoehem,1997,45(2):307-313.
    [23]廖颖敏,冯祖德,张其清.胶原变形对骨的变形与断裂的影响[J].国外医学生物医学工程分册.2004,27(4):224-228.
    [24] Lorenzo J. Interactions between immune and bone cells: new insights with many remaining questions[J].Clin Invest,2000,106:749-952.
    [25] Donahue HJ. Gap junctions and biophysical regulation of bone cell differentiation[J].Bone,2000,26:417-422.
    [26] Martin R. Targeted bone remodeling involves BMU steering as well as activation[J].Bone,2007, 40: 1574-1580
    [27] Parfitt, AM. Targeted and non-targeted bone remodeling: relationship to BMU origination and progression[J]. Bone,2002, 30:5-7.
    [28] Verborgt O,Gibson GJ,Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo [J].Bone Miner Res,2000,15:60-67.
    [29] Boabaid F,Cerri PS,Katchburian E. Apoptotic bone cells may be engulfed by osteoclasts during alveolar bone resorption in young rats[J]. Tissue and Cell,2001,33:318-325.
    [30] Bronckers AL,Sasaguri K,Engelse MA. Transcription and immunolocalization of Runx2/Cbfa1/Pebp2 A in developing rodent and human craniofacial tissues: Further evidence suggesting osteoclasts phagocytose osteocytes[J].Microsc Res Tech,2003,61:540-548.
    [31] Cerri PS, Boabaid F, Katchburian E. Combined TUNEL and TRAP methods suggest that apoptotic bone cells are inside vacuoles of alveolar bone osteoclasts in young rats[J]. Journal of Periodontal Research,2003,38:223-226.
    [32] Soskolne WA. Phagocytosis of osteocytes by osteoclasts in femora of two week-old rabbits[J]. Cell Tissue Research, 1978,195:557-564.
    [33] Suzuki R,Domon T,Wakita M,et al. The reaction of osteoclasts when releasing osteocytes from osteocytic lacunae in the bone during bone modeling[J] .Tissue Cell,2003,35:189-197.
    [34] Kurata K,Heino TJ,Higaki H,et al. Bone marrow cell differentiation induced by mechanically damaged osteocytes in 3D gel-embedded culture[J] . Boned Mater Res,2006,21:616-625.
    [35] Gu G, Mulari M, Peng Z,et al. Death of osteocytes turns off the inhibition of osteoclasts and triggers local bone resorption[J].Biochem Biophys Res Commun,2005 ,335(4):1095-1101.
    [36] Hazenberg JG,Lee TC,Taylor D,et al.The role of osteocytes in functional bone adaptation[J].BoneKEy-Osteovision,2006,3:10-16.
    [37] Heino TJ, Hentunen TA, V??n?nen HK. Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts[J].Exp Cell Res.2004,294(2):458-468.
    [38] Burger EH,Klein Nulend J,Smit TH. Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon-a proposal[J]. Biomechanics.2003,36:1453-1459
    [39] Heino TJ, Hentunen TA, V??n?nen HK. Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen[J].Cell Biochem.2002,85(1):185-197.
    [40] Hazenberga JG,Michael Freeleyc,Eilis Foran.Microdamage:A cell transducing mechanism based on ruptured osteocyte processes[J].Biomech,2006,39:2096-2103.
    [41] Metz LN, Martin RB, Turner AS. Histomorphometric analysis of the effects of osteocyte density on osteonal morphology and remodeling[J].Bone,2003,33:753-759.
    [42] Liu Y, Porta A, Peng X,et al. Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k[J].Bone Miner Res.2004,19:479-490.
    [43] Noble BS, Peet N, Stevens HY,et al.Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone[J].Am J Physiol Cell Physiol.2003,284:C934-943.
    [44] Verborgt O, Tatton NA, Majeska RJ, et al. Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation?[J].Bone Miner Res.2002,17:907-914.
    [45] Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction[J].Cell Metab.2007,5:464-475.
    [46] Cherian PP, Cheng B, Gu S, et al. Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor[J].Biol Chem.2003,278:43146-43156.
    [47] Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism[J].Nat Genet.2006,38:1310-1315.
    [48] Nancy E Lane, Wei Yao, Mehdi Balooch, et al.Glucocorticoid-Treated Mice Have Localized Changes in Trabecular Bone Material Properties and Osteocyte Lacunar Size That Are Not Observed in Placebo-Treated or Estrogen-Deficient Mice[J].Bone Miner Res.2006,21:466-476.
    [49]马育林,戴如春,盛志峰等.骨细胞密度对骨生物力学性能的影响[J].中华老年医学杂志.2009,28(6):500-504.
    [1]戴尅戎.力学生物学在骨与软骨研究中的应用[J].中华骨科杂志.2006,26(6):429-431.
    [2] Jee WS. Principles in bone physiology[J]. Musculoskelet Neuronal Interact.2000,1(1):11-13.
    [3] Frost HM.The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs[J]. Bone Miner Metab. 2000,18(6):305-316.
    [4] Giesen EB, Ding M, Dalstra M,et al. Reduced mechanical load decreases the density, stiffness, and strength of cancellous bone of the mandibular condyle[J]. Clin Biomech (Bristol, Avon). 2003,18(4):358-363.
    [5] Mosekilde L, Thomsen JS, Orhii PB, et al.Additive effect of voluntary exercise and growth hormone treatment on bone strength assessed at four different skeletal sites in an aged rat model. Bone. 1999,24(2):71-80.
