用户名: 密码: 验证码:
毛竹专题信息高光谱特征指数反演技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹产业的迅速发展迫切要求遥感技术提供给其快速、准确的毛竹空间分布信息。高光谱遥感作为遥感科学的研究前沿和热点,具有图像——光谱合一的特点,能够克服多光谱遥感的不足,可通过其精细光谱优势提高毛竹专题信息提取的精度和准确性。当前可利用的高光谱遥感数据源少,尤其在南方地区受地形复杂、气候多变等因素影响获取的影像数据质量往往难以满足植被识别的要求,且影像成像空间范围小;而多光谱数据源丰富,影像成像空间范围大。为充分利用多光谱和高光谱的优势,开展基于多光谱的高光谱特征指数反演技术研究是具有现实意义的。同时,植物的光谱特征都是由其化学和形态学特征决定的,使得基于多光谱的高光谱特征指数反演成为可能。本文以福建省闽清、德化、永泰县的部分区域为研究区,以开窗口方式建立研究对象,利用HyperionEO-1高光谱遥感数据和TM多光谱数据,围绕毛竹专题信息高光谱特征指数反演技术这一主题,开展了高光谱数据降维,识别毛竹的最佳高光谱特征确定,基于识别毛竹最佳高光谱特征、TM影像数据、相关的植被指数、地形因子等遥感信息的高光谱特征指数模型构建,基于高光谱特征指数的毛竹专题信息提取等研究,得到如下结论:
     (1)高光谱遥感数据分析可得:可用于研究的高光谱共计122个波段,其中31~50、54~68、75~89、94~122波段子集包含的信息量较多,是理想的候选波段子集,波段122是最优波段。光谱特性上,在任一波段上经济林与其它地物的可分性大;在1~25波段、31~50波段、58~66波段、74~85波段、92~122波段、80~85波段,竹林、杉木、阔叶林、经济林的DN值差异较明显是理想的波段子集,26~30波段、51~57波段、67~73波段、86-91波段重叠现象严重。
     (2)采用波段指数法、自适应波段选择法、均值间的标准距离法、OIF指数法、主成分分析法等方法对高光谱数据进行降维,得到的分类特征组合分别为:36、63、122波段组合;63、111、122波段组合;6、97、122波段组合;44、82、122波段组合;可见光区间的第一主成分(Y1)、近红外区间的第二主成分(Y4)、短波红外区间的第二主成分(Y6)组合。
     (3)各组合分类特征的分类结果表明:基于主成分分析法选择的分类特征分类的总精度和毛竹精度最高,总精度为80.36%,毛竹精度为88.70%;基于波段指数法、自适应波段选择法、均值标准距离法和OIF指数法选择的分类特征分类的总精度分别为64.97%、65.66%、71.29%、66.62%;毛竹精度分别为71.75%、72.32%、82.49%、72.32%。即确定主成分分析法选择的分类特征(Y1、Y4和Y6)作为识别毛竹的最佳特征,并作为构建模型的因变量。
     (4)分析了毛竹与其它树种在多光谱(TM)、植被指数、地形因子等上的差异,在此基础上,选择TM(1、2、3、4、5、7等波段)、植被指数(NDVI、RVI、PVI)、高程、坡度和坡向为自变量,Y1、Y4、Y6为因变量,利用逐步回归,构建高光谱特征指数模型,分别为:其中Y1、Y4、Y6为高光谱中能有效识别毛竹的分类特征,Z6是Y6经过Box-Cox变换的结果;B1、B2、B3、B4为TM影像的第一、二、三、四波段;RVI为比值植被指数;NDVI为归一化比值植被指数;高程3为高程800~1200 m;缓坡为坡度6~15°;陡坡为坡度26~35°;急坡为坡度36~45°。
     (5)通过所建立的指数模型,尝试了对高光谱特征的反演,并在反演结果图上进行了毛竹专题信息的提取,分类结果与传统基于多光谱数据的分类比较获得了较高的分类精度,具体为:基于高光谱特征指数分类的总精度为73.18%,Kappa系数为0.6552;基于TM原始数据分类的总精度为62.48%,Kappa系数为0.5170;二者比较,前者比后者总精度提高了10.70个百分点,Kappa系数提高了0.1382。同时,前者的毛竹分类精度达到86.52%,而后者的毛竹分类精度为74.47%,前者比后者毛竹精度提高了12.05个百分点,其它树种的分类精度也都有不同程度的提高,其中,杉木精度提高了43.44个百分点,马尾松精度提高了5.73个百分点,阔叶林精度提高了1.51个百分点,经济林精度提高了9.41个百分点。
The rapid development of bamboo industry demands the fast and accurate spatial distribution information of moso bamboo supported by remote sensing technology. As the research front and hotspot of RS science, the hyperspectral remote sensing has the characteristic of image-spectrum unity. It can overcome the shortage of multi-spectral RS; improve bamboo classification accuracy and veracity with its advantage of fine spectrum. Currently, there is few available hyperspectral image, especially in the southern area where the image is influenced by the complex terrain, variable climate and other factors, the obtained image quality often difficultly meet the need of vegetation identification and the coverage is too small. However, the multi-spectral data source is so abundant and its image courage is large. In order to take full advantage of multi-spectrum and hyperspectrum, it is practical significant to do the hypersepctral retrieval research based on the multi-spectrum. Meanwhile, all of the spectral features of vegetation are determined by the chemical and morphological characteristics, making the hyperspectral retrieval based on multi-spectrum possible.Focus on the theme of hyperspectral feature index retrieval of Bamboo thematic information, this paper 1) analyzed the dimensionality reduction for hyperspectral data, 2) identified the bamboo hyperspectral feature, then made an extraction, 3) modeled the hyperspectral feature index with hyperspectral feature optimal index, TM bands, various vegetation indices, and topographic factors etc., and 4) extracted the bamboo thematic information based on the hyperspectral feature optimal index from HyperionEO-1 remote sensing data and TM multi-spectral data in Fujian, included Minqing, Dehua, and Yongtai countries. The conclusions are as follow:
