用户名: 密码: 验证码:
室温离子液体中纳米导电聚合物材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物是近年来的研究热点,它在电化学催化、传感、电容器等领域的成功应用引来了越来越多关注的目光。室温离子液体作为一类新型的环境友好的绿色溶剂拥有许多优异的物理、化学性能,它的出现为绿色化学开辟了一条崭新的道路。本论文分别采用电化学聚合法、化学聚合法、光诱导聚合法在室温离子液体溶液以及室温离子液体与水形成的微乳液体系中制备了具有纳米尺寸的导电聚合物材料以及导电聚合物复合材料,并通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能量色散谱(EDS)、X射线衍射谱(XRD)、红外光谱(IR)、紫外光谱(UV-vis)、电化学循环伏安扫描(CV)、电化学阻抗谱(EIS)等分析测试技术对制得的纳米材料的形貌、结构、物理化学性质及应用进行了详细研究。本论文的主要研究工作如下:
     (1)通过两步法制得三种室温离子液体1-乙基-3-甲基咪唑六氟磷酸盐[emim]PF_6、1-丁基-3-甲基咪唑六氟磷酸盐[bmim]PF_6、1-辛基-3-甲基咪唑六氟磷酸盐[omim]PF_6,使用CV扫描对三者的电化学稳定性进行考察,发现三者在铂电极上的电化学窗口分别为4.14 V、3.40 V、3.28 V。通过向三种室温离子液体中添加一系列定量的杂质,发现随着室温离子液体阳离子取代基碳链的增长,三种室温离子液体电化学稳定性受杂质影响的程度有所减弱。
     (2)采用循环伏安法研究了氯化亚钴在室温离子液体[bmim]PF_6中的电化学行为。虽然[bmim]PF_6中Co~(2+)/Co~(3+)氧化还原电对在玻碳电极上的氧化还原峰电位差大于59 mV,但是通过对峰电流与扫描速度以及峰电流与峰电位的拟合分析还是可以证明该电化学反应仍然为一个可逆过程。通过不同温度下循环伏安法峰值电流与扫描速率之间的关系拟合得出[bmim]PF_6中Co~(2+)的扩散系数D在10~(-11) m~2·s~(-1)数量级,且随温度的升高而增加,进而推导得出[bmim]PF_6中Co~(2+)的扩散活化能ED为23.4 kJ·mol~(-1),这同时说明[bmim]PF_6是一种性能优良的电化学反应介质。
     (3)在含有醋酸的室温离子液体[bmim]PF_6溶液中采用循环伏安法和计时电位法研究了苯并三氮唑在金电极上的电化学聚合过程,并在硫酸溶液中考察了所制备的聚苯并三氮唑膜电极的电化学性能。通过计时电位法研究发现苯并三氮唑在电化学氧化初期生长方式遵循3D瞬时成核模型。SEM照片显示聚苯并三氮唑膜表面致密、平滑,IR光谱分析证明聚合物的主链是通过不饱和的氮原子耦合连接而成。对聚苯并三氮唑膜电极进一步的循环伏安扫描后发现该聚合物膜具有良好的电化学活性,并且在0.9 V(相对于Ag/AgCl电极)的电位附近表现出稳定的准可逆的氧化还原特性。
     (4)由室温离子液体与其它溶剂组成的微乳液是一种可以用于制备纳米材料的新型绿色介质。采用循环伏安法在室温离子液体[bmim]PF_6和水组成的微乳液(IL/W型)中成功制得了导电聚苯胺(PAN),在这样的介质环境中制得的PAN的电化学性能与在常规水溶液中制备的PAN的性能有明显的差别,而且采用循环伏安法聚合时的聚合圈数对制得的PAN的电化学性能(如比电容)存在一定影响,通过电流密度为2 mA·cm~(-2)的冲放电实验检测发现在室温离子液体型微乳液中经过50圈循环伏安扫描制得的PAN的比电容可以达到334 F·g~(-1),这样的PAN是一种性能优越的超级电容器电极材料。同时SEM照片显示制得的PAN拥有花菜状的微观形貌,而且EDS元素分析检测结果可以证明聚合物存在SO42-和PF_6-的共掺杂。
     (5)采用计时电位法分别在室温离子液体[bmim]PF_6和水组成的W/IL型与IL/W型微乳液中制备得到了PAN-Ag纳米复合材料。通过SEM、TEM和XRD分析了不同介质环境中制得的PAN-Ag纳米复合材料在形貌与结构上的差别,结果证明在W/IL型微乳液中制得的PAN-Ag纳米复合材料为纤维状结构,粒径5 nm左右的Ag纳米颗粒均匀的分布在其中,而在IL/W型微乳液中制得的PAN-Ag纳米复合材料为树枝状结构,其中的Ag纳米颗粒的粒径大约50-100 nm。采用CV和EIS技术进一步研究了不同微乳液类型以及电化学合成条件对PAN-Ag纳米复合材料电化学性能的影响,并通过与纯PAN材料的比较,发现具有特殊形貌特征的PAN-Ag纳米复合材料拥有更优越的电化学性能。
     (6)在由室温离子液体与水组成的微乳液体系(IL/W型)中,采用化学氧化法制得了[bmim]PF_6和十二烷基苯磺酸(DBSA)或盐酸(HCl)共掺杂的PAN纳米材料。室温离子液体在制备过程中既是溶解苯胺单体的油相,又起到了对阴离子掺杂的作用。通过研究发现,不同对阴离子的掺杂对PAN产物的物理、化学性质存在较大影响。在三种PAN产物中,[bmim]PF_6与DBSA共掺杂的PAN拥有最大的分子量(81104 g·mol~(-1)),最高的电导率(1.85 S·cm~(-1)),最低的玻璃化温度(181℃)以及最高的电化学氧化还原电流;[bmim]PF_6单掺杂的PAN表现出的电导率和电化学氧化还原电流最低;[bmim]PF_6与HCl共掺杂的PAN也展现出较高的电导率。而且,三种PAN在中性条件下都拥有良好的电化学反应活性以及充放电稳定性。这都可以证明,在酸性条件下通过不同对阴离子共掺杂可以改善PAN产物的氧化程度,从而提高PAN的导电性能以及电化学性能。
     (7)首次采用光诱导聚合法在室温离子液体溶液介质中制备得到了PAN纳米颗粒。在聚合反应过程中,光子和具有光化学活性的室温离子液体阳离子取代了传统的化学氧化剂和金属络合物促使苯胺单体发生氧化。通过SEM观察证实所制得的PAN颗粒粒径在纳米级范围内。随着室温离子液体溶液介质中质子酸含量的增加,PAN产物的产率和电导率都有所上升,紫外吸收也有所增强,而且部分吸收峰发生蓝移。进一步对室温离子液体作为反应介质的重复使用性进行考察发现,在重复使用5次后,室温离子液体对于光诱导聚合苯胺的催化活性并没有明显的降低。本方法为直接使用太阳能制备纳米导电聚合物开创了一条崭新的道路。
Conducting polymers have attracted considerable attention because of their application in electrochemical catalysis, sensor, capacitor, etc.“Green solvent”room temperature ionic liquids are environmentally benign, and exhibit many excellent physical and chemical properties. They play an important part in green chemistry. This dissertation is concentrated on the preparations of nano-sized conducting polymers and conducting polymer composites by using electrochemical, chemical and photo-induced polymerization in room temperature ionic liquid solutions or microemulsions composed of room temperature ionic liquid and water. Their micrographs, structure, properties and applications have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), infrared absorption spectra (IR), ultraviolet visible absorption spectra (UV–vis), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), etc. The main points of this dissertation are summarized as follows:
     (1) Three room temperature ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ( [emim]PF_6 ) , 1-butyl-3-methylimidazolium hexafluorophosphate ( [bmim]PF_6 ) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim]PF_6) were prepared. Their electrochemical stabilities were investigated by CV, and corresponding electrochemical windows was 4.14 V, 3.40 V, and 3.28 V, respectively. Longer the substituted group on room temperature ionic liquid cation is, weaker the effect of impurities on the electrochemical stability of room temperature ionic liquids is.
