用户名: 密码: 验证码:
华南地区桂东—厦门MT剖面电性结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合专题“华南地区大地电磁测深观测实验与壳/幔电性结构研究”,针对中国华南大陆复杂地质条件和深部探测对象,利用桂东-厦门MT剖面实测数据,分析了该剖面的构造走向信息、圈层结构与花岗岩的电性结构特征,对剖面及邻近地区地壳、上地幔、岩石圈及软流圈的电性结构特点、花岗岩的分布范围及类型和剖面内的主干断裂等进行了较深入的研究,得出了一些新的认识。利用二维数值模拟技术,对该剖面的上地幔高导层及软流圈的结构进行了较深入的研究,在此基础上建立了桂东-厦门剖面电性结构及地质模型。
This paper studies the geotectonics, crust and mantle structure, features of faults and the distribution of granite in south China basing on the subject of Magnetotelluric Observation and Experiment in South China and focusing on the complicated geological structure and deep physical properities in south China. The paper gets an electric model of Guidong-Xiamen profile in south China, this model provides new reliance to the electric relationship of the lithoshpere and asthenoshpere with the deeper mantle.
     During the data processing, we removed the noise from the wild field measured data with artifical flitering method and remote reference manetotelluric method. The processed data are much more smooth, reliable and regular than before. Tensor decomposition method is carried out to acquire the geoelctric strike and skewness, tipper and real induction vector are also used combined with tensor decomposition to make the calculated strike and skewness values more accurate. The strike value of each site changes from one site to the other, most of the strikes are northeastern. There are also some sites with northwestern and east-west stirke. The whole profile is nearly two-dimension, there are only few sites with there dimensional strike. Deep study of real inductin vector of one measured frequency has shown that the real induction vector is a trustable parameter in the evaluation of geoelectric strike. Its reversion is a good evidence of the existance of faults and low-resisitvity region. The vectors play an important role in the data processing of Guidong-Xiamen profile.
     Focusing on the complicated geological condition and the deep exploration object, this paper mainly studies the geoelectric strike of Guidong-Xiamen profile, the electric features of the lithosphere and asthenosphere, the distribution of granite in this profile at the same time with forward and inversion methods. The paper also researches the electirc features of the around crust and mantle, lithosphere and asthenosphere, aslo with the distribution and types of the granite in this profile. According to the forward and inversion results, the paper figures out the electric structure model of the profile, including the information of faults, granite distribution, high conductive layer in upper mantle and so on. There are two regions (site 1-4, site 21-34) with high resistivity which are defined as the uplifting regions of the asthenosphere. The electric struture model and geological model are finally constructed after the numerical simulation, the two models provides a good basement to the further interpretation work.
     The paper mainly gets the following results through the study above:
     ①There is a big range of high resistivity region in the inversion profile with the value of 10000 ? ?m. This is interpreted to be the granite region with mantle source and crust source, these granite consist the extensive granite belts in Guidong-Xiamen profile. There are fault belts exsiting along the granite region and they control the distribution of the granite;
     ②The depth of the lithosphere in inland and coast region is not consitant, basically, the depth of inland is bigger that it of the coast, except the boundary region of Hunan and Jiangxi province, the depth of inland is about 40~50km deeper than the coast area. The lithosphere at the boundary of Hunan and Jiangxi is about 50km, which is equivalent to the marine area.The shallow depth of lithosphere has a big relationship with the uplifting of asthenosphere;
     ③There are some discontinue high conductivity layer existing in the crust with the buried depth of 10~20km, it mainly distributes in the middle and lower curst of the resistivity value around dozens of ohms.
     ④The numerical simulation displays that there is a big range of the uplifting asthnosphere region and high conductivity layer in upper mantle.
     ⑤Numerical simulation shows that the high conduction layer in upper mantle is very extensively, the conduction layer in inland is extensive and consistent with the thickness of 50km. The layer in marine is partical distributed. The resistivity of high conduction layer in this profile is low. It is about dozens of ohms. The discontinuity of the high conduction layer can related to the uplifting asthenosphere. At the boundary of Jiangxi and Hunan, the uplifting asthenosphere causes the disappearance of high conduction layer and the thinness of lithosphere.
     ⑥There is also an extensive region of asthenoshpere uplifting around Longyan and no exsitance of high conduction layer. In marine area, asthenoshpere uplifts seriously with 50km uplifting (standardized by inland lithosphere thickness).
     Analysis of numerical simulation also results that there are two faults extend exceed the crust with the depth over 30km, and a basement fault with the depth of 5km.
