用户名: 密码: 验证码:
大型发电机保护关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联电网规模的不断扩大,电力系统正向着“大机组、特高压、大电网”方向发展。大机组在绝缘、结构工艺、设计、运行等方面出现了很多新的特点,对发电机保护提出了更多、更高的要求;大电网的远距离、跨区域送电的特点,使得电网结构复杂、运行控制困难,导致电网的安全稳定问题更加突出,机网协调变得更加迫切。而涉网保护,如定/转子接地保护、失磁保护、失步保护等,不完善、可靠性不高,它们在大电网事故中的不正确、不合理动作加剧了电网的崩溃,是发电机保护的固疾、顽疾,也是电网安全稳定的潜在威胁。本文以保障大机组、大电网的安全稳定为目标,针对发电机保护的几个关键技术:定子接地保护、失磁保护、失步保护以及保护配置等展开了深入研究。
     论文首先分析比较了传统的发电机定子接地保护:基波零序电压保护、三次谐波电压保护的灵敏度及其配合问题。研究表明,大型发电机组的定子对地电容比较大时,这两种保护方案不能满足灵敏度要求,并且不能在发电机静止和启/停机状态下提供保护,需要引入注入式定子接地保护。
     接着研究分析了注入式定子接地保护的原理、方案设计,以及影响其灵敏度的因素。研究发现发电机接地变压器的参数对保护灵敏度和误差影响很大,并且在工程应用中调试、补偿复杂,难以准确。针对这些问题提出了不受接地变参数影响的新保护方案。新方案将注入与测量回路分开,使保护不受接地变参数的影响,无需补偿就能达到很高的灵敏度,简化了工程调试。动模试验和现场试验也验证了新方案的有效性。
     研究分析了传统的基于静稳极限阻抗圆特性的失磁保护,分析了它的特点和不足。针对其受发电机负荷变化影响大的缺点,提出自适应负荷变化的新型失磁保护方案。通过仿真证明了新方案的有效性,尤其是在较小负荷下,与传统的静稳极限阻抗圆判据相比,动作更加快速、可靠。
     研究分析了发电机失磁过程中的阻抗轨迹特征,并提出3种失磁保护新判据。新判据利用了失磁过程中的3个电气量:阻抗轨迹的变化范围、等有功阻抗圆的圆心角、圆心角的变化量。综合3种新判据以及一些辅助措施提出了新失磁保护方案。新方案在失磁后立刻就能检测到,经过短暂延时,躲过可能的非失磁故障造成的扰动,就可以快速发信。经过仿真验证表明,新方案在各种失磁和非失磁工况下都能准确、可靠动作。
     研究了等能量法和等面积法的发电机失步保护。提出基于实时机械功率测量和等能量法的新型失步保护方案。新失步保护方案能跟踪测量发电机的实时机械功率,使等能量法的失步保护在采取快关汽门等紧急控制手段时更加准确、可靠。
     研究了扩展等面积法的暂态稳定分析方法,提出一种基于广域测量系统和扩展等面积法的多机失步保护方案。新方案通过广域测量系统获取各发电机的功率、功角数据,利用扩展等面积法判断系统的稳定状态。经仿真验证了保护方案的有效性。
     最后总结了大型发电机组的特殊性及其对发电机保护提出的新要求,根据大型发电机组的特殊性和现代大电网安全稳定的需要,总结了相关发电机保护的配置原则。
With the continuous expanding of interconnected power grid, the power system is developing towards "large generating unit, extra-high voltage, large power grid". Many new features appear in some aspects of large generating units such as insulation, structural craftwork, design, operation and so on, which demand higher standards from generator protections. The characteristics of long distance and cross-region power transmission of large power grid result in structural complexity and operational control difficulty. This will cause the security and stability of power grid to become more extreme, and generator-grid coordination to become more urgent. Power grid related protections such as stator and rotor grounding protection, loss of excitation protection and out of step protection are not perfect, their reliability are not enough. Their incorrect, unreasonable operation in large power grid accident aggravated the collapse of the power system. They are the chronic disease of generator protection and potential threats to security and stability of power grid. In this paper, in order to protect the security and stability of large generating units and large power grid, several key techniques of generator protection, such as stator grounding protection, loss of excitation protection, out of step protection and configuration principles are studied.
