用户名: 密码: 验证码:
核移植山羊鉴定和H19基因调控表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物核移植技术产生之后,有力的促进了生命科学领域的发展,但在动物出生后,采用何种方法证明动物是由无性繁殖而来,这是动物核移植研究中一个十分关键问题;而且通过核移植技术得到健康动物的效率非常低,核移植动物的流产率和新生儿死亡率远高于体外受精和人工受精得到的动物,即使是存活下来的核移植动物也常伴有表型异常和不同程度的发育缺陷,研究表明表观重编程异常是核移植胚胎发育异常的重要原因之一,而表观重编程异常与基因组印记有很大关系。DNA甲基化是基因印记发生和维持的主要机制。印记基因的分子机理与印记基因中胞嘧啶甲基化尤其是CpG岛的甲基化密切相关。
     本实验通过微卫星技术鉴定转基因核移植山羊和核供体细胞的基因型是否完全一致。运用亚硫酸盐法测定并比较了H19基因CpG岛在转基因核移植山羊和同期成活普通山羊(对照组)不同组织中的甲基化率,检测在转基因核移植山羊部分组织中H19基因CpG岛是否发生了异常甲基化。采用实时荧光相对定量方法测定出转基因核移植山羊和对照组山羊不同组织中H19基因mRNA的相对表达量。验证转基因核移植山羊H19基因CpG岛甲基化模式发生异常是否会引起其mRNA相对表达量的异常,判定H19基因CpG岛甲基化结果和相对量是否对应。进一步揭示山羊H19基因的功能和作用,为提高核移植效率提供一定的技术支持。
     实验结果表明:
     1、利用五对多态性引物:SR-CRSP1, SR-CRSP5, SR-CRSP6, SR-CRSP7,SR-CRSP24对转基因核移植山羊,供体细胞,代孕母羊和对照组母羊进行基因型判定,微卫星DNA多态性分析结果表明,转基因核移植山羊和核供体细胞的基因型完全一致,这说明两者在这些位点上具有完全相同的遗传信息。因此,判定本实验中获得的转基因核移植小羊来源于核供体细胞,转基因核移植山羊生产获得成功。
     2、运用亚硫酸盐法分别检测了死亡转基因核移植山羊(2号小羊)和同期普通山羊(3号小羊,对照组)肝脏、胎盘(包括存活转基因核移植山羊,1号小羊)、肾脏、肺脏和心脏组织中H19基因CpG岛甲基化水平。结果表明,胎盘组织中,2号小羊H19基因第5个CpG岛的甲基化水平显著高于对照组(70% Vs 49.41%,P<0.05);肺脏组织甲基化水平显著低于对照组(63.53% Vs 88.24%,P<0.05);其他各组差异不显著(P>0.05)。同时2号小羊胎盘组织中H19基因第5个CpG岛的甲基化水平显著高于1号小羊(70% Vs 51.18%,P<0.05),但1号小羊胎盘组织甲基化率与对照组3号小羊相比较差异不显著(51.18% Vs 49.41%,P>0.05)。以上结果说明,H19基因在死亡转基因核移植山羊部分组织中DNA甲基化重编程异常。
     3、运用实时定量PCR法测定出H19基因在2号小羊和3号小羊肝脏、胎盘(包括1号小羊)、肾脏、肺脏和心脏中的相对表达量。显示2号小羊和3号小羊在肝脏、肾脏和心脏组织中H19基因的相对表达量差异不显著(P>0.05),在胎盘组织中的相对表达量显著低于对照组和1号小羊(883.3 Vs 1264.5,883.3 Vs 1197.6,P<0.05),在肺脏组织中的相对表达量显著高于对照组(1003.4 Vs 515.5,P<0.05);但是2号和3号小羊H19mRNA在胎盘组织中的相对表达量差异不显著(1197.6 Vs 1264.5,P>0.05)。说明H19基因第5个CpG岛甲基化异常影响H19基因在上述五类组织中的mRNA正常表达。这也可能是导致转基因核移植动物死亡的重要因素之一。
After the animal nuclear transfer technology be invented which effective promotion of the development of life sciences, however, the animal was born later, put to use any way to proved animal from the donor cell, which is a very obtain a healthy animals by nuclear transfer, the abortion rate and neonatal mortality rates of animals by nuclear transfer are far higher than that in vitro fertilization and artificial insemination of animals, even surviving nuclear transfer animals are often accompany epigenetic variation and varying degrees of developmental defects, the research indicated that epigenetic reprogramming abnormal is one of the important reasons in nuclear transfer embryos dysplasia, and the epigenetic reprogramming abnormal was caused which relation with the genomic imprinting. DNA methylation is the main mechanism of the occurrence and maintenance of gene imprinting. The molecular mechanism of imprinting gene closely related to cytosine methylation of imprinted genes, especially the CpG islands.