     (2) The electrochemical behavior of CoCl_2 in [bmim]PF_6 was investigated by CV. The well-defined cyclic voltammograms were obtained from electrochemical measurement under different temperatures, and the reversible behavior for Co~(2+)/Co~(3+) redox couple on glassy carbon electrode in [bmim]PF_6 was confirmed by the characteristic of the peak currents. The diffusion coefficients (about 10~(-11) m~2·s~(-1)) of Co~(2+) in [bmim]PF_6 under different temperatures were evaluated from the dependence of the peak current density on the potential scan rates in cyclic voltammograms. It is found that the diffusion coefficient increases with increasing temperature. Diffusion activation energy of Co~(2+) in [bmim]PF_6 is also calculated to be 23.4 kJ?mol-1 according to the relationship between diffusion coefficient and temperature. It is confirmed that [bmim]PF_6 is a good solvent for electrochemical reactions.
     (3) The electropolymerization of benzotriazole on an Au electrode was investigated via CV and chronoamperometry in a room temperature ionic liquid medium, [bmim]PF_6 containing glacial acetic acid. The chronoamperometric investigation revealed that the instantaneous nucleation predominated the potentiostatic electropolymerization of benzotriazole at the oxidation peak potential. SEM image indicated that the polymer film was compact and relatively smooth and IR result suggested the polymer chains were formed mainly via coupling of the unsaturated nitrogen atoms. The polymer was found to be highly electroactive, showing a quasi-reversible and stable pair of redox peaks centering at 0.9 V versus Ag/AgCl in 0.1 mol?L-1 H2SO4 solution.
     (4) Room temperature ionic liquid microemulsion, a new way to synthesize the controllable size and shape of nano-scale materials, has received increasing attention. Polyaniline (PAN) has been prepared by CV in room temperature ionic liquid-in-water (IL/W) microemulsion. The electrochemical properties of the PAN prepared in IL/W microemulsion were compared with that of the PAN polymerized in conventional acidic aqueous solution. Also, the effects of the potential cycle number on the specific capacitance and electrochemical characteristics of the PANI film electrode were discussed in detail. The result shows that the specific capacitance of the PAN film obtained by 50-cycle electropolymerization is 334 F·g~(-1) at the charge-discharge current density of 2 mA·cm~(-2). The SEM image indicates that the PAN film presented cauliflower like morphology, and the EDS elemental analysis result suggests the polymer were co-doped with SO_4~(2-) and PF_6~-.
     (5) Chronopotentiometry was employed to prepare polyaniline-silver (PAN-Ag) nanocomposite films in water-in-room temperature ionic liquid (W/IL) microemulsion and room temperature ionic liquid-in-water (IL/W) microemulsion. The resulted nanocomposites were characterized by SEM, TEM, HRTEM, and XRD. It is demonstrated that the PAN-Ag nanocomposite prepared in W/IL microemulsion is nanofibrous and the Ag nanocrystals with 5 nm diameter are dispersed homogeneously, whereas the morphology of the PAN-Ag nanocomposite prepared in IL/W microemulsion exhibits dendritic structure and the diameter of Ag nanocrystals is 50-100 nm. Further, the effects of different microemulsion systems and electrochemical synthesis conditions on the electrochemical properties of the nanocomposite films were studied by CV and EIS. The pure PAN films were also made for comparative purpose. It is found that the special structures of the PAN-Ag nanocomposite result in more excellent electrochemical activity than that of the pure PAN.
     (6) Three nano-sized PAN powders doped with room temperature ionic liquid [bmim]PF_6 and dodecyl benzene sulfonic acid (DBSA) or hydrochloric acid (HCl) have been prepared in room temperature ionic liquid-in-water microemulsion system. The oil-phase room temperature ionic liquid was used as both monomer solvent and doped counterion. The effects of different counterions on the properties (molecular weight, electrical conductivity, glass transition temperature, electrochemical activity) of PAN were investigated. The PAN co-doped with [bmim]PF_6 and DBSA shows the highest molecular weight (81104 g·mol~(–1)), the highest electrical conductivity (1.85 S·cm~(–1)) the lowest glass transition temperature (181°C) and the highest redox reaction current density, while the PAN doped with [bmim]PF_6 only exhibits the lowest conductivity (0.018 S·cm~(–1)) and lower redox reaction current density. The PAN co-doped with [bmim]PF_6 and HCl shows higher conductivity. Also they exhibit good electrochemical stability and charge/discharge performance in neutral medium. These indicate that co-doping of different counterions under acidic condition could improve oxidation degree and doping ratio of PAN, and results in high electrical conductivity and good electrochemical properties.
