用户名: 密码: 验证码:
关于一些椭圆型方程及方程组的解的存在性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究半线性椭圆型方程及方程组,带电磁位势的非线性Schrodinger方程及Schrodinger-Pooisson方程组的解的存在性.
     本文共分七章:
     在第一章中,我们概述本文所研究问题的背景及国内外研究现状,并简要介绍本文的主要工作及相关的预备知识和一些记号.
     在第二章中,我们研究下述非线性椭圆型方程的非平凡解的存在性.其中Ω是RN中的有界区域,a∈LN/2(Ω),N≥3.f∈C0(Ω×R1,R1)在t=0处是超线性且在t=∞是次临界增长.在某些给定条件下,(S1)具有所谓的环绕几何结构.在不假设Ambrosetti-Rabinowitz条件下,我们证明了(S1)至少有一个非平凡解.我们的结果推广了Miyagaki和Souto文献[103]中的结果,他们考虑a(x)=0的情况,此时(S1)具有山路几何结构.在第三章中,我们应用环绕定理和集中紧原理证明下述半线性椭圆型方程组至少存在一对正解(u,v)∈H1(RN)×H1(RN).这里关于f,g∈C0(RN×R1)的主要假设是:f(x,t)和g(x,t)在t=0处是超线性,在t=+∞是次临界增长,同时f和g满足某种单调性条件.这里我们不假设f或g满足通常的Ambrosetti-Rabinowitz条件.我们将文献[103]中的主要结果从单个方程推广到了方程组.
     在第四章中,我们进一步研究半线性椭圆型方程组(S2).此处f(x,t)和g(x,t)满足一组与第三章不同的条件.应用关于无穷维的强不定的泛函的临界点理论,我们证明了(S2)有一个正的基态解.此外,如果f(x,t)和g(x,t)关于x是周期函数,关于t是奇函数,则(S2)有无穷多个几何不同的解.我们的结果改进了文献[88,89]中的结果.
     在第五章中,我们研究下述带电磁位势的非线性Schrodinger方程其中A(r)=(A1(r),A2(r),…,AN(r))为向量,Aj(r)(j=1,2,…,N)是R+上的实函数,V(r)是R+上的正函数,当N≥3时,1<p<N+2/N-2;当N=1,2时1     在第六章中,我们研究下述带电磁位势的非线性Schrodinger方程其中2<p<2N/N-2,如果N≥3;2<p<+∞,如果N=1,2.ε>0是参数,a(x)是RN上的正的连续函数,A(x)=(A1(x),A2(x),…,AN(x))是向量,Aj(x)(j= 1,2,...,N)是RN上的实函数.我们证明了在某些给定的条件下对任意的正整数m,存在ε(m)>0使得,对任意的0<ε<ε(m),(E2)有一个m-峰的复值解.因此,当ε→0,(E2)有越来越多的多峰复值解.我们的结果推广了Liu和Lin文献[96]中的结果,他们考虑(E2)中A(x)三0的情况.
     在第七章中,我们研究下述非线性Schrodinger-Poisson方程组
     其中K(x)是R3中的正的连续函数,lim K(x)=0,2<p<6,∈>0 |x|→∞为参数.对任意的正整数m,我们证明了存在ε(m)>0使得在某些给定的条件下对任意的0<∈<∈(m),(SP)有一个正的m-峰解.因此当ε→0时,(SP)有越来越多的多峰解.我们的结果推广了文献[96]中关于单个非线性Schrodinger方程的结果.
In this paper, we mainly study the existence of solutions for some semilinear elliptic equations and systems, some nonlinear Schrodinger equations with electro-magnetic fields and nonlinear Schrodinger-Poisson system.
     The thesis consists of seven chapters:
     In Chapter One, we summarize the background of the related problems and state the main results of the present thesis. We also give some preliminary results and notations used in the whole thesis.