     In this study, to identification the genotype of transgene nuclear transfer goat and nuclear donor cells whether are exactly same through the micro-satellite technology. To investigate and compare the H19 gene CpG island methylation profiles in different tissues of transgene nuclear transfer goat and age-matched common goat fetus(control group) by using bisulfite sequencing. Detection the H19 gene CpG island of in some tissues of transgene nuclear transfer goat whether abnormal methylation occurred. To investigate and compare the H19 gene mRNA relative expression in different tissues of transgene nuclear transfer goat and age-matched common goat fetus(control group) by using real-time PCR, verify H19 gene CpG island methylation patterns of transgene nuclear transfer goat whether can lead to its mRNA relative expression abnormal,determine the results of H19 gene CpG island methylation whether corresponding with the relative expression. Further reveal the function of H19 gene in goat and provide some technical support.to improve the efficiency of nuclear transfer .
     Experiments results indicate:
     1. Using five pairs of polymorphic primers SR-CRSP1, SR-CRSP5, SR-CRSP6, SR-CRSP7and SR-CRSP24 to detection the genotype of transgene nuclear transfer goat, donor cell, surrogacy goat and goat of control group, the polymorphic results of micro-satellite DNA showed that transgene nuclear transfer goat and nuclear donor cells have the same genotype, which indicating that locis have identical genetic information. So, determined the transgene nuclear transfer goat origin from the nuclear donor cells in this experiment, Success the experiment of transgene nuclear transfer goat product!
     2. We detected the H19 gene CpG island methylation of liver, placenta(including the survival transgene nuclear transfer goat, number 1), kidney, lung and heart in the dead transgene nuclear transfer goat(number 2)and the age-matched normal goat fetus (number 3, control group) by using bisulfite sequencing. Results indicated that methylation levels of the fifth CpG island of H19 gene in goat of number 2 was significant high compared with that in the control in placenta(70% Vs49.41, P<0.05 ).Reversely, the methylation levels was significant low compared with that in the control in lung(63.53% Vs 88.24%,P<0.05), The differences of others groups were insignificant(P>0.05). And methylation levels of the fifth CpG island of H19 gene in goat of number 2 was significant high compared with that in goat of number 1 in placenta (70% Vs 51.18%,P<0.05), however, methylation levels of the fifth CpG island of H19 gene in goat of number 1 was insignificant compared with that in goat of number 1 in placenta(51.18% Vs 49.41, P>0.05). Results showed the abnormal DNA methylation reprogramme of H19 gene occurred in some tissues of dead transgene nuclear transfer goat.
     3. Detected the H19 gene mRNA relative expression of liver, placenta(including goat of number 1), kidney, lung and heart in goat of number 2 and goat of number 3 by real time PCR. Results indicated that relative expression levels of H19 gene in goat of number 2 was insignificant compared with that in the goat of number 3 in liver, kidney and heart(P>0.05), and in goat of number 2 was significant low compared with that in the control and in goat of number 1 in placenta (883.3 Vs 1264.5,883.3 Vs 1197.6,P<0.05), in goat of number 2 was significant high compared with that in the control in lung(1003.4 Vs 515.5,P<0.05);but relative expression levels of H19 gene in goat of number 2 was insignificant compared with that in the goat of number 3 in placenta (1197.6 Vs 1264.5,P>0.05). Results showed the abnormal DNA methylation proflies of H19 gene occurred in some tissues, which affected normal expression levels of H19 gene, indicating that aberrant DNA methylation reprogramme may be one of the important factors for the death of transgene nuclear transfer animals.
引文
敖金霞,高学军,仇有文,郭士成. 2009.实时荧光定量PCR技术在转基因检测中的应用.东北农业大学学报, 40(6): 141~144.