     (7) Photo-induced polymerization was employed to prepare PAN nanoparticles in room temperature ionic liquid for the first time. Photons and photoactive room temperature ionic liquid cations replaced conventional oxidants and metal complexes to promote the polymerization of aniline monomer. The diameter of the resulted PAN is confirmed in nano-scale by SEM. With increase of protonic acid in medium, the yield of the PAN increased, the UV absorption of the PAN strengthened, and a blue shift of the p-polaron absorption was observed. And the conductivity of the PAN also increased with the acid content in medium. The potential mechanism of photo-induced polymerization of aniline was proposed. Moreover, after the room temperature ionic liquid was separated from the reaction mixture and reused for five times, no obvious decrease in catalytic activity could be found in photo-induced polymerization of aniline. The method may open a new pathway to prepare nano-scale conducting polymers with sunlight.
引文
[1] Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun., 1977, (16): 578-580
    [2] Chiang C K, Park Y W, Heeger A J, et al. Conducting polymers: Halogen doped polyacetylene. J. Chem. Phys., 1978, 69: 5098-5104
    [3] Seanor D A. Electrical properties of polymers. New York: Academic Press Inc., 1982, 2
    [4]赵文元,赵文明,王亦军.聚合物材料的电学性能及其应用.北京:化学工业出版社, 2006, 7
    [5] Pouget J P, Jozefowicz M E, Epstein A J, et al. X-ray structure of polyaniline. Macromolecules, 1991, 24: 779-789
    [6] Qi Z G, Pickup P G. Size control of polypyrrole particles. Chem. Mater., 1997, 9: 2934–2939
    [7] Chayer M, Faid K, Leclerc M. Highly conducting water-soluble polythiophene derivatives. Chem. Mater., 1997, 9: 2902–2905
    [8] Berresheim A J, Müller M, Müllen K. Polyphenylene nanostructures. Chem. Rev., 1999, 99: 1747–1786
    [9] Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem. Commun., 2008, 10: 268–272
    [10] Peierls R E. Quantum theory of solids. London: Oxford Univ. Press, 1955, 197
    [11] Su W P, Schrieffer J R, Heeger A J. Solitons in polyacetylene. Phys. Rev. Lett., 1979, 42: 1698-1701
    [12] Wohrle D.über den grundk?rper der polynitrile, das poly(methinimin). Macromol. Chem., 1974, 175: 1751-1760
    [13] Gibson H W, Bailey F C, Epstein A J, et al. Poly (1,6-heptadiyne), a free-standing polymer film dopable to high electrical conductivity. J. Am. Chem. Soc., 1983, 105: 4417-4431
    [14] Snow A W. Vapour deposition polymerization of butadiyne. Nature, 1981, 292: 40-41
    [15] Teshima K, Uemura S, Kobayashi N, et al. Effect of pH onphotopolymerization reaction of aniline derivatives with the tris(2,20-bipyridyl)ruthenium complex and the methylviologen system. Macromolecules, 1998, 31: 6783-6788
    [16] Marvel C S, Sample J H, Roy M F. The structure of vinyl polymers. VI.1 polyvinyl halides. J. Am. Chem. Soc., 1939, 61:3241-3244
    [17]周海晖.聚苯胺及其衍生物的电化学制备和应用研究:[湖南大学博士学位论文].长沙:湖南大学化学化工学院, 2005, 4-5
    [18] Zhou Z, He D L, Yang R H, et al. Electropolymerization of benzotriazole in room temperature ionic liquid [bmim]PF6. Journal of Applied Electrochemistry, 2008, 38: 1757-1761
    [19] Bredas J L, Silbey R, Boudreaux D S, et al. Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc., 1983, 105: 6555–6559
    [20] Aydin R, Koleli F. Hydrogen evolution on conducting polymer electrodes in acidic media. Progress in Organic Coatings, 2006, 56: 76–80
    [21] Olmedo L, Hourquebie P, Jousse F. Microwave absorbing materials based on conducting polymers. Advanced Materials, 2004, 5(5): 373-377
    [22] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347: 539-541
    [23]刘海燕,曾泳淮,胡乃非.酞菁锰-表面活性剂薄膜电极的电化学表征及其对三氯乙酸的电化学催化作用的研究.分析试验室, 1998, 17(4): 9-12
    [24]傅敏.基于聚吡咯和碳纳米管/聚吡咯修饰的碳糊电极的葡萄糖传感器:[浙江大学博士学位论文].杭州:浙江大学生物医学工程与仪器科学学院, 2006, 18-39
    [25] Kim Y, Kobayashi N, Teshima K, et al. Photorewritable conducting polyaniline image formation with photoinduced electron transfer. Synthetic. Met., 1999, 101: 699-700
    [26] Shu C F; Wrighton M S. Infrared/visible/ultraviolet spectroscopic detection of one-electron- and two-electron-reduction products of fac-ClRe(CO)3(4bzpy)2 (4bzpy=4-benzoylpyridine). Inorganic chemistry, 1988, 27(23): 4326-4329
    [27] Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem. Commun., 2008, 10: 268–272
    [28] Compos T L A, Kersting D F, Ferreira C A. Chemical synthesis of polyanilineusing sulphanilic acidb as dopant agent into the reactional medium. Surface and Coatings Technology, 1999, 122 (1): 3-5
    [29]张清华,王献红,景遐斌.聚苯胺的合成及其光谱特性.化学世界, 2001, 42 (5): 242-244
    [30]王科,张旺玺.导电聚苯胺的研究进展.合成技术及应用. 2004,19(1): 23-34
    [31]韩克清,金惠芬.聚苯胺导电纤维.合成技术及应用, 1998, 13 (4): 27-31
    [32]王保成,许并社.导电聚苯胺的研究现状评述.太原理工大学学报, 2002, 33 (1): 56-58
    [33] Macdiramid A G, Chiang J C. Chemical, electrochemical and infrared studies of polyaniline. Synth. Met., 1987, 18(1-3): 285-290
    [34]王利祥,王伟松.取代苯胺的化学氧化聚合.高分子学报, 1989, (3): 264-269
    [35] Wudl F, Angus R O, Lujr F L, et al. Poly-p-phenyleneamineimine: synthesis and comparison to polyaniline. J. Am. Chem. Soc., 1987, 109(12): 3677-3684
    [36] Chen C H. Application of factorial experimental design to study the influence of polymerization conditions on the yield of polyaniline powder. Journal of Applied Polymer Science, 2002, 85(7): 1572-1580
    [37]沙兆林,苏广均,施磊等.导电聚苯胺的合成.南通工学院学报, 2000, 16(1): 25-27
    [38] Birringer R, Gleiter H, Klein H P, et al. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder. Phys. Lett., 1984, 102(8): 365-369
    [39] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1 nm diameter. Nature, 1993, 363: 603-605
    [40] Xie Y, Qian Y T, Wang W Z, et al. A benzene-thermal synthetic route to nanocrystalline GaN. Science, 1996, 272: 1926-1927