     (1) Through the analysis of hyperspectral remote sensing images, we can see that the bands available sums to 122, in which Band 31~50, 54~68, 75~89, 94~122 contain more information. These bands are good candidates and Band 122 is the best one. In the spectral features, there is large separability between economic forest and other bodies at any band. The DN value difference among bamboo, Chinese fir, broadleaves and economic forest is obvious at Band 1~25, 31~50, 58~66, 74~8, 92~122, 80~85, showing that these bands are good candidates. Nevertheless, they overlap each other terribly at Band 26~30, 51~57, 67~73, 86~91.
     (2) Five methods are used for dimension reduction including Band Index Method, Adaptive Band Selection Method, Standard Distance Between Means Method, OIF Method, Principal Component Analysis Method. The resulting classification feature combinations are Band Combination 36, 63, 122, Band Combination 63, 111, 122, Band Combination 6, 97, 122, Band Combination 44, 82, 122 and combination of the first component (Y1) at visible light area, the second component (Y2) at near-infrared area, the second component (Y6) at short-wave infrared area.
     (3) The classification results based on each feature combination show that: the overall accuracy and moso bamboo’s accuracy based on PCA are the highest, with these two value of 80.36% and 88.70%; the overall accuracies based on Band Index Method, Adaptive Band Selection Method, Standard Distance Between Means Method, OIF Method are 64.97%, 65.66%, 71.29%, 66.62% respectively; the accuracies of moso bamboo are 71.75%, 72.32%, 82.49%, 72.32% respectively. Above all, the classified features of Y1, Y4 and Y6 selected with PCA are the best ones. In the paper, these three perform the dependent variables for model contruction. (4) Relying on the spectrum difference analysis on multi-spectral images, vegetation indices, terrain factors and tree spices such as moso bamboo, the paper selected TM (1,2,3,4,5,7, etc. bands), vegetation indexs (NDVI, RVI, PVI), elevation, slope and aspect as the independent variable, Y1, Y4, Y6 as the dependent variable,based on the factor screening, stepwise regression is used to construct the index model which can retrieve the hyperspectral characteristics. The models are : where Y1, Y4, Y6 are available classification features for moso bamboo identification in the hyperspectrum, Z6 is the result of Y6 with Box-Cox Transformation, B1, B2, B3, B4 are Band1 to Band4 of TM images, RVI is ratio vegetation index, NDVI is normalized difference vegetation index, Elevation3 is the elevation from 800 to 1200 m, Slight-slope is the slope from 6 to 15°, Abrupt-slope is the slope from 26 to 35°, Steep-slope is the slope from 36 to 45°.