    陈丹,潘世扬,张丽. 2007.人血浆DNA双重实时荧光定量PCR检测法的建立.临床检验杂志, 25(3): 177~179.
    陈洁,李冬杰,刘艳琴. 2008.体细胞核移植牛肺脏中H19和Xist基因的DNA甲基化状态.科学通报, 53 ( 11 ): 1305~1310.
    邓文星,张映. 2007.实时荧光定量PCR技术综述.生物技术通报, 27(5): 93~96.
    丁健华,蔡刚. 2003. H19/IGF2基因印记调控机制研究进展.国外分子生物学分册,25(4): 241~245.
    凡时财,张学工. 2009. DNA甲基化的生物信息学研究进展.生物化学与生物物理进展, 36(2): 143~150.
    宫时玉,蒋曹德,邓昌彦. 2005. DNA甲基化及其生物学功.华中农业大学学报, 24(6): 651~657.
    管峰,杨利国,贾名威,程瑞禾,茆达干. 2004.微卫星的构成及其检测技术.生物学杂志, 21(2): 1~4.
    郭泽坤,郭继彤,安志兴,张涌,柴玉波,陈南春,陈苏民. 2002.体细胞克隆山羊微卫星DNA分析. 生物化学与生物物理进展, 29 (4): 655~658.
    郭泽坤,张涌. 2000.一种改进的蛋白质超薄凝胶电泳方法.生物化学与生物物理进展, 27(1): 98~101.
    胡秀华,何苗,刘丽. 2008.水中轮状病毒实时定量PCR外标准品的构建.环境科学, 29(2): 380~385.
    霍金龙,张娟,罗古月. 2005.微卫星PAGE银染法及其干胶的简易制备.动物医学进展, 26(1): 78~80.
    金海国,曹阳,金允浩. 2007.延边黄牛的微卫星遗传变异及DNA指纹分析.延边大学农学学报, 29(4): 230~232.
    李向阳,张国梁,胡成华. 2008.草原红牛微卫星标记的研究.吉林农业科学, 33(5): 44~48.
    栗文凯,张智勇,胡建和. 2008.实时荧光定量PCR应用技术综述.中国畜禽种业, 4(19): 71~72.
    梁斌,李文平,肖兵南. 2008.微卫星标记测定湘西黄牛杂交牛的遗传多样性及其与生产性能的相关性研究.湖南畜牧兽医, 3(11): 10~13.
    刘建,唐慧林,杨跃飞. 2005.克隆波尔山羊的微卫星DNA鉴定.中国药科大学学报, 36 (1): 69~72.
    卢林杉,李力,俞丽丽,易萍,李平,陈星云,刘苹,周元国. 2008. 5-杂氮脱氧胞苷对JEG-3细胞及印迹基因H19效应的初步研究.现代妇产科进展, 17(5): 342~346.
    吕慎金,杨燕,候冠玉. 2008.运用微卫星标记对中国地方绵羊品种的遗传多样性分析.畜牧兽医学报, 39 (7): 858~865.
    罗婵,王志强,公方强. 2009.实时荧光定量PCR检测水牛体细胞组蛋白乙酰化相关基因mRNA表达. 中国兽医学报, 29(2): 233~237.
    牟玉莲,冯书堂,刘立新. 2007.猪胚胎干细胞(eg)嵌合体鉴定研究.实验动物科学, 24(6): 64~65.
    束婧婷. 2005. DNA甲基化与基因组印记.动物科学和医学杂志, 24(6): 18~20.
    苏建民,华松,张涌. 2009.基因组印迹的调控机制及其对动物克隆的影响.自然科学进展, 19(8): 798~805.
    苏玉,王溪,朱卫国. 2009. DNA甲基转移酶的表达调控及主要生物学功能.遗传, 31(11): 1087~1093.
    孙业良,谢庄,刘国庆. 2005.利用微卫星DNA技术进行绵羊亲子鉴定.安徽农业大学学报, 32(3): 301~305.
    王芳,彭真信,张金国. 2007.应用微卫星标记分析圈养大熊猫遗传多样性.生物化学与生物物理进展, 34(12): 1279~1287.
    王杰,沈富军,欧阳熙. 2000.安哥拉山羊及其杂种羊父权认定的DNA指纹图分析.西南民族学院学报(自然科学版), 26(2): 185~187.
    王金玉,梁永厚. 2006.哺乳动物的基因组印记研究进展.《现代农业科技, 12(1): 128~130.