    [41] Li Y D, Qian Y T, Liao H W, et al. A reduction-pyrolysis-catalysis synthesis of diamond. Science, 1998, 281: 246-247
    [42]王君,陈红亮. 21世纪的前沿材料-纳米材料.当代化工, 2001, 30(1): 12-13
    [43]朱宏伟,吴德海,徐才录.纳米碳管.北京:机械工业出版社, 2003, 1-6
    [44]丁秉钧.纳米材料.北京:机械工业出版社, 2004, 2-3
    [45]徐祖顺,易昌凤.聚合物纳米粒子.北京:化学工业出版社, 2005, 13-14
    [46]唐浩.纳米材料电催化及生物传感研究:[湖南大学博士学位论文].长沙:湖南大学化学化工学院, 2005, 1-2
    [47]徐国材,张立德.纳米复合材料.北京:化学工业出版社, 2002, 42-43
    [48] Smith A P, Spontak R J, Ade H, et al. High-energy cryogenic blending and compatibilizing of immiscible polymers. Adv. Mater., 1999, 11(15): 1277-1281
    [49]陈哲,王琪,徐僖.超细聚酰胺6粒子增韧聚丙烯体系的研究.高分子学报, 2001, (1): 13-16
    [50]曹炳阳,张清光,张兴等.纳米Pt膜的晶粒尺寸及其对热导率的影响.金属学报, 2006, 42(11): 1207-1211
    [51]李志,巩前明,王野等.新型定向碳纳米管/炭复合材料的制备与表征.新型炭材料, 2007, 22(4): 365-370
    [52]王彬,闫军,杜仕国等.低温下纳米TiO2制备研究进展.表面技术, 2007, 36(6): 66-69
    [53]周伟华,郭讯枝,张阳德等.纳米司莫司汀磁性脂质体的制备及表征.科技通报, 2008, 24(3): 406-410
    [54] Kinyanjui J M, Wijeratne N R, Hanks J, et al. Chemical and electrochemical synthesis of polyaniline/platinum composites. Electrochim. Acta, 2006, 51: 2825–2835
    [55]张萍,崔海信,李玲玲等.纳米TiO2半导体溶胶的光生物学效应.无机材料学报, 2008, 23(1): 55-60
    [56]周舟,何德良,李雪玲等.聚苯胺在离子液体/水体系中的微乳液法合成.高分子学报, 2007, (8):757-760
    [57] Zhou Z, He D L, Li X L, et al. Preparation of ionic liquid and dodecyl benzene sulfonic acid or hydrochloric acid co-doped polyaniline and their properties. Polymer Science Series B, 2008, 50(7-8):209-214
    [58] Candau F, Leong Y S, Fitch R M. Kinetic study of the polymerization of acrylamide in inverse microemulsion. J. Polym. Sci: Polym. Chem. Ed., 1985, 23: 193-214
    [59] Larpent C, Bernard E, Richard J, et al. Polymerization in microemulsions with polymerizable cosurfactants: a route to highly functionalized nanoparticles. Macromolecules, 1997, 30: 354-362
    [60] Gan L M, Chew C H, Chen H S O, et al. Preparation of polyaniline particles in an inverse microemulsion. Polymer Bull, 1993, 31: 347-350
    [61] Yan F, Xue G. Synthesis and characterization of electrically conducting polyaniline in water–oil microemulsion. J. Mater. Chem., 1999, 9: 3035-3039
    [62] Capek I, Potisk P. Microemulsion and emulsion polymerization of butylacrylate—I. Effect of the initiator type and temperature. Eur. Polym. J., 1995, 31: 1269-1277
    [63] Yan F, Xue G, Zhou M S. Preparation of electrically conducting polypyrrole in oil/water microemulsion. J. Appl. Polym. Sci., 2000, 77: 135-140
    [64] Kone A, Jouini M, Aeiyach S, et al. A new strategy based on inverse microemulsions for electrosynthesis of poly(3-methyl-thiophene) films. Synth. Met., 1999, 101:29-30
    [65]张鑫.聚苯胺/纳米ZnO制备表征及光电特性研究:[北京化工大学硕士学位论文].北京:北京化工大学物理化学系, 2005, 1-4
    [66]王德禧.聚合物无机纳米复合材料热点述评.塑料包装, 2002, 12(1): 7-13
    [67]夏和生,王琪.聚合物纳米材料研究进展.化学研究与应用, 2002, 14(2): 127-132
    [68] Seddon K R. Ionic liquids for clean technology. Chem. Biotechnol., 1997, 2: 351-356
    [69] Holbery J D, Seddon K R. The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates: ionic liquids and ionic liquid crystals. J. Chem. Soc., Dalton Trans., 1999, 13: 2133-2139
    [70]李汝雄.绿色溶剂—离子液体的合成与应用.北京:化学工业出版社, 2004, 10-31
    [71]张锁江,吕兴梅.离子液体—从基础研究到工业应用.北京:科学出版社, 2006, 1-2
    [72] Wasserscheid P, Keim W. Ionic liquids - new“solution”for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39: 3773-3789
    [73] Tait S, Osteryoung R A. Infrared study of ambient– temperature chloroaluminates as a function of melt acidity. Inorg. Chem., 1984, 23: 4352-4360
    [74] Wilkes J S. A short history of ionic liquid– from molten salts to neoteric solvents. Green Chem., 2002, 4(2): 73-80
    [75] Chum H L, Koch V R, Miller L L, et al. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc., 1975, 97(11): 3264-3265
    [76] Wilkes J S, Levisky J A, Wilson R A, et al. Dialkylimidazolium chloroaluminate metals: a new class of room– temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem., 1982. 21(3): 1263-1264
    [77] Hussey C L. Room temperature haloaluminate ionic liquids– novel solvents for transition metal solution chemistry. Pure & Appl. Chem., 1988, 60(12): 1763-1772
    [78] Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun., 1992, (13):965-966
    [79]杨雅立,王晓化,寇元等.不断壮大的离子液体家族.化学进展, 2003, 15(6): 471-476
    [80] Cola A C, Jensen J L, Ntai I, et al. Novel bronsted acidic ionic liquids and their use as dual solvent– catalysts. J. Am. Chem. Soc., 2002, 124: 5962-5963
    [81] Bao W L, Wang Z M, Li Y X. Synthesis of chiral ionic liquids from natural amino acids. J. Org. Chem., 2003, 68: 591-593
    [82] Zhao D B, Fei Z F, Geldbach T J, et al. Nitrile– functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon– carbon coupling reactions. J. Am. Chem. Soc., 2004, 126(48): 876-882
    [83] Paul A, Mandal P K, Samanta A. On the optical properties of the imidazolium ionic liquids.J. Phys. Chem. B, 2005, 109: 9148-9153
    [84] Paul A, Samanta A. Photoinduced electron transfer reaction in room temperature ionic liquids:a combined laser flash photolysis and fluorescence study. J. Phys. Chem. B, 2007, 111: 1957-1962
    [85] Leone A M, Weatherly S C, Williams M E, et al. An ionic liquid form of DNA: redox– active molten salts of nucleic acids. J. Am. Chem.Soc., 2001, 123(2): 218-222
    [86] Huang J, Jiang T, Gao H X, et al. Active and stable catalyst– Pd nanoparticles immobilized onto molecular sieve by ionic liquid as heterogenerous catalyst for solvent– free hydrogenation. Angew. Chem. Int. Ed., 2004, 43: 1397-1399
    [87] Dai L Y, Yu S Y, Shan Y K, et al. Novel room temperature inorganic ionic liquids. Eur. J. Inorg. Chem., 2004, 237-241
    [88]顾彦龙,石峰,邓有全.室温离子液体:一类新型的软介质和功能材料.科学通报, 2004, 49(6):515-521
    [89]王均凤,张锁江,陈慧萍等.离子液体的性质及其在催化反应中的应用.过程工程学报, 2003, 3(2): 177-185