     In Chapter Two, we study the existence of a nontrivial solution to the following nonlinear elliptic problem: whereΩis a bounded domain of RN and a∈LN/2(Ω),N≥3,f∈C0(CΩ×(Q×R1,R1) is superlinear at t=0 and subcritical at t=∞. Under suitable conditions, the equation (S1) possesses the so-called linking geometric structure. We prove that the equation (S1) has at least one nontrivial solution without assuming the Ambrosetti-Rabinowitz condition. Our main result extends a recent result of Miyagaki and Souto given in [103] for the equation (S1) with a(x)=0 and possessing the mountain-pass geometric structure.
     In Chapter Three, we prove the existence of at least one positive solution pair (u,v) E Hl(RN)×(RN) to the following semilinear elliptic system
     by using a linking theorem and the concentration-compactness principle. The main conditions we imposed on the nonnegative functionsf, g∈C0(RN×R1) are that, f(x,t) and g(x,t) are superlinear at t=0 as well as at t=+∞, that f and g are subcritical in t and satisfy a kind of monotonic conditions. We mention that we do not assume that f or g satisfies the Ambrosetti-Rabinowitz condition as usual. We generalize the results in [103] from a single equation to the system.
     In Chapter Four, we study the following semilinear elliptic system (S2) further. Here f(x,t) and g(x,t) satisfy some different conditions from Chapter Three. By using critical point theory of strongly indefinite functionals, we obtain a positive ground state solution for (S2). Moreover, if f(x,t) and g(x,t) are periodic in x and odd in t, then (S2) has infinitely many geometrically distinct solutions. We generalize the results in [88,89].
     In Chapter Five, we study the nonlinear Schrodinger equation with electromag-netic fields
     where the vector A(r)=(A1(r), A2(r),…, AN(r)) is such that Aj(r)(j=1,2,…, N) is a real function on R+ and V(r) is a positive function on R+,1<p<N+2/N-2 if N≥3 and 1<p<+∞ifN=1,2. We prove that the equation (E1) has infinitely many non-radial complex-valued solutions under conditions (H1) and (H2). Our main re-sult extends a result of Wei and Yan given in [134] for the equation (S1) with A(y)= 0.
     In Chapter Six, we are concerned with the existence of multi-bump solutions for a nonlinear Schrodinger equations with electromagnetic fields where 2<p<2N/N-2 if N≥3 and 2<p<+∞if N= 1,2 and∈>0 is a parameter. a(x) is a positive continuous function on RN, and A(x) = (A1(x), A2(x),..., AN(x)) is such that Aj(x)(j= 1,2,..., N) is a real function on RN. We prove under some suitable conditions that for any positive integer m, there exists∈(m)> 0 such that, for 0<∈<∈(m), the problem (E2) has an m-bump complex-valued solution. As a result, when∈→0, the equation has more and more multi-bump complex-valued solutions. Our main result extends a result of Liu and Lin given in [96] for the equation (S2) with A(x)≡0.
     In Chapter Seven, we study the following nonlinear Schrodinger-Poisson system
     where K(x) is positive and continuous function in R3, and lim K(x)=0,2<p<6 and (?)>0 is a parameter. For any positive integer m, we prove that there exists (?)(m)>0 such that, for 0<(?)<(?)(m), equation (SP) has an m-bump positive solution under some suitable conditions. As a consequence, equation (SP) has more and more multi-bump positive solutions as (?)→0. We generalize the result in [96] from a single nonlinear Schrodinger equation to the nonlinear Schrodinger-Poisson system.
引文
[1]N. Ackermann, On a periodic Schrodinger equation with nonlocal supcrlinear part, Math. Z.,248 (2004),423-443.
    [2]N. Ackermann, A nonlinear superposition principle and multibump solutions of periodic Schrodinger equations, J. Funct. Anal.,234 (2006),277-320.
    [3]C. O. Alves, P. C. Carriao, O. H. Miyagaki, Multi-bump homoclinic orbits for a class of Hamiltonian systems with superquadratic potential, Houston J. Math., 36 (2010),859-877.