    王蒙. 2009.哺乳动物DNA甲基化与基因表达调控.中国实用医药, 4(32): 218~219.
    王宁,金帆,黄荷凤. 2007. DNA甲基化与印记基因.国际遗传学杂志, 30(4): 272~274.
    王正朝,庞训胜,潘晓燕,王锋,石放雄. 2007.微卫星技术在体细胞克隆动物研究中的应用.家畜生态学报, 27(4): 14~17.
    武会娟,罗军,张丽娟,杨宝进,韩雪峰,王海滨. 2008.西农萨能山羊锌指蛋白基因Ubi-d4的筛选、克隆和生物信息学分析.中国农业科学, 41(6): 1804~1809.
    谢松松,王宝峰,周宗瑶. 2009. DNA甲基化的研究进展.现代生物医学进展, 9(17): 3368~3370.
    谢小虎,周文华. 2008.基因组印记与疾病研究.生命科学, 20(3): 438~441.
    许哲,刘福坤,祁晓平,黎届寿. 2002.胰岛素样生长因子Ⅱ表达与结直肠癌细胞的增殖和凋亡.医学研究生学报, 15(6): 502~504.
    杨明升,刘红林,陈杰. 2002.印记基因的印记机制及其表达调控.生命的化学, 22(1): 1~3.
    于力. 2005. DNA甲基化与肿瘤.中华内科杂志, 44(6): 403~404.
    张志峰,史洪才,武坚,简子健. 2005.微卫星DNA聚丙烯酰胺凝胶电泳(PAGE)银染法的改良.生物技术, 15(3): 51~53.
    张志和,沈富军,孙姗. 2003.应用微卫星分型方法进行大熊猫父亲鉴定.遗传, 25(5): 504~510.
    郑小梅,伍宁丰. 2009. DNA甲基化作用的生物学功能.中国农业科技导报, 11 (1) : 33~39.
    郑秀芬,黄银花,凌凤俊,李宁,赵志伟. 2003.克隆牛的DNA鉴定.刑事技术, 15(1): 26~28.
    周晓丽,朱国坡,李雪华,王艳玲,刘兴友. 2010.实时荧光定量PCR技术原理与应用.中国畜牧兽医, 37(2): 87~89.
    Aapola U, Kawasaki K, Scott H S. 2000. Isolation and initial characterization of a novel zinc finger gene , DNMT3L , on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics, 65(3): 293~298.
    Araujo F D, Croteau S, Slack A D, Milutinovic S, Bigey P, Price GB, Zannis-Hadjopoulos M, Szyf M. 2001. The DNMT1 target recognition domain resides in the N terminus. J Biol Chem, 276(10): 6930~6936.
    Ariel I, Miao H Q, Ji X P. 1998. Imprinted H19 oncofetal RNA is acandidate tumour marker for hepatocelluar carcinoma. Mol Pathol, 51(1): 21~25.
    Ashworth D, Bishop M, Campbell K. 1998. DNA microsatellite analysis of dolly. Nature, 394 (6691): 323~329.
    Attwood J T, Yung R L, Richardson B C. 2002. DNA methylation and the regulation of gene transcription. Cell Mol Life Sci, 59(2): 241~257.
    Ayesh S, Matouk I. 2002. Possible physiological role of H19 RNA.Mol Carcinog, 35 (2): 63~74.
    Baosong Xing, Yinxue Xu, Yong Cheng, Honglin Liu. 2007. Overexpression of IGF2R and IGF1R mRNA in SCNT-produced goats survived to adulthood. J Genet Genomics, 34(8): 709?719.
    Bartolomei M S, Tilghman S M. 1997. Genomic imprinting in mammals. Annu Rev Genet, 31(15): 493~525.
    Baumung R, Cubric-Curik V, Schwend K. 2006. Genetic characterization and breed assignment in austrian sheep breeds using microsatellite marker information. Journal of Animal Breeding and Genetics, 123: 265~271.
    Baylin S B, Herman J G. 2000. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet, 16(4): 168~174.
    Bestor T H. 1992. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J, 11(7): 2611~2617.
    Bestor T, Laudano A, Mattaliano R, Ingram V. 1988. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. J Mol Biol, 203(4): 971~983.