     The analysis and study in this paper has provided new reliance to the structure of mantle and crust in south China. The construction of electric model of Guidong-Xiamen profile has given significant meaning to the further study on deep electric structure and geotectonics.
引文
[1] Chow-Son Chen, Chien-Chin Chen et. Crustal Resistivity Anomalies Beneath Central Taiwan Imaged by a Broadband Magnetotelluric Transect[J]. Terr.Atmos.Ocean, 2007,18(1):18-30.
    [2] O.Praus et. Magnetotelluric and seismological determination of the lithosphere-asthenosphere transition in Central Europe[J].Physics of The Earth and Planetary Interiors. 1990,60(4),212-228.
    [3] Egbert,G.D.;Patro,P.K.. Regional conductivity structure of Cascadia: preliminary results from 3D inversion of USArray magnetotelluric data[C], American Geophysical Union, USA, Fall ,2008
    [4]叶高峰,金胜等.西藏高原中南部地壳与上地幔导电性结构[J].地球科学-中国地质大学学报.2007,32(4):491-498.
    [5]刘国兴等,佳木斯地块及东缘岩石圈电性结构特征[J].地球物理学报, 2006,49(2):598-603.
    [6]石应骏,王礼棠,杨明高.福建地区深部电性分布的某些特征[J].成都地质学院学报,1981,16(1):117-123.
    [7]孔祥儒,刘士杰等.福建东部地区大地电磁测深研究[J].地球物理报, 1991,34(6):724-735.
    [8]蒋洪堪.湖北省麻城-九宫山剖面的大地电磁测深成果[J].1989,勘探地球物理北京(89)国际讨论会论文摘要集,123-126.
    [9]邓前辉,刘国栋等.湖北襄樊-福建罗源的大地电磁测量与地壳上地幔电性特征研究[J].地震地质,12(2):149-158.
    [10]王培宗等.福建省地壳-上地幔结构及深部构造背景的研究[J].福建地质,1992, 12(2):79-158.
    [11]蒋洪堪.四川大足-福建泉州深部地电特征[J].地球物理学报, 1992, 35(2): 214 -222.
    [12]孙洁,晋光文.用大地电磁测深法研究华南地区岩浆活动及深部结构[J].地震地质, 2001, 23(2) :328-329.
    [13]刘国兴编,电法勘探原理与方法[M].地质出版社,北京,2005.
    [14]陈乐寿,王光锷等.一种大地电磁成像技术[J].地球物理学报, 1993,36(2):337-346.
    [15]刘国栋,陈乐寿.大地电磁测深法研究.北京:地震出版社, 1984.
    [16] Kaufman A A, Keller G V. Frequency and transient soundings[M]. Elsevier Science, 1983.
    [17] Cagniard L. Basic theory of the magneto-telluric method of Geophysical prospecting[J]. Geophysics,1953,18(3):605-635.
    [18]何继善等编译.可控源音频大地电磁法[M].长沙:中南工业大学出版社, 1990.
    [19] Kaufman A A, Keller G V. Magnetotelluric Sounding Method[M]. Beijing:Geological Publishing, 1987.
    [20]张全胜等.大地电磁测深资料去噪方法应用研究[J].石油物探, 2002, 41(4):493-497.
    [21] Egbert G D, Booker J R. Robust estimation of geomagnetic transfer functions[J]. Geophysics, 1986,87:175-194.
    [22] Sutarno D, Vozoff K. Robust estimation of magnetotelluric impedance tensors[J]. Geophysics, 1989,20:383-398.
    [23]林长佑等,大地电磁响应函数的除偏估算和误差的研究[J].西北地震学报,1988,10(3):25-28.
    [24]杨生等, MT法中利用阻抗相位资料对畸变视电阻率曲线的校正[J].地质与勘探,2001,36(6):42-45.
    [25]杨长福,林长佑.用大地电磁法研究构造走向及维性特征[J].西北地震学报, 24(1):65-71.
    [26] Groom R W, Baily R C. Decompositon of magnetotelluric impedance tensors in the presence of three-dimensional galvanic distortion[J].J.G.R., 1989, 94:1913-1925.
    [27] Bahr K. Interpretation of the magnetotelluric impedance tensor: region induction and local telluric distortion[J].Geophysics,1988,62:119-127.
    [28] Gary W McNeice, Alan G Jones.Multisite, mutifrequency tensor decompositionof magnetotelluric data[J]. Geophysics, 66(1):158-173.