    [4]A. Ambrosetti, On Schrodinger-Poisson systems, Milan J. Math.,76 (2008), 257-274.
    [5]A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on RN. Progress in Mathematics,240. Birkhauser Verlag, Basel,2006.
    [6]A. Ambrosetti, A. Malchiodi, S. Secchi, Multiplicity results for some nonlinear Schrodinger equations with potentials, Arch. Ration. Mech. Anal.,159 (2001), 253-271.
    [7]A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical points the-ory and applications, J. Functional Analysis,14 (1973),349-381.
    [8]A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrodinger-Poisson problem, Commun. Contemp. Math.,10 (2008),391-404.
    [9]G. Arioli, A. Szulkin, A semilinear Schrodinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal.,170 (2003),277-295.
    [10]A. I. Avila, J. F. Yang, On the existence and shape of least energy solutions for some elliptic systems, J. Differential Equations,191 (2003),348-376.
    [11]A. I. Avila, J. F. Yang, Multiple solutions of nonlinear elliptic systems, NoDEA Nonlinear Differential Equations Appl.,12 (2005),459-479.
    [12]A. Azzollini, A. Pomponio, Ground state solutions for the non-linear Schrodinger-Maxwell equations, J. Math. Anal. Appl.,345 (2008),90-108.
    [13]A. Azzollini, A. Pomponio, Ground state solutions for the non-linear Schrodinger-Maxwell equations with a singular potential, arXiv:0706.1679v1[math.AP].
    [14]A. Bahri, P. L. Lions, On the existence of a positive solution of semilinear elliptic equation in unbounded domains, Ann. Inst. H. Poincare Anal. Non Lineaire.,14 (1997),365-413.
    [15]P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and appli-cations to some nonlinear problems with "strong" resonance at infinity, Non-linear Anal.,7 (1983),981-1012.
    [16]T. Bartsch, M. Clapp, Critical point theory for indefinite functionals with sym-metries, J. Funct. Anal.,138 (1996),107-136.
    [17]T. Bartsch, E. N. Dancer, S. J. Peng, On multi-bump semi-classical bound states of nonlinear Schrodinger equations with electromagnetic fields. Adv. Dif-ferential Equations,11 (2006),781-812.
    [18]T. Bartsch, D. G. de Figueiredo, Infinitely many solutions of nonlinear ellip-tic systems, Topics in nonlinear analysis,51-67, Progr. Nonlinear Differential Equations Appl.,35, Birkhauser Basel,1999.
    [19]T. Bartsch, Y. H. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. Nachr.,279 (2006),1267-1288.
    [20]T. Bartsch, S. J. Peng, Semiclassical symmetric Schrodinger equations: exis-tence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys.,58 (2007),778-804.
    [21]V. Benci, G. Cerami, Exitsence of positive solutions of the equation-Δu+ a(x)u= uN+2/N-2 in RN, J. Funct. Anal.,88 (1990),90-117.
    [22]V. Benci, D. Fortunato, An eigenvalue problem for the Schrodinger-Maxwell equations, Topol. Methods Nonlinear Anal.,11 (1998),283-293.
    [23]V. Benci, D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys.,14 (2002),409-420.
    [24]V. Benci, P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math.,52 (1979),241-273.
    [25]R. Benguria, H. Brezis, E. Lieb, The Thomas-Fermi-Von Weizsacker theory of atoms and molecules, Comm. Math. Phys.,79 (1981),167-180
    [26]H. Berestycki, P. L. Lions, Nonlinear scalar field equations,Ⅰ and Ⅱ. Arch. Rational Mech. Anal.,82 (1983),313-375.
    [27]R. Brummelhuis, Exponential decay in the semiclassical limit for eigenfunctions of Schrodinger operators with magnetic fields and potentials which degenerate at infinity, Comm. Partial Differential Equations,16 (1991),1489-1502.