    Bird A P, Wolffe A P. 1998. Methylation-induced repression—belts,braces,and chromatin. Cell, 99(5): 451~454.
    Bird A P. 1987. CpG islands as gene markers in the vertebrate nucleus.Trends Genet, 3: 342~347.
    Bird A P. 2002. DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6~21
    Bourc D, Xu G L, Lin C S. 2001. Dnmt3L and the establishment of maternal genomic imprints. Science, 294(5551): 2536~2539.
    Chang S C, Tucker T, Thorogood N P. 2006. Mechanisms of X-chromosome inactivation. Front Biosci, 11: 852~866.
    Cheng X, Blumenthal R M. 2008. Mammalian DNA methyltransferases: a structural perspective. Structure, 16(3): 341~350.
    Chikara Kubota, Shouquan Zhang, Lan Yang. 2004. Genomic imprinting of H19 in naturally reproduced and cloned cattle. Biol Reprod, 71: 1540~1544.
    Constancia M, Kelsey G, Reik W. 2004. Resourceful imprinting. Nature, 432(7013): 53~57.
    Constant F, Guillomot M, Heyman Y. 2006. Large offspring or large placenta syndrome Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois. Biol Reprod, 75(1): 122~130.
    Cui X S, Zhang D X, Ko Y G. 2009. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos. Biochem Biophys Res Commun, 379(2): 390~394.
    Daniels R, Hall V J, French A J. 2001. Comparison of gene transcription in cloned bovine embryos produced by different nuclear transfer techniques. Mol Reprod Dev, 60: 281~288.
    Diana L, Carmen M, Hugh J C. 2002. Met hylation dynamics of imprinted genes in mouse germ cells. Genomics, 79(4): 530~538.
    Ehrich M, Turner J, Gibbs P. 2008. Cytosine methylation profiling of cancer cell lines. Science, 105(12): 4844~4849.
    FA RR ELL WE, CLA YTON R N. 2000. Molecular pathogenesis of pituitary tumors. Front Neuro endocrinol, 21(3): 174~198.
    Farthing C R, Ficz G, Ng R K. 2008. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet, 4(6): 100~116.
    Fatemi M, Hermann A, Pradhan S, Jeltsch A. 2001. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol, 309(5): 1189~1199.
    Feng Y Q, Desprat R, Fu H. 2006. DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLOS Genet, 2: 0461~0470.
    Flanagan J M, Popendikyte V, Pozdniakovaite N. 2006. Intra and interindividual epigenetic variation in human germ cells. Genet, 79(1): 67~84.
    Fuks F. 2005. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev, 15(5): 490~495.
    G G, V R, J P L. 2001. DNA typingin a cattle stealing case. J Forensic Sci, 46(6): 1484~1486.
    Gao P, Zhou G Y, Guo L L. 2007. Reversal of drug resistance in breast carcinoma cells by anti-mdr1 ribozyme regulated by the tumor-specificMUC-1 promoter. CancerLett, 256: 81~-89.
    Gianluca B, Lucia R, Franco D. 2003. Development of reverse transcription (RT)-PCR and real time RT-PCR assays for rapid detection and quantification of viable yeast and molds contaminating yogurts and pasteurized food products. Applied and Anvironmental Microbiology, 69(7): 4116~4122.
    GollM G, Kirpekar F, Maggert K A. 2006. Methylation of tRNAASP by the DNA methyl- transferase homolog Dnmt2. Science, 311(5759): 395~398.
    Goyal R, Rathert P, Laser H, Gowher H, Jeltsch A. 2007. Phosphorylation of serine-515 activates the mammalian maintenance methyltransferase Dnmt1. Epigenetics, 2(3): 155~160.
    Grewal S I, Rice J C. 2004. Regulation of heterochromatin by histone methylation and small RNAs. Curr Opin Cell Biol, 16(3): 230~238.
    Groot N, Hochberg A. 1993. Gene imp rinting during placental and embryonic development. Mol Rep rod Dev, 36 (3):3902~4061.
    H S, A G A, L R C. 1997. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod, 57(5): 1089~1095.
    Haig. 1992. Genomic imp rinting and the theory of parent-offsp ring conflict. Sem in Dev Biol, 3: 153~160.
    Hall J G. 1990. Genomic imprinting: review and relevance to human diseases. Am J Hum Genet, 46: 857~859.