     Firstly, this paper analyzes and compares the sensitivity and its matching problem of two traditional generator stator ground fault protections:the fundamental zero sequence voltage protection and the three harmonic voltage protection. The conclusion shows that, the two protection schemes cannot meet the sensitivity requirements when large generator has large stator to ground capacitance, and cannot provide protection when the generator is in static, startup and shutdown state. Thus, the injection based stator ground fault protection need to be introduced.
     Then this paper studies the principle and scheme design of injection based stator ground fault protection, and the influence factors of its sensitivity. The study found that parameters of the distribution transformer at generator neutral have a great impact on the sensitivity and error of protection, and the parameters need complex debugging and compensation in engineering application, which is difficult to achieve accurate. To solve these problems, new injecting scheme that not be affected by distribution transformer parameters is presented. The new scheme separates injection and measurement circuits, so the protection is not affected by the distribution transformer's parameters, and can achieve very high sensitivity without compensation which simplifies engineering debug. Dynamic model test and field test proved the above conclusions.
     The traditional static stability limit (SSL) based impedance characteristic of loss of excitation (LOE) protection is studied, its characteristics and shortcomings are analyzed. To prevent the shortcoming of this LOE protection that could be badly affected by load change, a new load adaptive LOE protection scheme is proposed. Simulation proves the validity of the new LOE protection scheme. Operation of the new scheme is more rapid and reliable especially in the light load compared with the traditional SSL based impedance characteristic of LOE.
     The characteristic of impedance trajectory in generator's LOE process is studied and analyzed. Three new LOE protection criteria are put forward. They take advantage of three electrical quantities in LOE process:the variation range of impedance locus, the central angle of impedance circle of equal active power and the viaration of central angle. A new scheme of LOE protection is proposed combined these three criteria and some auxiliary measures. In the new scheme, LOE could be detected immediately after its occurrence, LOE signal could be sent quickly after a short delay to prevent non-LOE fault. The simulation results show that the new protection scheme can operate accuratelly and reliablly in every LOE and non-LOE conditions.
     Equal energy principle and equal area criterion based generator out of step (OOS) protections are studied and analyzed. New OOS protection scheme based on real-time mechanical power measurement and equal energy principle is proposed. The new scheme can track real time generator's mechanical power and make the equal energy principle based OOS protection more accurate and reliable under fast valving and other emergency control measures.
     Transient stability analysis method extended equal area criterion (EEAC) is studied, and a multi-machine OOS protection scheme based on wide area measurement system (WAMS) and EEAC is proposed. The new protection scheme obtains power and angle data of every generator via WAMS, and predicts the stability state of power system by utilizing EEAC. Simulation is carried out to verify the effectiveness of the protection scheme.
     Finally, the particularity of large generating units and its new requirements for generator protection are summarized. According to the particularity of large generator and the security, the stability requirements of large-scale interconnected modern power grid, configuration principles of relative generator protections are summarized.
引文
[1]印永华.特高压大电网发展规划研究[J].电网与清洁能源,2009,25(10):1-3
    [2]张运洲,白建华.“十二五”电力规划重大问题解析[J].能源技术经济,2011,23(1):1-5,15
    [3]姚建国,赖业宁.智能电网的本质动因和技术需求[J].电力系统自动化,2010,34(2):1-4,28
    [4]司政,单葆国.十二五期间我国区域产业布局和经济发展分析[J].能源技术经济,2011,23(10):10-14
    [5]白建华.展望未来全国电力流格局[J].国家电网,2009(9):50-52
    [6]张运洲,白建华.十二五电力规划重大问题探析[J].能源技术经济,2011,23(1): 1-5,15
    [7]中电联规划与统计信息部.中电联发布2014年度全国电力供需形势分析预测报告[EB/OL].(2014-02-25).[2014-03-04].http://www.cec.org.cn.