    [90] Zhang S, Sun N, Zhang X, et al. Periodicity and map for discovery of new ionic liquids. Sci. China Ser. B, 2006, 49(2): 103-115
    [91] Zhang J, Zhang S, Dong K, et al. Supported absorption of CO2 by tetrabutylphosphonium amino acids ionic liquids. Chem. Eur. J., 2006, 12:4021-4026
    [92]刘鹰,刘植昌,徐春明等.室温离子液体催化异丁烷-丁烯烷基化的中试研究.化工进展, 2005, 24(6): 656-660
    [93]石家华,孙逊,杨春和等.离子液体研究进展.化学通报, 2002, 4: 243-250
    [94] Sugden S , Wilkins H. The parachor and chemical constitution Part.Ⅻfused metals and salts. J. Chem. Soc., 1929, (26): 1291-1298
    [95] Hirao M, Sugimoto H, Ohno H. Preparation of novel room-temperature molten salts by neutralization of amines. J. Electrochem. Soc., 2000 ,147(11): 4168-4172
    [96] Bonhote P, Dias A P, Papageorigiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35: 1168-1178
    [97] Karodia N, Guise S, Newlands C, et al. Clean catalysis with ionic solvents—phosphonium tosylates for hydroformylation. Chem. Commun., 1998, (21): 2341-2342.
    [98] Wasserscheid P, Keim W. Ionic liquids-new "solutions" for transition metal catalysis. Angew. Chem. Int . Ed., 2000, 39(21): 3772-3789
    [99]李汝雄,王建基.离子液体的合成与应用.化学试剂, 2001, 23(4): 211-215
    [100]李汝雄,王建基.绿色溶剂—离子液体的制备与应用.化工进展, 2002, 21(1): 43-48
    [101]叶天旭,刘金河,杨增光.离子液体的合成与应用研究进展.石油与天然气化工, 2002, 31(5):235-239
    [102] Huddlestou J G, Rogers R D. Room temperature ionic liquids as novel media for clean liquid–liquid extraction. Chem. Commun., 1998, (16): 1765-1766
    [103] Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO2. Nature, 1999, 399: 28-29
    [104] Visser A E, Swatlosk R P, Reichert W M, et al. Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids. Ind. Eng. Chem. Res., 2000, 39: 3596-3604
    [105] Fadeev A G, Meagher M M. Opportunities for ionic liquids in recovery of biofuels. Chem. Commun., 2001, (3): 295-296
    [106] Blanchard L A, Brennecke J F. Recovery of organic products from ionic liquids using supercritical carbon dioxide. Ind. Eng. Chem. Res., 2001, 40: 287-292
    [107] Earle M J, Seddon K R, Adams C J, et al. Friedel–Crafts reactions in room temperature ionic liquids. Chem. Commun., 1998, (19): 2097-2098
    [108] Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. rev., 1999, 99: 2071-2083
    [109] Dyson PJ ,Ellis DJ ,Parker D G,et al. Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chem. Commun., 1999, (1): 25-26
    [110] Wheeler C, West K N, Liotta C L, et al. Ionic liquids as catalytic green solvents for nucleophilic displacement reactions. Chem. Commun., 2001, (10): 887-888
    [111] Knifton J F. Syngas reactions. XIII: The ruthenium melt-catalyzed oxonation of terminal olefins. J. Mol. Catal.,1988, 47: 99-116
    [112] Jaeger D A, Tucker C E. Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron. lett., 1989, 30: 1785-1788
    [113] Gordon C M, Holbery J D, Seddon K R. Ionic liquid crystals: hexafluorophosphate salts. J. Malter. Chem., 1998, 8: 2627-2636
    [114] Carmichael A J, Haddleton D M, Bon S A F, et al. Copper(I) mediated living radical polymerisation in an ionic liquid. Chem. Commun., 2000, (14): 1237-1238
    [115] Zhong J F, He D L, Zhou Z, et al. Electrochemical oxidation behavior of hydroxypivalaldehyde in the ionic liquids. Chin. Chem. Lett., 2008, 19: 319–323
    [116] Zhou Z, He D L, Cui Z D, et al. Electrochemical behavior of CoCl2 in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J. Cent. South Univ. Technol., 2008, 15: 617?621
    [117]潘大为.新型化学修饰电极的构筑及在生物传感和电催化中的应用:[湖南大学博士学位论文].长沙:湖南大学化学化工学院,2007,14-15
    [118] Buzzeo M C, Hardacre C, Compton R G. Use of room temperature ionic liquids in gas sensor design. Anal. Chem., 2004, 76(15): 4583-4588
    [119] Lee Y G, Chou T C. Ionic liquid ethanol sensor. Biosens. Bioelectron., 2005, 20(1): 33-40
    [120] Kanakubo M, Umecky T, Aizawa T, et al. Development of high-pressure electric conductivity cell and its application: Pressure effect of dioxide on electric conductivity of ionic liquid. Electro-chemistry, 2004, 72(10): 703-705
    [121] Kang M G, Ryu K S, Chang S H, et al. A new ionic liquid for a redox electrolyte of dye- sensitized solar cells. ETRI Journal, 2004, 26(6): 647-652
    [122] Mikoshiba S, Murai S, Sumino H, et al. Ionic liquid type dye-sensitized solarcells: Increase in photovoltaic performances by adding a small amount of water. Current Applied Physics, 2005, 5(2): 152-158
    [123] Hagiwara R, Nohira T, Tamba Y, et al. A fluorohydrogenate ionic liquid fuel operating without humidification. Electrochem. Solid State Lett., 2005, 8(4): 231-233
    [124] Sato T, Maruo T, Marukane S, et al. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. J. Power Sour., 2004, 138(1-2): 253-261
    [125] Balducci A, Henderson W A, Simon P, et al. Cycling stability of a hybrid activated carbon/poly(3-methylthiophene) supercapacitor with N-methylpyrrolidinium bis(trifluromethanesulfonyl)imide ionic liquid. Electrochim. Acta, 2005, 50(11): 2233-2237
    [126] Hsiu S I, Sun I W. Electrodeposition behaviour of cadmium telluride from 1-ethyl-3-methylimidazolium chloride terafluoroborate ionic liquid. J. Appl. Electrochem., 2005, 34(10): 1057-1063
    [127] Sell C. Liquid gold. Engineer, 2005, 293(7669): 36-38
    [128] Abbott A P, Capper G, Swain B G, et al. Electropolishing of stainless steel in an ionic liquid. Trans. Institu. Metal Finishing, 2005, 83(1): 51-53
    [129] Pringle J M, Efthimiadis J, Howlett P C, et al. Electrochemical synthesis of polypyrrole in ionic liquids. Polym, 2004, 45: 1447-1453
    [130] Sekiguchi K, Atobe M, Fuchigami T. Electropolymerization of pyrrole in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room temperature ionic liquid. Electrochem. Commun., 2002, 4: 881-885.