     (5) According the index model construction, the hyperspectral characteristics retrieval is experimented. It extracted moso bamboo information with the retrieval results. This classification accuracy is higher than the traditional method based on multi-spectrum data. The overall accuracy based on indices from retrieval is 73.18% with the Kappa of 0.6552, which the accuracy based on original TM data is 62.48% with the Kappa of 0.5170. Compared with them, we can see that the former one is 10.70% and 0.1382 higher than the latter one. Meanwhile, the former moso bamboo accuracy reaches 86.52% and the latter one 74.47%, 12.05% higher. The other species’accuracies also have been raised varying degrees, of which Chinese fir raised 43.44%, masson pine 5.73%, broadleaves 1.51% and economic forest 9.41%.
引文
[1]江泽慧.世界竹滕[M].辽宁科学技术出版社,2002.
    [2]陈金明,林金国,许国强,等.福建竹材资源利用技术现状及产业发展对策[J].亚热带农业研究,2006,2(3):216-220.
    [3]张华坚,黄发榕.福建竹产业,踏上新征程——福建省“十五”竹产业发展回眸和展望.中国林业产业,2007(3):36-37.
    [4]王树东.中国竹业的发展与全面创新[J].林业科技管理,2004(2):7-8.
    [5]徐金梅,赵荣军,费本华.我国竹材材性与加工利用研究新进展[J].木材加工机械2007:18(3)-39-42.
    [6]李海洋.遥感图象分类方法综述[J].林业科技情报,2008,4(1):4-5.
    [7]蔡华利.基于SVM的多源遥感分类的竹林信息提取方法研究—以福建省顺昌县为例[D].北京林业大学,2009.
    [8]黄荣辉.高光谱遥感+原理、技术与应用[M].高等教育出版社,2006.
    [9]童庆禧,郑兰芬.湿地植被成象光谱遥感研究[J].遥感学报,1997,1(1):50-57.
    [10]方红亮,田庆久.高光谱遥感在植被监测中的研究综述[J].遥感技术与用,1998,13(1):12-18.
    [11] Ferns D C, Zara S J, Barber J.Application of High Resolution Spectroradiometry to Vegetation.PE&RS, 1984, 50(12):1725~1735.
    [12]游先祥.遥感原理及在资源环境中的应用[M]北京:中国林业出版社,2003.
    [13]黎颖卿,黄宁辉.浅谈遥感在我国森林资源监测中的应用现状[J].防护林科技,2006,6(4):61-64.
    [14]邓旺华.竹林地面光谱特征及遥感信息提取方法研究——以福建省顺昌县为例[D].中国林业科学研究院,2009.
    [15]肖兴威.中国森林资源清查[M].北京:高等教育出版社,2005:3-15.
    [16]杜华强,周国模,葛宏立,等.基于TM数据提取竹林遥感信息的方法[J].东北林业大学学报,2008,36(3):35-38.
    [17]朱永军,程爱兴,何钧潮.临安竹产业实现跨越式发展的目标和对策[J].竹子研究汇刊, 2003, 22(3): 8-12.
    [18]李伟成,盛海燕,钟哲科.竹林生态系统及其长期定位观测研究的重要性[J].林业科学, 2006, 42(8): 95-101.
    [19]国际竹藤网络中心.国际竹藤网络中心“十五”科技总结及“十一五”科技规划[N/OL]. (2005-07-14)[2007-06-20]. ht-tp: //www. Forestrysc.i gov. cn/page/BrowInfo6. cbs? ResName=shz&j ResName=&order=38.
    [20]任国业.大熊猫主食竹的彩红外遥感判读技术探讨[J].遥感信息,1990(4):15-17.
    [21]贾炅.森林下层植物资源的航空遥感分析一以川西针叶树下箭竹为例[J].北京师范大学学报(自然科学版),1993,29(3):416-421.
    [22]颜梅春,张友静,鲍艳松.基于灰度共生矩阵法的IKONOS影像中竹林信息提取[J].遥感信息,2004,(2):31-34.