    [8]王维俭.电气主设备继电保护原理与应用[M].北京:中国电力出版社,2002
    [9]沈全荣,严伟,张琦雪.百万千瓦级水电机组继电保护配置及相关问题的研究[C].中国水力发电工程学会继电保护专业委员会2008年年会暨学术研讨会,中国北京,2008:35-43
    [10]桂林.大型发电机主保护配置方案优化设计的研究[D].清华大学,2003
    [11]杨莉.百万千瓦级机组发电机变压器组继电保护配置探讨[J].电力自动化设备,2006,(10):110-113
    [12]李莉,刘万斌,李玉海.1000MW发电机组保护的配置及选型[J].华电技术,2008,30(8):1-5
    [13]王增平.电力主设备保护研究的几个热点问题[J].华北电力大学学报,2008,35(6):27-31
    [14]刘宇,舒治淮,程逍.从巴西电网“2.4”大停电事故看继电保护技术应用原则[J].电力系统自动化,2011,35(8):12-15,71
    [15]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11
    [16]唐葆生.伦敦南部地区大停电及其教训[J].电网技术,2003,27(11):3-5,12
    [17]卢卫星,舒印彪,史连军.美国西部电力系统1996年8月10日大停电事 故[J].电网技术,1996,20(9):40-42
    [18]Andersson G, Donalek P, Farmer R, et al. Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance[J]. IEEE Transactions on Power Systems,2005, 20(4):1922-1928
    [19]Power systems engineering research center. Resources for understanding the Moscow blackout of 2005[EB/OL]. (2005-07). [2014-03-04]. http: //www.pserc.wise.edu.
    [20]Taylor C W, Erickson D C. Recording and analyzing the July 2 cascading outage[J]. IEEE Computer Applications in Power,1997,10(1):26-30
    [21]Aggarwal R, Daschmans R, Schellberg R, et al. Validation studies of the July 2,1996 WSCC system disturbance event[R]. Operating Capability Study Group, Western Systems Coordinating Council, July 1997
    [22]Kosterev D N, Taylor C W, Mittestadt W A. Model validation for the August 10,1996 WSCC Outage[J]. IEEE Transactions on Power Systems,1999, 14(3):967-979
    [23]Kurita A, Sakurai T. The power system failure on July 23,1987 in Tokyo[C]. IEEE Conference Proceedings on Decision and Control,1988: 2093-2097
    [24]Kearsley R. Restoration in Sweden and experience gained from the blackout of 1983[C]. IEEE Power Engineering Society Summer Meeting,1986: 422-428
    [25]丁道齐.复杂大电网安全性分析:智能电网的概念与实现[M].北京:中国电力出版社,2010:1-45
    [26]陈西颖.大机组群机网协调保护理论研究[C].电力系统安全技术研讨会,中国昆明,2011:19-26
    [27]陆秋瑜,徐飞,胡伟,等.考虑机网协调的新型发电机失磁保护方案研究[J].电力系统保护与控制,2013,41(9):1-6
    [28]Gross Eric T B. Sensitive ground relaying of A-C generators [includes discussion][J]. Power Apparatus and Systems, Part Ⅲ. Transactions of the American Institute of Electrical Engineers,1952,71(1):539-544
    [29]Tomlinson H R. Ground-fault neutralizer grounding of unit connected generators [J]. AIEE Transactions on Power Application Systems,1953, 72(PartⅢ):953-966
    [30]Griffin C H, Pope J W. Generator ground fault protection using overcurrent, overvoltage, and undervoltage relays[J]. Power Apparatus and Systems, IEEE Transactions on,1982, PAS-101(12):4490-4501
    [31]Rajk M N. Ground-Fault protection of unit-connected generators[J]. Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers,1958,77(3):1082-1090
    [32]Pazmandi L. Stator earth-leakage protection for large generators[J]. IEEE Transactions on Power Apparatus and Systems,1975,94(4):1436-1439
    [33]苏洪波,尹项根,陈德树.高灵敏度的三次谐波式发电机定子接地保护[J].电力系统自动化,1997,21(03):36-38
    [34]孙学文,孙鹏.汽轮发电机定子接地保护方案及灵敏度分析[J].大电机技术,1999,(01):52-55