    [131] Sekiguchi K, Atobe M, Fuchigami T. Electrooxidative polymerization of aromatic compounds in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room-temperature ionic liquid. J. Electroanal. Chem., 2003, 557: 1-7
    [132] Li M C , Ma C A, Liu B Y, et al. A novel electrolyte 1-ethylimidazolium trifluoroacetate used for electropolymerization of aniline. Electrochem. Commun., 2005, 7: 209-212
    [133] Liu B Y, Xu D Q, Xu Z Y. Electrochemical synthesis of dendritic polyaniline in bronsted acid ionic liquids. Chin. J. Chem., 2005, 23(7): 803-805
    [134] Shi J H, Sun X, Yang C H, et al. Electrochemical synthesis of polythiophene in an ionic liquid. Chin. Chem. Lett., 2002, 13(4): 306-307
    [135]石家华,杨春和,高青雨等.聚噻吩在离子液体中的电化学合成研究.化学物理学报, 2004, 17 (4): 503-507
    [136] Pringle J M, Forsyth M, MacFarlane D R, et al. The influence of the monomer and the ionic liquid on the electrochemical preparation of polythiophene. Polym, 2005 , 46: 2047-2058
    [137] Goldenberg L M, Osteryoung R A. Benzene polymerization in 1-ethyl-3-methylimidazolium chloride-AlCl3 ionic liquid Synth. Met., 1999, 64: 63-68
    [138] Lere-Porte J P, Radi M, Chorro C, et al. Characterization from XPS, FT-IR and Raman spectroscopies of films fo poly(p-phenylene) prepared by electropolymerization of benzene dissolved in ketyl pyridinium chloride-AlCl2 melting salt Synth. Met., 1993, 59(2): 141-149.
    [139] Levi M D, Pisarevskaya E Y. Electrochemical characterisation of the polymer/solution interface for electronically conducting and conventional redox-polymers. Synth. Met., 1993, 55(223): 1377-1381
    [140] Arnautov S A. Electrochemical synthesis of polyphenylene in a new ionic liquid. Synth. Met., 1997, 84: 295-296
    [141] Zein El Abedin S, Borissenko N, Endres F. Electropolymerization of benzene in a room temperature ionic liquid. Electrochem. Commun., 2004, 6: 422-426
    [142]马海兵.离子液体的合成、表征及应用:[山东师范大学硕士学位论文].济南:山东师范大学化学化工学院,2006,40-64
    [143] Yagupolskii Y L, Sokolenko T M, Petko K I, et al. Novel ionic liquids—Imidazolium salts with a difluoromethylene fragment directly bonded to the nitrogen atom. Journal of Fluorine Chemistry, 2005, 126: 669–672
    [144]秦绍清,宋国强,姚培忠.室温离子液体重要中间体的合成研究.江苏工业学院学报, 2003, 15(3): 9-11
    [145] Chen W P, Xu L J, Chatterton C, et al. Palladium catalysed allylation reactions in ionic liquids. Chem. Commun., 1999, (13): 1247-1248
    [146] Chen P Y, Sun I W. Electrochemical study of copper in a basic 1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt. Electrochim. Acta., 1999, 45(3): 441-450
    [147] Earle W J, Mccormac P B, Seddon K R. Diels-Alder reactions in ionic liquids. Green Chem., 1999, 1(1): 23-25
    [148] Doherty A P, Brooks C A. Electrosynthesis in room-temperature ionic liquids: benzaldehyde reduction. Electrochim. Acta, 2004, 49: 3821-3826
    [149] Nanjundiah C, Shimizu K, Osteryoung R A. Electrochemical studies of Fe(II) and Fe(III) in an aluminum chloride-butylpyridinium chloride ionic liquid. J. Electrochem. Soc., 1982, 129(11): 2474-2480
    [150] Marassi R, Chambers J Q, Mamantov G. Electrochemistry of iodine and iodide in chloroaluminate melts. Journal of Electroanalytical Chemistry, 1976, 69(3): 345-359
    [151] Wadhawan J D, Schroder U, Neudeck A, et al. Ionic liquid modified electrodes. Unusual partitioning and diffusion effects of Fe(CN)64?/3? in droplet and thin layer deposits of 1-methyl-3-(2,6-(S)-dimethylocten-2-yl)-imidazolium tetrafluoroborate. Electroanal. Chem., 2000, 493: 75-83
    [152] Zein El Abedin S, Saad A Y, Farag H K, et al. Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures. Electrochim. Acta., 2007, 52(8): 2746-2754
    [153] Mitchell J A, Pitner W R, Hussey C L, et al. Electrodeposition of cobalt and cobait-alumium alloys from a room temperature chloroaluminate molten salt. J. Electrochem. Soc., 1996, 143(11): 3448-3455
    [154] Chen P Y, Sun I W. Electrodeposition of cobalt and zinc-cobalt alloys from a lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Electrochim. Acta., 2001, 46(8): 1169-1177
    [155] Zell C A, Freyland W. In situ STM and STS study of Co and Co-Al alloy electrodeposition from an ionic liquid. Langmuir, 2003, 19: 7445-7450
    [156] Zhao G Y, Jiang T, Han B X, et al. Electrochemical reduction of supercritical carbon dioxide in ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. Journal of Supercritical Fluids, 2004, 32: 287-291