    Han D W, Song S J, Uhum S J. 2003. Expression of IGF2 and IGF receptor mRNA in bovine nuclear transferred embryos. Zygote, 11(3): 245~252.
    Hata K, Okano M, Lei H. 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 129(8): 1983~1993.
    Herman J G, Baylin S B. 2003. Gene silencing in cancer in association with promoter hypermethylation. N Eng J Med, 349(21): 2042~2054.
    Humpherys D, Eggan K, Akutsu H. 2002. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA, 99: 12889~12894.
    Inoue K, Kohda T, Lee J. 2002. Faithful expression of imprinted genes in cloned mice. Science, 75(3): 295~297.
    Jaenisch R, Bird A. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 33(11): 245~254.
    Jaenisch R. 1997. DNA methylation and imp rinting: why bother? Trends Genet, 13: 323~329.
    Jones P A, Takai D. 2001. The role of DNA methylation in mammalian epigenetics. Science, 293(5532): 1068~1070.
    Karagianni P, Amazit L, Qin J, Wong J. 2008. ICBP90, a novel methyl K9-H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol, 28(2): 705~717.
    Killian J K, Bird J C, Jirtle J V, MundayB L, Stoskopf M K, Mac-Donald R G, Jirtle R L. 2000. M6P / IGF2R imprinting evolution in mammals. Mol Cell, 5: 707~716.
    Kim J, Kollhoff A, Bergmann A. 2003. Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3. Hum Mol Genet, 12(3): 233~245.
    Kono T, Obata Y, Wu Q. 2004. Birth of parthenogenetic mice that can develop to adult hood. Nature, 428( 6985 ): 860~864.
    Lee J T. 2003. Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting. Curr Biol, 13 (6): 242~254.
    LEHNERTZB, UEDA Y, DERIJCKA A. 2003. Suv39 h2 mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heteroch romatin. Curr Biol, 13(14): 1192~1200.
    Lerat S, Vincent M L, Vincent M L. 2005. Real-time polymerase chain reaction quantification of the transgenes for roundup ready corn and roundup ready soybean in soil samples. Journal of Agricultural and Food Chemistry, 53(5): 1337~1342.
    Li Lin, Qiang Li, Ning Li. 2008. Aberrant epigenetic changes and gene expression in cloned cattle dying around birth. BMC Dev Biol, 11(8): 8~14.
    Lim H N, Van Oudenaarden A. 2007. A multistep ep igenetic switch enables the stable inheritance of DNA methylation states. Nat Genet, 39: 269~275.
    Liu J H, Yin S, Xiong B. 2008. Aberrant DNA met hylation imprints in aborted bovine clones. Mol Reprod Dev, 75(4): 598~607.
    Long J E, Cai X. 2007. IGF2R expression regulated by epigenetic modification and the locus of gene imprinting disrupted in cloned cattle. Gene, 388(1-2): 125~134.
    Lottin S, Adriaenssens E, Dupressior T. 2002. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis, 23(11): 1885~1895.
    Maatouk D M, Resnick J L. 2003. Continuing primordial germ cell differentiation in the mouse embryo is a cell-intrinsic program sensitive to DNA methylation. Dev Biol, 258(1): 201~208.
    Maksym KREMENSKOY, Yuliya KREMENSKA, Masako SUZUKI. 2006. DNA methylation profiles of donor nuclei cells and tissues of cloned bovine fetuses. J Reprod Develop, 52(2): 259~266.
    Mayer W, Niveleau A, Walter J. 2000. Demethylation of the zygotic paternal genome. Nature, 03(6769): 501~502.
    McGrath J, SolterD. 1984. Completion ofmouse embryogenesis requires both the maternal and paternal genomes. Cell, 37(1): 179~183.
    Morison I M, Paton C J, Cleverley S D. 2001. The imprinted gene and parent-of-origin effect database.Nucleic Acids Res, 29(11): 275~276.
    Morris KV, Chart SW. 2004. Small interfering RNA-induced transcriptional gene silencing in human cells. Science, 305(5688): 1289~1292.
    Ng R K, Gurdon J B. 2008. Epigenetic inheritance of cell differentiation status. Cell Cycle, 7(9): 1173~1177.
    Ogawa H, Ono Y, Shimozawa N. 2003. Disruption of imprinting in cloned mouse fetuses from embryonic stem cells. Reproduction, 126(21): 549~557.