    [35]邰能灵,尹项根.大型水轮发电机定子接地保护方案及灵敏度分析[J].电力系统自动化,2000,24(07):41-45
    [36]Mozina C J.15 years of experience with 100% generator stator ground fault protection-What works, what doesn't and why[C].2009 62nd Annual Conference for Protective Relay Engineers,2009,92-106
    [37]Brown Boveri Corporation. Protection against ground faults covering 100% of the stator windings[P]. Europe patent:Relay and Protection Schemes Publication CH-ES31-40A
    [38]Pope J W. A comparison of 100% stator fround fault protection schemes for generator stator windings[J]. IEEE Transactions on Power Apparatus and Systems,1984, PAS-103(4):832-840
    [39]Tai Nengling, Yin Xianggen, Zhang Zhe, et al. Research of subharmonic injection schemes for hydro-generator stator ground protection[C]. IEEE Power Engineering Society Winter Meeting,2000:1928-1932
    [40]曾祥君,尹项根,于永源,等.基于注入变频信号法的经消弧线圈接地系统控制与保护新方法[J].中国电机工程学报,2000,20(1):29-32
    [41]曾祥君,尹项根,陈德树等.注入信号法补偿式高灵敏度发电机定子接地保护[J].中国电机工程学报,2000,20(11):51-55
    [42]Bi Daqiang, Wang Xiangheng, Xu Zhenyu, et al. Analysis and improvement on stator earth-fault protection by injecting 20 Hz signal[C].2001 Proceedings of the Fifth International Conference on Electrical Machines and Systems, 2001:301-304
    [43]万慧,吴济安,陆于平.新型数字式发电机定子接地保护的研究[J].电力自动化设备,2002,22(11):7-10
    [44]毕大强,王祥珩,王维俭.发电机中性点接地装置等效电路的分析[J].继电器,2003,31(1):12-16
    [45]毕大强,王祥珩,余高旺,等.高准确度外加20Hz电源定子单相接地保护的研制[J].电力系统自动化,2004,28(16):75-78
    [46]李德佳,毕大强,王维俭.大型发电机注入式定子单相接地保护的调试和运行[J].继电器,2004,32(16):51-56
    [47]毕大强,王祥珩,余高旺,等.消弧线圈接地方式下外加20Hz电源定子接地保护的应用[J].电力系统自动化,2005,29(04):82-84
    [48]张琦雪,王维俭,王祥珩.三峡大型发电机中性点接地电阻的合理选择[J].继电器,2005,33(15):5-8
    [49]张琦雪,陈佳胜,沈全荣.大型发电机中性点配电变压器电阻接地选型设计[J].中国电机工程学报,2007,27(z1):89-93
    [50]贺儒飞.外加电源方式100%定子接地保护的拒动与误动问题[J].四川电力技术,2005,(01):29-31
    [51]刘亚东,王增平,苏毅,等.注入式定子接地保护的现场试验、整定和分析.电力自动化设备,2012,32(10):150-154
    [52]张琦雪,席康庆,陈佳胜,等.大型发电机注入式定子接地保护的现场应用及分析[J].电力系统自动化,2007,31(11):103-107
    [53]兀鹏越,陈飞文,黄旭鹏,等.1036MW机组注入式定子接地保护调试及动作分析[J].电力自动化设备,2011,31(3):147-1 50
    [54]姚晴林,赵斌,郭宝甫,等.自适应20Hz电源注入式定子接地保护[J].电力系统自动化,2008,32(18):71-73
    [55]姚晴林,赵斌,郭宝甫.20Hz自适应新原理发电机定子接地保护深入分析[J].电力系统自动化,2009,33(22):71-74
    [56]毕大强,刘春秋,葛宝明.注入式发电机定子接地保护的自适应整定[J].电力系统自动化,2010,(16):64-68
    [57]Crossman G C,Linermuth H F, Webb R L. Loss-of-field protection for generators[J]. Transactions of the American Institute of Electrical Engineers, 1942,61(5):261-266
    [58]Mason C R. A new loss-of-excitation relay for synchronous generators [J]. Transactions of the American Institute of Electrical Engineers,1949, 68(2):1240-1245
    [59]Tremaine R L, Blackburn J L. Loss of field protection for synchronous machines[J]. Electrical Engineering,1954,73(11):1008
    [60]Mackenzie W F, Imhof J A, Dewey C, et al. Loss-of-field relay operation during system disturbances[J]. IEEE Transactions on Power Apparatus and Systems,1975,94(5):1464-1472
    [61]鲍道良,姚晴林.低励磁失步保护转子判据电路的整定计算分析[J].电站设备自动化,1982,(02):11-22.