    [23]刘健,余坤勇,亓兴兰,等.基于专家分类知识库的林地分类[J].福建农林大学学报(自然科学版),2006,35(1):42-46.
    [24]杜华强,周国模,葛宏立等.基于TM数据提取竹林遥感信息的方法[J].东北林业大学学报,2008,36(3):35-38.
    [25]丁丽霞.天目山国家级自然保护区毛竹林扩张遥感监测[J].浙江林学院学报,2006,23(3):297-300.
    [26] [Menon,-A.R.R.Remote sensing application in bamboo resource evaluation:a case study in Kerala.International Development Research Centre,Ottawa,Ontario (Canada);Forestry Research Support Programme for Asia and the Pacific,Bangkok (Thailand);FAO,Rome (Italy).Forestry Dept. Bamboo in Asia and the Pacific. Proceedings.[Bangkok] (Thailand). 1994, 51-53.
    [27] Bharadwaj, SP; Siva-Subramanian; Sudhakar-Manda, etal; Bamboo livelihood development planning, monitoring and analysis through GIS and remote sensing. Journal-of-Bamboo-and-Rattan.2003, 2(4):453-461.
    [28] Dura,-D-B, Hiura,-H.Expansion characteristics of bamboo stand and sediment disaster in South Western Japan (CAB). Pakistan-Journal-of-Biological-Sciences.2006,9(4):622-631.
    [29] Somyot-Saengnin.Application of remote sensing data for estimating bamboo forest production in Northern and Western part of Thailand [M]. Bangkok (Thailand).1993.
    [30] Linderman M, Liu J, Qi J, et al. Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data. International Journal of Remote Sensing.2004,25(9):1685-1700
    [31] Nishikawa R,Murakami T,Yoshida S, Mitsuda Y, Nagashima K,Mizoue N. Characteristic of temporal range shifts of bamboo stands according to adjacent landcover type.Journal of the Japanese Forest Society 2005, 87 (5) :402-409
    [32]陈述彭.遥感信息机理的研究[M].北京:科学出版社,1998: 139-233.
    [33]刘伟东.高光谱遥感土壤信息提取与挖掘[D].中国科学院遥感应用研究所博士论文,2002,6.
    [34]郑兰芬、王晋年.成象光谱遥感技术及其图象光谱信息提取的分析研究[J].环境遥感,1992,7(1):49-58.
    [35]刘顺喜.高光谱遥感土地利用信息提取技术研究——以江苏宜兴试验区为例[D].北京林业大学,2005.
    [36]杨哲海,韩建峰,宫大鹏等.高光谱遥感技术的发展与应用[J].海洋测绘,2003. 23 (6 ): 55-58.
    [37] Hunt G R. Electromagnetic Radiation: The Communication Link in Remote Sensing [J].Remote sensing in Geology, Giegal B, Gillespia A. Wiles New York, 1980,702.
    [38]王学仁,王松桂.实用多元统计分析[M].上海科学技术出版社,1990.
    [39]李智勇.高光谱图像异常检测方法研究[D].长沙:国防科学技术大学博士学位论文,2004.
    [40]张宗贵,王润生.基于谱学的成像光谱遥感技术发展与应用[J].国土资源遥感,2000,3: 17-24.
    [41] Hans When, Norman Goldstein, Ian Burke, Timothy Bult.Hyperspectral Mosaicking, Coregistration and Change Detection [J].IEEE Proceeding, 1998, 2:13-20.
    [42] Tong Qingxi, Zheng Lanfen, Xue Yongqi, et al.Hyperspectral remote sensing in China [A].China.170J.Bing, Zhao Yongchao, LiuSPIE [C].2001, l: 45-48.
    [43] Ning Shu-Kuang, Chang Ni-Bin, Jeng Kai-Yu,et al. Soil erosion and non-point source pollution impacts assessment with the aid of multi-temporal remote sensing images[J]. Journal of Environmental Management. 2006, 79(1)88-101.
    [44]浦瑞良,宫鹏.高光谱遥感及其应用[M].高等教育出版社,2000.