    [157]段淑贞.熔盐化学:原理和应用.北京:冶金工业出版社, 1989, 200
    [158] Nicholson R S, Shain I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem., 1964, 36(4): 706-723
    [159] Nicholson R S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem., 1965, 37(11): 1351-1355
    [160]杨家振,金一,潘伟等.计时电流法测定Fe3+在离子液体BPBF4中的扩散系数.高等学校化学学报,2005, 26: 1146-1148
    [161]何凤荣,王宇,刘冠昆等.二甲基亚砜中Dy和Co的电化学行为.中山大学学报(自然科学版), 2001, 40(6): 42-45
    [162] Gomma G K. Corrosion inhibition of steel by benzotriazole in sulphuric acid. Mater. Chem. Phys., 1998, 55(3): 235-240
    [163] Gomma G K. Influence of copper cation on inhibition of corrosion for steel in presence of benzotriazole in sulfuric acid. Mater. Chem. Phys., 1998, 55(2): 131-138
    [164] Ravichandran R, Nanjundan S, Rajendran N. Effect of benzotriazole derivatives on the corrosion of brass in NaCl solutions. Applied Surface Science, 2004, 236: 241–250
    [165] Kim J J, Kim S K, Bae J U. Investigation of copper deposition in the presence of benzotriazole. Thin Solid Films, 2002, 415: 101–107
    [166] Chen J H, Lin Z C, Chen S, et al. An XPS and BAW sensor study of the structure and real-time growth behaviour of a complex surface film on copper in sodium chloride solutions (pH=9), containing a low concentration of benzotriazole. Electrochim. Acta, 1998, 43(3-4): 265-274
    [167] Downard A J, Pletcher D. The influence of water on the electrodeposition of polypyrrole in acetonitrile. J. Electroanal. Chem., 1986, 206(1-2): 139-145
    [168] Downard A J, Pletcher D. A study of the conditions for the electrodeposition of polythiophen in acetonitrile. J. Electroanal. Chem., 1986, 206(1-2): 147-152
    [169] Gunawardena G, Hills G, Montenegro I, et al. Electrochemical nucleation : Part I. General considerations. J. Electroanal.Chem., 1982, 138(2): 225-239
    [170] Oskam G, Long J G, Natarajan A, et al. Electrochemical deposition of metals onto silicon. J. Phys. D: Appl. Phys., 1998, 31: 1927-1949
    [171] Ivanova Y A, Ivanou D K, Streltsov E A. Electrodeposition of Te onto monocrystalline n- and p-Si(1 0 0) wafers. Electrochim. Acta, 2007, 52(16): 5213-5218
    [172] Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation. Electrochim. Acta, 1983, 28(7): 879-889
    [173] Pringle J M, Forsyth M, MacFarlane D R, et al. The influence of the monomer and the ionic liquid on the electrochemical preparation of polythiophene. Polymer, 2005, 46(7): 2047–2058
    [174] Delamar M, Lacaze P C, Lemiere B, et al. A new method for preparing polysulfones: Electrochemically induced copolymerization of sulfur dioxide and conjugated dienes in liquid SO2. J. Polym. Sci., Polym. Chem., 1982, 20(1): 245-248
    [175] Wang R M, Chai C P, He Y F, et al. Preparation and catalytic activity of polymer bound benzotriazole copper complexes. European Polymer Journal, 1999, 35(11): 2051-2055
    [176] Lerner N R. ESR and chemical study of p-polyphenylene formed by using an AlCl3-CuCl2 catalyst. J. Polym. Sci., Polym. Chem. 1974, 12(11): 2477-2495
    [177] Poling G W. Reflection infra-red studies of films formed by benzotriazole on Cu. Corr. Sei., 1970, 10(5): 359-370
    [178] Li Z, Du J, Zhang J, et al. Synthesis of single crystal BaMoO4 nanofibers in CTAB reverse microemulsions. Mater. Lett., 2005, 59(1): 64-68
    [179] Zhou H, Peng C, Jiao S, et al. Electrodeposition of nanoscaled nickel in a reverse microemulsion. Electrochem. Commun., 2006, 8(7): 1142-1146
    [180] Gao Y, Han S, Han B, et al. TX-100/Water/1-Butyl-3-methylimidazolium Hexafluorophosphate Microemulsions. Langmuir, 2005, 21(13): 5681-5684
    [181] Gao Y, Zheng L, Zhang J, et al. Conjugated polyelectrolytes with pH-dependent conformations and optical properties. Langmuir, 2007, 23(14): 7760-7767
    [182] Fu C, Zhou H, Peng W, et al. Comparison of electrodeposition of silver in ionic liquid microemulsions. Electrochem. Commun., 2008, 10(5): 806-809
    [183] LaiY Q, Li J, Li J, et al. Preparation and electrochemical characterization of C/PANI composite electrode materials. Journal of Central South University of Technology, 2006, 13(4): 353?359
    [184]赖延清,卢海,张治安等.聚苯胺纳米纤维的界面聚合法合成及电化学电容行为.中南大学学报(自然科学版), 2007, 38(6): 1110-1114
    [185] Wang YG, Li HQ, Xia YY. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater., 2006, 18: 2619-2623.