    [62]Herrmann H J, Gao D. Underexcitation protection based on admittance measurement-excellent adaptation on generator capability curves[C]. The 1st International Conference on Hydropower Technology & Key Equipment, 2006:27-29
    [63]林韩,邱国义.微机保护实现自动判别失磁类型和预测失磁深度[J].中国电机工程学报,1993,(05):1-9
    [64]Tambay S R, Paithankay Y G. A new adaptive loss of excitation relay augmented by rate of change of reactance[C]. IEEE Power Engineering Society General Meeting,2005,1831-1835
    [65]薛伊琴.发电机失磁保护原理的比较和分析[J].继电器,2005,(20):33-35
    [66]Usta O, Musa M H, Bayrak M, et al. A new relaying algorithm to detect loss of excitation of synchronous generators[J]. Turk Journal of Electrical Engineering,2007,15(3):339-349
    [67]De Morais A P, Cardoso G, Mariotto L. An innovative loss-of-excitation protection based on the fuzzy inference mechanism[J]. IEEE Transactions on Power Delivery,2010,25(4):2197-2204
    [68]刘世明,尹项根,陈德树.发电机失磁分析及失磁保护新判据[J].华中理工大学学报,1999,(06):16-18
    [69]Li L, Sun C X, Mou D L. Study on the excitation protection and control of synchronous generator based on the delta and s[C]. IEEE PES Transmission and Distribution Conference:Asia and Pacific,2005:1-4
    [70]林莉,牟道槐,孙才新,等.同步发电机失磁保护的改进方案[J].电力系统自动化,2007,(22):88-93
    [71]郁涵.发电机失磁保护中转子低电压二判据的比较[J].继电器,2003,(09):63-66
    [72]Shi Z P, Wang J P, Gajic Z, et al. The comparison and analysis for loss of excitation protection schemes in generator protection[C].2012 11th International Conference on Developments in Power Systems Protection. 2012:1-6
    [73]隋佳音,毕天姝,薛安成,等.新型发电机失磁保护加速判据研究[J].电力系统保护与控制,2010,(20):69-73
    [74]Crichton Leslie N. A system out of step and its relay requirements[J]. Transactions of the American Institute of Electrical Engineers,1937,ⅩⅪ(10):1261-1267
    [75]Braley H D, Harvey J L. Fault and out-of-Step protection of lines[J]. Transactions of the American Institute of Electrical Engineers,1935, 54(2):189-200
    [76]Vaughan H R, Sawyer E C. Out-of-step blocking and selective tripping with impedance relays[J]. Transactions of the American Institute of Electrical Engineers,1939, XI(12):637-646
    [77]Imhof J A, Berdy J, Elmore W A, et al. Out of step relaying for generators working group report[J]. IEEE Transactions on Power Apparatus and Systems,1977,96(5):1556-1564
    [78]王增平.大型发电机-变压器组保护的研究[D].哈尔滨:哈尔滨工业大学,1997
    [79]张毅刚,张保会.大型发电机组失步预测及保护综述[J].继电器,1999(04):1-4
    [80]吴启仁.三峡发电机失步保护及励磁系统应用技术研究[D].华中科技大学,2004
    [81]Taylor C W, Haner J M, Hill L A, et al. A new out-of-step relay with rate of change of apparent resistance augmentation[J]. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102(3):631-639
    [82]宋聚忠,林韩.一种新型的微机发电机失步预测及失步保护方案[J].继电器,1995,(2):10-17
    [83]Sandoval R, Guzman A, Altuve H J. Dynamic simulations help improve generator protection[C].2007 Advanced Metering, Protection, Control, Communication, and Distributed Resources,2007:16-38