    [45]林建平,赵英时,孙淑玲.高光谱遥感数据最佳波段选择方法试验研究[J].遥感信息,2001.1
    [46]姜小光,唐伶俐,王长耀,等.高光谱数据的光谱信息特点及面向对象的特征参数选择一以北京顺义区为例[J].遥感技术与应用,2002, 17(2): 59-64.
    [47] Chabrillat S, Pinet P C, Ceuleneer G et al.Ronda peridotite massif: methodology for its Geological mapping and lithological discrimination from airborne hypecrspectral data. INT J Remote Sensing, 2000, 21(12):2363-2388.
    [48]王晋年,郑兰芬,童庆禧.成像光谱图像吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1): 20-31.
    [49]张宗贵.成像光谱岩矿识别方法技术研究和影响因素分析[D].中国中国地质大学博士论文,2004.
    [50]甘甫平,刘圣伟,周强.德兴铜矿矿山污染高光谱遥感直接识别研究[J].地球科学—中国地质大学学报, 2004,29(1):119-126.
    [51]甘甫平,王润生,郭小方,等.高光谱遥感信息提取与地质应用前景—以青藏高原为试验区[J].国土资源遥感, 2000,(3):38-44.
    [52]唐万龙,杨相桓,雷浣群,等.应用光谱特性建立冬小麦氮磷元素丰缺和产量预报模型的研究[J].遥感技术与应用,1993,8(3):8-14.
    [53]牛铮,陈永华,隋洪智.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2):125-130.
    [54]马超飞,马建文,韩秀珍.微量元素在植物光谱中的响应机理研究[J].遥感学报,2001,5(5):334-339.
    [55] ADAMSM L, NORVELLW A, PHILPOTW D, eta.l Toward the dis-crmi ination ofmanganese, zinc, copper, and iron deficiency in‘Bragg’soybean using spectraldetectionmethods [J]. Agronomy Journa,l 2000,92(2):268-274.
    [56]王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究[J].农业工程学报,2002,18(1):9-13.
    [57]王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标研究[J].遥感学报,2002,6(S):92-98.
    [58]唐延林,王秀珍,黄敬峰,等.水稻微分光谱和植被指数的作用探讨[J].农业工程学报,2003,19(1):145-150.
    [59] Ceccato P., Flasse S., Tarantola S., et al.Detecting vegetation leaf water content using reflectance in the optical domain [J]. Remote Sens. Environ.,2001,77: 22-33.
    [60] Le^nio Soares Galva~o, Anto^nio Roberto Formaggio, Daniela Arnold Tisot.Discrimination of sugarcane varieties in Southeastern Brazil with EO-1Hyperion data [J]. Remote Sensing of Environment, 2005, 94: 523-534.
    [61] Martin, M.E, S.D. Newman J. D. Aber, et al.Determining forest specie scomposition using high resolution spectral resolution remote sensing data, Rem.Sens. Environ. 1998, 65: 249-254.
    [62] Franklin, SE, McDermid, GJ. Empirical relations between digital SPOT HRV and casi spectral response and lodgepole pine forest stand parameters. International Journal of Remote Sensing 1993, 14(12):2331-2348.
    [63] Goodenough, D.G, A.Dyk, K.O. Niemann, J. Pearlman, et al.Processing HYPERION and ALI for Forest Classification.IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1321-1331.
    [64]温兴平,胡光道,杨晓峰.从高光谱遥感影像提取植被信息[J].测绘科学,2008,33(3):66-68.
    [65]付军,张杰,马毅.基于植被指数的高光谱遥感水路识别方法初探[J].海洋科学进展,2005,23(1):76-81.
    [66]杨可明,郭达志.植被高光谱特征分析及其病害信息提取研究[J].地理与地理信息科学,2006,22(4):31-34.
    [67] MALTHUS T J, MADERIA A C. High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by botrytis fabae [J].Remote sensing of Environment, 1993, 45:107-116.
    [68]赵祥,刘素红,王培娟.基于高光谱数据的小麦叶绿素含量反演[J].地理与地理信息科学,2004,5.
    [69]吴昊.高光谱遥感图像数据分类技术研究[D].国防科学技术大学,2004.
    [70] Farraguerri Agustin, and Chang Chein-I.Unsupervised Hyperspectral Image Analysis with Projection Pursuit [J].IEEE Trans.Geoscience and Remote Sensing, 2000, 38(6):2529-2538.