    [186] Ganesan R, Shanmugam S, Gedanken A. Pulsed sonoelectrochemical synthesis of polyaniline nanoparticles and their capacitance properties. Synth. Met., 2008, 158: 848-853
    [187] Zhang X, Chan-Yu-King R, Jose A, et al. Nanofibers of polyaniline synthesized by interfacial polymerization. Synth. Met., 2004, 145: 23-29
    [188] Lewandowski A, Swiderska A. Electrochemical capacitors with polymer electrolytes based on ionic liquids. Solid State Ionics, 2003, 161(3-4): 243-249
    [189] Srinivasan V, Weidner J W. Studies on the capacitance of nickel oxide films:effect of heating temperature and electrolyte concentration. J. Electrochem. Soc., 2000, 147: 880-885
    [190] Kinyanjui J M, Wijeratne N R, Hanks J, et al. Chemical and electrochemical synthesis of polyaniline/platinum composites. Electrochim. Acta, 2006, 51: 2825–2835
    [191] Zhou H H, Ning X H, Li S L, et al. Synthesis of polyaniline-silver nanocomposite film by unsymmetrical square wave current method. Thin Solid Films, 2006, 510: 164–168
    [192]王俊香,唐薰,兰伟.脉冲电流法制备聚苯胺/纳米银复合膜.化工新型材料, 2004, 32: 31-34
    [193] Kang Y O, Choi S H, Gopalan A, et al. Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared byγ-ray irradiation. J. Non-Cryst. Solids, 2006, 352(5): 463-468
    [194] Drury A, Chaure S, Kroll M, et al. Fabrication and characterization of silver/polyaniline composite nanowires in porous anodic alumina. Chem. Mater., 2007, 19: 4252-4258
    [195] Vorotyntsev M A, Badiali J P, Inzelt G. Electrochemical impedance spectroscopy of thin films with two mobile charge carriers: effects of the interfacial charging. J. Electroanal.Chem., 1999, 472(1): 7-19
    [196] Tarola A, Dini D, Salatelli E, et al. Electrochemical impedance spectroscopy of polyalkylterthiophenes. Electrochim. Acta, 1999, 44(24): 4189-4193
    [197] Chen W C, Wen T C, Teng H S. Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim. Acta, 2003, 48(6): 641-649
    [198] Cammarata L, Kazarian S G, Salter P A, et al. Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys., 2001, 3: 5192-5200
    [199]井新利,郑茂盛,蓝立文.反向微乳液法合成导电聚苯胺纳米粒子.高分子材料科学与工程, 2000, 16(2): 23-25
    [200]卢泽湘.咪唑类离子液体的合成、表征及应用的研究:[湘潭大学硕士学位论文].湘潭:湘潭大学化工学院, 2004, 17-20
    [201] Han D X, Chu Y, Yang L K, et al. Reversed micelle polymerization: a new route for the synthesis of DBSA–polyaniline nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 259(1-3): 3179-187
    [202]蒋晶,高德淑,李朝晖等.原位聚合制备的离子液体/聚合物电解质的研究.高等学校化学学报, 2006, 27(7): 1319-1322
    [203] Li J, Fang K, Qiu H, et al. Micromorphology and electrical property of the HCl-doped and DBSA-doped polyanilines. Synthetic Metals. 2004, 142(1-3): 107-111
    [204] Rao P S, Subrahmanya S, Sathyanarayana D N. Inverse emulsion polymerization: A new route for the synthesis of conducting polyaniline. Synthetic Metals, 2002, 128(3): 311-316
    [205] Lee Y H, Ju Y W, Jung H R, et al. Preparation of polypyrrole/sulfonated-SEBS conducting composites through an inverted emulsion pathway. Journal of Industrial and Engineering Chemistry, 2005, 11(4): 550-555
    [206]石家华,杨春和,高青雨等.聚噻吩在离子液体中的电化学合成研究.化学物理学报, 2004, 17(4): 503-507
    [207] Gao H, Jiang T, Han B, et al. Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles. Polymer, 2004, 45: 3017–3019
    [208] Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J. Am. Chem. Soc., 2004, 126(10): 3026-3027
    [209] Paul A, Mandal P K, Samanta A. How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6]. Chem. Phys. Lett., 2005, 402(46): 375-379
    [210] Samanta A. Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. J. Phys. Chem. B, 2006, 110(28): 13704-13716
    [211] Marcinek A, Zielonka J, Geübicki J, et al. Ionic liquids: novel media for characterization of radical ions. J. Phys. Chem. A, 2001, 105(40): 9305-9309
    [212] Behar D, Gonzalez C, Neta P. Reaction kinetics in ionic liquids: pulse radiolysis studies of 1-butyl-3-methylimidazolium salts. J. Phys. Chem. A, 2001, 105(32): 7607-7614
    [213] Behar D, Neta P, Schultheisz C. Reaction kinetics in ionic liquids as studied by pulse radiolysis: redox reactions in the solvents methyltributylammonium bis(trifluoromethylsulfonyl)imide and N-butylpyridinium tetrafluoroborate. J. Phys. Chem. A, 2002, 106(13): 3139-3147
    [214] Vieira R C, Falvey D E. Photoinduced electron-transfer reactions in two room-temperature ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B, 2007, 111(18): 5023-5029
    [215] Fletcher K A, Pandey S, Storey I K, et al. Selective fluorescence quenching of polycyclic aromatic hydrocarbons by nitromethane within room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Anal. Chim. Acta, 2002, 453(1): 89-96
    [216] Alvaro M, Ferrer B, Garcia H, et al. Screening of an ionic liquid as medium for photochemical reactions. Chem. Phys. Let., 2002, 362(5-6): 435-440
    [217] Subramanian B, Yang Q L, Yang Q J, et al. Photodegradation of pentachlorophenol in room temperature ionic liquids. J. Photoch. Photobio. A, 2007, 192(2-3): 114-121
    [218] de Barros R A, de Azevedo W M, de Aguiar F M. Photo-induced polymerization of polyaniline. Mater. Charact., 2003, 50: 131-134
    [219] Kobayashi N, Teshima K, Hirohashi R. Conducting polymer image formation with photoinduced electron transfer reaction. J. Mater. Chem., 1998, 8: 497-506
    [220] Kim Y, Teshima K, Kobayashi N. Improvement of reversible photoelectrochromic reaction of polyaniline in polyelectrolyte composite film with the dichloroethane solution system. Electrochim. Acta, 2000, 45: 1549-1553
    [221] Kim Y, Fukai S, Kobayashi N. Photopolymerization of aniline derivatives in solid state and its application. Synth. Met., 2001, 119: 337-338
    [222] Xia H S, Wang Q. Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem. Mater., 2002, 14(5): 2158-2165
    [223] Wei Y, Hariharan R, Patel S A. Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules, 1990, 23(3): 758-764
    [224] Sasaki K, Kaya M, Yano J, et al. Growth mechanism in the electropolymerization of aniline and p-aminodiphenylamine. J. Electroanal. Chem., 1986, 215(1-2): 401-407
    [225] Genie E M, Lapkowski M. Electrochemical in situ epr evidence of two polaron-bipolaron states in polyaniline. J. Electroanal. Chem., 1987, 236(1-2):199-208
    [226] Gospodinova N, Terlemezyan L. Conducting polymers prepared by oxidative polymerization: polyaniline. Prog. Polym. Sci., 1998, 23(8): 1443-1484

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700