    Ogura A, Inoue K, Ogonuki N. 2002. Phenotypic effects of somatic cell cloning in the mouse. Clone Stem Cells, 4(9): 397~405.
    Okano M, Bell D W, Haber D A. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylationand mammalian development. Cell, 99(3): 247~257.
    Okano M, Xie S, Li E. 1989. Cloning and characterization of a family of novel mammalian DNA ( cytosine-5) methyltransferases. Nat Genet, 19(3): 219~220.
    Ooi S K, Bestor T H. 2008. The colorful historyof active DNA demethylation. Cell, 133(7): 1145~1148. Paulsen M, Takada S, Youngson N A. 2001. Comparative sequence analysis of the imprinted Dlk1-Gtl2
    locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the IGF2-H19 region. Genome Res, 11(12): 2085~2094.
    Pradhan M, Esteve P O, Chin H G, Samaranayke M, Kim G D, Pradhan S. 2008. CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry, 47(38): 10000~10009.
    Rand E, Cedar H. 2003. Regulation of imprinting: A multi-tiered process. J Cell,55(10): 117~122.
    Reik W, Dean W, Walter J. 2001. Epigenetic reprogramming in mammalian development. Science, 293(5532): 1089~1093.
    Reik W, Santos F, Dean W. 2003. Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology, 59(1): 21~32.
    Reik W, Santos F, Mitsuya K. 2003. Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment. Philos Trans R Soc Lond B Biol Sci, 358(1436): 1403~1409.
    Reik W,Dean W. 2001. DNA methylation and mammalian ep igenetics. Electrophoresis, 22(14): 2838~2843.
    Ripoche M A, Kress C, Poirier F. 1997. Deletion of the H19 transcription unitreveals the existence of a putative imprinting control element. Gene Dev, 11(12): 1596~1604.
    Rita SF Leea, Karyn M, Depree, Helen W, Davey. 2002. The sheep (Ovis aries )H19 gene: genomic structure and expression patterns, from the preimplantation embryo to adulthood. Gene, 301(5): 67~77.
    Sha K. 2008. A mechanistic view of genomic imprinting, annual review of genomics and human genetics. Cell, 9(1): 197~216.
    Shiga K, Fujita T, Hirose K. 1999. Production of calves by transfer of nuclei from cultured somatic cells obtained from japanese black bulls. Theriogenology, 52(3): 527~535.
    Sleutels F, Barlow D P. 2002. The origins of genomic imprinting in mammals. Genome Research, 8(9): 119~154.
    Smith S L, Everts R E, Tian X C. 2005. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc Natl Acad Sci USA, 102(49): 17582~17587.
    Stein L D. 2004. Human genome:end of the beginning. Nature, 431(7011): 915~916.
    SuraniM A, Barton S C, NorrisM L. 1984. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 308(5959): 548~550.
    Trasler J M. 2006. Gamete imprinting: setting epigenetic patterns for the next generation. Reprod Fertil Dev, 18(12): 63~69.
    Varmuza S, Mann M. 1994. Genomic imprinting-defusing the ovarian time bomb. Trends Genet, 10(5): 118~123.
    Wells D N, Misica P M, Tervit H R. 1999. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod, 60(4): 996~1005.
    Wilmut I, Beaujean N, De Sousa P A. 2002. Somatic cell nuclear transfer. Nature, 419(5): 583~586.
    WOLFFE A P, JON ES P L, W AD E P A. 1999. DNA demethylation. Proc Natl Acod Sci USA, 96(7): 5894~5896.
    Wrenzycki C, Wells D, Herrmann D. 2001. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol Reprod, 65(9): 309~317.
    Yamazaki Y, Mann M R, Lee S S. 2003. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA, 100(7): 12207~12212.
    Yang L, Chavatte-Palmer P, Kubota C. 2005. Expression of imprinted genes is aberrant indeceased newborn cloned calves and relatively normal in surviving adult clones. Mol Reprod Dev, 71(4): 431~438.
    Young L E, Fairburn H R. 2000. Improving the safety of embryotechnologies: possible role of genomic imprinting. Theriogenology, 45(53): 627~648.
    Young L E, Schniekec A E, McCreathc K J. 2003. Conservation of IGF2-H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer. Mech Dev, 120(1): 1433~1442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700