    [29] F.E.M.(Ted) Lilley. Magnetotelluric tensor decomposition:Part I, Theory for a basic procedure[J]. Geophysics, 1998, 63(6):1885-1897.
    [30] Sims W.E., Bostick F.X., Smith H.W.. The estimation of magnetotelluric tensor elements from measured data[J].Geophysics, 1971, 36: 938-942.
    [31]朱仁学.大地电磁测深法[M].吉林大学,2002.
    [32] Tikhonov A N.On the determination of electric characteristics of deep layers of the earth’s crust[J]. Dok.Akad.Nauk, 1950,73(2):295-297.
    [33] Cantwell T,Madden T.R..Preliminary report on crustal magnetotelluric measurements[J]. Journal of Geophysics Research, 1960, 65:4202-4205.
    [34] Price A.T..The theory of magnetotelluric methods when the source field is considered[J]. Journal of Geophysics Research, 1962, 67:1907-1918.
    [35] Bostic F.X., Smith H.W.. Investigation of large-scale inhomogenities in the earth by the magnetotelluric method[J]. Proceedings of the IRE(IEEE), 1962,50:2339-2346.
    [36] Martyn Unsworth. Crustal and upper mantle structure of northern Tibet imaged With magnetotelluric data[J].Journal of Geophysical Research, 2004, 109(B02403):1-18.
    [37]金文山,孙大中.华南大陆深部地壳结构及其演化[M].北京:地质出版社,1997.
    [38]李岩峰,张贵宾等.岩石圈根拖曳作用在青藏高原西部和东部造山中的比较研究[J].地球物理学报,2004,47(6):1053-1060.
    [39]邓平,舒良树等.赣江断裂带地质特征及其动力学演化[J].地质评论, 2003,49(2):113-122.
    [40]舒良树,周新民等.南岭构造带的基本地质特征[J].地质评论, 2006, 52(2):251 -265.
    [41]镇国钧等.2002鄱阳盆地北鄱阳坳陷[C].2002年度MT勘探成果报告.中国石油浙江勘探分公司.
    [42]刘大任.初论邵武-河源断裂带带的活动性[J].江西地质,2000,14(2):81-87.
    [43]陈存榕,林东燕.上杭-云霄地区韧性剪切带中金元富集规律的探讨[J].福建地质,1993,12(3):159-165.
    [44]张虎男,陈伟光等.华南沿海新构造运动与地质环境.北京:地震出版社,1990.
    [45]水汀,阎晋英等.政和-大埔断裂带基本特征及演化模式[J].火山地质与矿产, 1993,14(2):53-62.
    [46]陶建华.政和-大埔断裂中段韧性剪切带特征[J].福建地质,3(7):196-204.
    [47]政和-大埔深(大)断裂带中段地质构造特征及其演化探讨[J].福建地质, 2004,23(4):186-194.
    [48]李细杰.福安-南靖断裂带活动断裂构造专题信息提取与分析[J].第五届全国地质制图与GIS学术讨论会议文集,2007.
    [49]王德兹,周新民.中国东南部晚中生代花岗岩质火山-侵入杂岩成因及地壳演化[M].科学出版社,2002.
    [50]骆靖中.桂东地区花岗岩类与金银成矿的关系[J].桂林冶金地质学院院报, 1993,13(4):329-339.
    [51]李献华,李武显等.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约[J].中国科学D辑:地球科学,2006,39(7):872-887.
    [52]于津海,周新民等.壳幔作用导致武平花岗岩形成—Sr-Nd-Hf-U-Pb同位素证据[J].岩石学报,2005,21(3):651-664.
    [53]毛建仁,许乃政等.福建省上杭-大田地区中生代成岩成矿作用与构造环境演化[J].岩石学报,2004,20(2):285-296.
    [54]熊绍伯,刘宏兵.华南上地壳速度分析与基底、盖层构造研究[J].地球物理学报,2002, 45(6):784-791.
    [55]陆奎元,高天钧等.东南沿海火山岩基底构造及火山-侵入作用与成矿关系[M].北京:地质出版社,1998.
    [56]魏春生.A型花岗岩成因模式及其地球动力学意义[J].地学前缘,2000,7(1):238.
    [57]袁学诚等.台湾-黑水地学断面[C].1990年中国地球物理学会第六届学术年会论文集, 1990.
    [58]谢窦克.华南大陆深部探测与综合研究[J].地球学报,1995, 4: 339-353.
    [59]余心起,吴淦国.中国东南部中生代构造体制转换作用研究进展[J].自然科学进展,2005,15(10):1167-1174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700