    [84]Ohura Y, Suzuki M, Yanagihashi K, et al. A predictive out-of-step protection system based on observation of the phase difference between substations[J]. IEEE Transactions on Power Delivery,1990,5(4):1695-1704
    [85]Morioka Y, Tomiyama K, Arima H, et al. System separation equipment to minimize power system instability using generator's angular-velocity measurments[J]. IEEE Transactions On Power Delivery,1993,8(3):941-947
    [86]薛禹胜.EEAC与直接法的机理比较(四)回顾与瞻望[J].电力系统自动化,2001,(14):1-6
    [87]刘新东,江全元,黄志光,等.基于广域测量系统的功角稳定预测与发电机失步保护的协调控制[J].电力自动化设备,2009,(07):52-55
    [88]Farantatos E, Huang R, Cokkinides G J, et al. A predictive out of step protection scheme based on PMU enabled dynamic state estimation[C].2011 IEEE Power and Energy Society General Meeting,2011:1-8
    [89]Jie Yan, Liu ChenChing, Vaidya U. PMU-based monitoring of rotor angle dynamics[J]. IEEE Transactions on Power Systems,2011,26(4):2125-2133
    [90]张启飞.基于广域测量系统的电力系统暂态稳定预测[D].山西大学,2013
    [91]秦晓辉,毕天姝,杨奇逊,等.基于WAMS动态轨迹的电力系统功角失稳判据[J].电力系统自动化,2008,32(23):18-22
    [92]刘小波,包明磊.百万千瓦机组注入式定子接地保护的研究与开发[J].华电技术,2008,30(7):1-5
    [93]Power System Relaying Committee. IEEE guide for generator ground protection[R]. IEEE,2007
    [94]Vainshtein R A, Lapin V I, Naumov A M, et al. Protection from ground faults in the stator winding of generator at power plants in the Siberian networks[J]. Power Technology and Engineering,2010,44(1):79-82
    [95]王维俭,桂林,王祥珩,等.大型发电机中性点接地方式的反思与忧虑_致各大发电公司_发电厂和设计院同行[J].电力设备,2007,8(11):1-4
    [96]Trener S. Applying 100% stator ground fault protection by low frequency injection for generators[C].2009 IEEE Power & Energy Society General Meeting.Calgary,2009:1-6
    [97]Preston R, Kandrac J. Report on design,testing and commissioning of 100% stator ground fault protection at dominion's bath county pumped-storage station[C]. IEEE Power System Conference,2009:1-13
    [98]Lloyd G J, Yip H T, Millar G. Operation, design and testing of generator 100% stator earth fault protection using low frequency injection[C]. IET 9th International Conference on Developments in Power System Protection,2008: 92-97
    [99]张琦雪,陈佳胜,陈俊,等.大型发电机注入式定子接地保护判据的改进 [J].电力系统自动化,2008,32(3):66-69
    [100]查普曼.电机原理及驱动——电机学基础(第4版)[M].北京:清华大学出版社,2008
    [101]袁季修.电流互感器和电压互感器[M].北京:中国电力出版社,2010
    [102]北京四方继保自动化股份有限公司.浙江版CSC-300数字式发变组保护装置说明书(0SF.460.020ZJ)_V1.15[Z],2010
    [103]Reimert D. Protective relaying for power generation systems[M]. Boca Raton: CRC Press,2006
    [104]Anderson P M. Power system protection[M]. New York:IEEE Press/McGraw-Hill,1998
    [105]Std C37.102TM, IEEE guide for AC generator protection[S]. IEEE,2006
    [106]Lee D C, Kundur P, Brown R D. A high speed, discriminating generator loss of excitation protection[J]. IEEE Transactions on Power Apparatus and Systems,1979, PAS-98(6):1895-1899