    [71] Jimenez Luis O.,Morales-Morell Anibal and Creus Antonio.Classification of Hyperdimensional Data Based on Feature and Decision Fusion Approaches Using Projection Pursuit, Majority Voting,and Neural Networks [J].IEEE Trans.Geoscience and Remote Sensing,1999,37 (3):1360-1366.
    [72] Marin John A. Assessing band selection and image classification techniques on HYDICE hyperspectral data [C].Proc.Of IEEE Soc.Of SMC, Tokyo, Japan, 2000.
    [73]杨金红.高光谱遥感数据最佳波段选择方法研究[D].南京信息工程大学,2005.
    [74]催林丽.高光谱遥感数据在荒漠化监测中的定量反演研究[D].哈尔滨:东北林业大学,2002:12-13.
    [75]浦瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析[J].遥感学报,1997 1(2):115-123.
    [76]李小文,王锦地,胡宝新等.先验知识在遥感反演中的作用[J].中国科学D辑:地球科学, 1998, 28(1): 67-72.
    [77]福建省情资料库. http://www.fjsq.gov.cn/index.asp.
    [78] D Hearn, C J Digenis, D E Lencioni, et al.E0-1 advanced land imager overview. IEEE 2001 [R], International Geo-science and Remote Sensing Symposium, 2001(July): 9-13.
    [79] Richard Beck, EO-1 User Guide v.2.3,2003.http://eol.usgs.gov&http://eo l .gsfs.nasa.gov.
    [80]王强.Hyperion高光谱数据进行混合像元分解研究[D].东北林业大学硕士论文,2006.
    [81] P S Barry, J Shepanski, C Segal. Hyperion on orbit-validation of spectral calibration using atmospheric lines and on-board system [J]. The International Symposium on Optical Science and Technology, 2001, July 29-August 3.
    [82]朱珂.基于Hyperion高光谱遥感数据的处理及其在喀斯特石漠化等级划分中的应用[D].贵州师范大学,2009.
    [83] Datt B., McVicar T. R., Van N.T. G-Jupp, D.L.B.et al.SPre-processing EO-1 hyperion hyperspectral data to support the application of agricultural indices [J].IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6):1246-1259.
    [84] USGS官方网站EO-1卫星分页http://eo l .usgs.gov.
    [85]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003
    [86] Fukunaga K, Hayes R. R. Effects of sample size in classifier design [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(8): 873-885.
    [87]温兴平.基于多分类器组合的高光谱遥感数据分类技术[D].中国地质大学博士学位论文,2008.
    [88]刘汉湖,杨武年,杨容浩.一种基于地物诊断性波谱吸收特征的高光谱遥感图像降维方法[J].地理与地理信息研究科学,2009,25(1):57-60.
    [89]韩瑞梅,杨敏华.一种改进的高光谱遥感数据波段选择方法的研究[J].测绘与空间地理信息,2010,33(3):137-139.
    [90]刘春红,赵春晖,张凌燕.一种新的高光谱遥感图像降维方法[J].中国图像图形学报, 2005, 10 (2): 218-222.
    [91]严红萍,俞兵.主成分分析在遥感图像处理中的应用[J].资源环境与工程,2006,20(2):168—170.
    [92]程乘旗,马廷,王立明.用于植被冠层分析的高光谱波段的组合方法研究[J].地理学与国土研究,2002,18(2):23-25.
    [93]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [94] SuL.Support vector machines for recognition of semi-ardi vegeattion type’s usnig MSIR multi-angel imagery [J].Remote Sensnig of Environment, 2007, 107(12):299-311.
    [95]郑明国,蔡强国,秦明周,等.一种遥感影像分类精度检验的新方法[J].遥感学报, 2006, 10(1):39-48.
    [96]陈朝晖,朱江,徐兴奎.利用归一化植被指数研究植被分类、面积估算和不确定性分析的进展[J].气候与环境研究.2004, 09(4):687-696.
    [97]张彦林.Box-Cox变换在遥感数据建模中的应用[J].东北林业大学学报,2010,38(8):120-122.
    [98]刘承平.数学建模方法[M].北京:高等教育出版社.2002,15-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700