    [6]谷国良.骨细胞功能:生物学研究和机理探讨[J].中华骨质疏松和骨矿盐疾病.2009,2(1):1-12.
    [7] Donahue HJ.Gap junctions and biophysical regulation of bone cell differentiation[J]. Bone. 2000 ,26(5):417-422.
    [8] Weinbaum S, Guo P, You L.A new view of mechanotransduction and strain amplification in cells with microvilli and cell processes[J]. Biorheology. 2001;38(2-3):119-142.
    [9] You LD, Weinbaum S, Cowin SC, et al. Ultrastructure of the osteocyte process and its pericellular matrix[J]. Anat Rec A Discov Mol Cell Evol Biol. 2004 ,278(2):505-513.
    [10] Han Y, Cowin SC, Schaffler MB, et al.Mechanotransduction and strain amplification in osteocyte cell processes[J]. Proc Natl Acad Sci U S A. 2004,101(47):16689-16694.
    [11] Marotti G, Zallone AZ, Ledda M.Number, size and arrangement of osteoblasts in osteons at different stages of formation[J]. Calcif Tissue Res. 1976,21:96-101.
    [12] Bélanger LF,Bélanger C,Semba T.Technical approaches leading to the concept of osteocytic osteolysis [J].Clin Orthop Relat Res,1967,54:187-196.
    [13] Baund CA. Submicroscopic structure and functional aspects of the osteocyte [J]. Clin Orthop Relat Res,1968,56:227-236.
    [14] Parfitt AM. The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption—bone flow theory [J]. Clin Orthop Relat Res,1977,127:236-247.
    [15] Burger EH, Klein-Nulend J.Mechanotransduction in bone--role of the lacuno-canalicular network[J].. FASEB .1999,13:101-112.
    [16] Pead M,Skerry TM,Lanyon LE. Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading[J].Bone Miner Res,1988,3:647-656.
    [17] Skerry T,Betensky L,Chayen J,et al. Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo [J].Bone Miner Res,1989,4:783-788.
    [18] Dallas S,Zaman G,Pead MJ,et al. Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modelling in vivo [J].Bone Miner Res,1993,8:251-259.
    [19] Tatsumi S,Ishii K,Amiauka N,et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction [J]. Cell Metab,2007,5:464—475
    [20] Elmardi AS,Katchburian MV,Katchburian E. Electron microscopy of developing calvaria reveals images that suggest that osteoclasts engulf and destroy osteocytes during bone resorption[J]. Calcified Tissue International,1990,46:239-245.
    [21] Verborgt O,Gibson GJ,Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo [J].Bone Miner Res,2000,15:60-67.
    [22] Ehrlich PJ, Lanyon LE.Mechanical strain and bone cell function: a review[J]. Osteoporos Int. 2002 ,13(9):688-700.
    [23] Klein-Nulend J, Bacabac RG, Mullender MG.Mechanobiology of bone tissue[J]. Pathol Biol (Paris). 2005,53(10):576-580.
    [24] Martin RB.Does osteocyte formation cause the nonlinear refilling of osteons[J]? Bone. 2000,26(1):71-78.
    [25] Zaman G, Pitsillides AA, Rawlinson SC.Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes[J]. Bone Miner Res. 1999,14(7):1123-1131.
    [26] Skerry TM, Suva LJ.Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array[J]. Cell Biochem Funct. 2003,21(3):223-229.
    [27] Linkhant TA,Mohan S,Baylink DJ.Growth factors for bone growth and repair:IGF,TGF-βand BMP[J].Bone.1996,19:1S.
    [28] Vos PE, Koppeschaar HP, de Vries WR,et al.Insulin-like growth factor-I: clinical studies[J].Drugs Today (Barc). 1998,34(1):79-90.
    [29] Canalis E, Giustina A, Bilezikian JP.Mechanisms of anabolic therapies for osteoporosis[J]. N Engl J Med. 2007 .357(9):905-9016.
    [30]王弘毅,张伟滨.骨形态蛋白信号传导和功能调节的结构基础[J].国际骨科学.2008,29(6):381-383
    [31] Yang D, Singh R, Divieti P, et al.Contributions of parathyroid hormone (PTH)/PTH-related peptide receptor signaling pathways to the anabolic effect of PTH on bone[J]. Bone. 2007.40(6):1453-1461.
    [32] Yang W, Kalajzic I, Lu Y,et al.In vitro and in vivo study on osteocyte-specific mechanical signaling pathways[J]. Musculoskelet Neuronal Interact.2004.4(4):386-387.
    [33]张成俊,夏亚一,王常德.骨细胞力学信号转导及基因表达[J].国际骨科学杂志.2008,29(3):182-186.
    [34] Fred MP, Suzanne MN, David BB. A Model for mechanotransduction in bone cells: The load-bearing mechanosomes[J].Cellular Biochemistry. 2002,88(1):104-112
    [35] Ingber DE.Tensegrity: the architectural basis of cellular mechanotransduction[J]. Annu Rev Physiol. 1997,59:575-599.
    [36] Tong L, Buchman SR, Ignelzi MA Jr,et al.Focal adhesion kinase expression during mandibular distraction osteogenesis: evidence for mechanotransduction[J]. Plast Reconstr Surg. 2003,111(1):211-224..
    [37] Reilly GC, Haut TR, Yellowley CE,et al.Fluid flow induced PGE2 release by bone cells is reduced by glycocalyx degradation whereas calcium signals are not[J]. Biorheology. 2003,40(6):591-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700