    [107]Kundur P, Power system stability and control[M]. Beijing:China Electric Power Press,2001
    [108]Lin H, Qiu G Y. Failure-mode-recognition and loss-degree-prediction with microcomputer-based loss-of-excitation protection[C]. Proceedings of the Chinese Society for Electrical Engineering,1993,13(5):1-9
    [109]Bi T S, Sui J Y, Yu H, et al. Adaptive loss of field protection based on phasor measurements[C].2011 IEEE Power and Energy Society General Meeting, 2011:1-4
    [110]Machowski J, Bumby J R. Power system dynamics and stability[M]. John Wiley & Sons,1997
    [111]Berdy J. Loss of excitation protection for modern synchronous generators [J]. IEEE Transaction on Power Apparatus and Systems,1975, PAS-94(5):1457-1463
    [112]姚晴林,张学深,张项安.微机UL-P型转子低电压失磁继电器动作方程及整定计算的研究[J].继电器,2000,28(7):31-35
    [113]Bo F, Li X Q, Xue P, et al. The research UL-P of loss-of-excitation protection for generator based on the artificial neural networks[C].2009 IEEE PES Asia-Pacific Power and Energy Engineering Conference,2009:1-4
    [114]Pajuelo E, Gokaraju R, Sachdev M S. Identification of generator loss-of-excitation from power-swing conditions using a fast pattern classification method[J]. IET Generation, Transmission & Distribution, 2013. 7(1):24-36
    [115]王峰,张波,丘东元.交流电机的虚拟光电编码盘测速技术[J].中国电机工程学报,2005,25(6):99-103
    [116]严登俊,鞠平.基于GPS时钟信号的发电机功角实时测量方法[J].电力系统自动化,2002,26(8):38-40
    [117]林王坚.高速转矩测量系统的研究[D].浙江工业大学,2008
    [118]祁才君,卜广炎,雷剑虹.电机转速一转矩特性的高精度测量[J].电工技术杂志,2000,(7):36-38
    [119]严伟,陆于平,李鹏.一种新的大型发电机失步预测综合保护方案[J].电力系统自动化,2000(21):52-55
    [120]吴政球,匡文凯,杨洪波.单机等面积法电力系统暂态稳定分析[J].电力系统及其自动化学报,2010,(04):64-70
    [121]Xue Y, Van Cutsem Th, Ribbens-Pavella M. Real-time analytic sensitivity method for transient security assessment and preventive control[J]. IEE Proceedings-Generation. Transmission and Distribution,1988,135(2): 107-117
    [122]Xue Y, Van Cutsem Th, Ribbens-Pavella M. A simple direct method for fast transient stability assessment of large power systems[J]. IEEE Transactions on Power Systems,1988,3(2):400-412
    [123]Xue Y, Van Custem T, Ribbens-Pavella M. Extended equal area criterion justifications, generalizations, applications[J]. IEEE Transactions on Power Systems,1989,4(1):44-52
    [124]张海.基于扩展等面积法的电力系统暂态稳定分析[D].太原理工大学,2006
    [125]周勤勇.扩展等面积法的研究及其在电力系统分析综合程序中的程序开发[D].中国电力科学研究院,2003
    [126]蔡泽祥,倪以信.扩展等面积法直接暂稳计算误差的分析[J].电网技术,1992,(03):43-49
    [127]蔡泽祥,倪以信.考虑暂态稳定紧急控制的扩展等面积法[J].中国电机工程学报,1993,13(6):20-26
    [128]Centeno V, Phadke A G, Edris A, et al. An adaptive out-of-step Relay[J]. IEEE power engineering review,1997,17(1):39-40
    [129]Fan Dawei. Synchronized measurments and applications during power system dynamics[D]. Virginia Polytechnic Institute and State University,2008
    [130]季克勤.基于机网协调的大型机组保护及自动装置参数优化研究[D].上海交通大学,2007
    [131]李淼.电力系统机网协调优化若干问题研究[D].武汉大学,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700