    [28]J. Busca, B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations,163 (2000),41-56.
    [29]J. Byeon, Y. Oshita, Existence of multi-bump standing waves with a critcal fre-quency for nonlinear Schrodinger euqations, Comm. Partial Differential Equa-tions,29 (2004),1877-1904.
    [30]D. M. Cao, H. Heinz, Uniqueness of positive multi-bump bounded states of nonlinear Schrodinger equations, Math. Z.,243 (2003),599-642.
    [31]D. M. Cao, E. S. Noussair, Multi-bump standing waves with a critical frequency for nonlinear Schrodinger equations, J. Differential Equations,203 (2004),292-312.
    [32]D. M. Cao, E. Noussair, S. S. Yan, Solutions with multiple peaks for nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect, A129 (1999),235-264.
    [33]D. M. Cao, S. J. Peng, Multi-bump bound states of Schrodinger equations with a critical frequency, Math. Ann.,336 (2006),925-948.
    [34]D. M. Cao, Z. W. Tang, Existence and uniqueness of multi-bump bound states of nonlinear Schrodinger equations with electromagnetic fields, J. Differential Equations,222 (2006),381-424.
    [35]D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal.,58 (2004), 733-747.
    [36]I. Catto, P. L. Loins, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems, Comm. Partial Differential Equations, 17 (1992),1051-1110.
    [37]G. Cerami, On the existence of eigenvalues for a nonlinear boundary value problem, Ann. Mat. Pura Appl, (4) 124 (1980),161-179.
    [38]G. Cerami, G. Vaira, Positive solutions for some non-autonomous Schrodinger-Poisson systems, J. Differential Equations,248 (2010),521-543.
    [39]K. C. Chang, Q. Y. Lin, Functional analysis, Beijing Univ. Press, Beijing,1987 (in Chinese).
    [40]Z. H. Chen, Y. T. Shen, Y. X. Yao, Some existence results of solutions for p-Laplacian, Acta Math. Sci. Ser. B Engl. Ed.,23B(4) (2003),487-496.
    [41]S. Cingolani, M. Clapp, Intertwining semiclassical bound states to a nonlinear magnetic Schrodinger equation, Nonlinearity,22 (2009),2309-2331.
    [42]S. Cingolani, L. Jeanjean, S. Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions, ESAIM Control Optim. Calc. Var.,15 (2009),653-675.
    [43]S. Cingolani, S. Secchi, Semiclassical limit for nonlinear Schrodinger equations with electromagnetic fields, J. Math. Anal. Appl.,275 (2002),108-130.
    [44]S. Cingolani, S. Secchi, Semiclassical states for NLS equations with magnetic potentials having polynomial growths, J. Math. Phys.,46 (2005),053503,19 pp.
    [45]P. Clement, D. G. de Figueiredo, E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations,17 (1992),923-940.
    [46]G. M. Coclite, A multiplicity result for the Schrodinger-Maxwell equations with negative potential, Ann. Polon. Math.,79 (2002),21-30.
    [47]D. G. Costa, On a class of elliptic systems in RN, Electron, J. Differential Equations,1994,14 pp.
    [48]D. G. Costa, C. A. Magalhaes, Existence results for perturbations of the p-Laplacian, Nonlinear Anal.,24 (1995),409-418.
    [49]D. G. Costa, C. A. Magalhaes, Variational elliptic problems which are non-quadratic at infinity, Nonlinear Anal.,23 (1994),1401-1412.
    [50]D. G. Costa, O. H. Miyagaki, Nontrivial solutions for perturbations of the p-Laplacian on unbounded domians, J. Math. Anal. Appl.,193 (1995),737-755.
    [51]V. Coti Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamil-tonian systems possessing superquadratic potentials, J. Amer. Math. Soc.,4 (1991),693-727.
    [52]V. Coti Zelati, P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on RN, Comm. Pure Appl. Math.,45 (1992),1217-1269.
    [53]T. D' Aprile, D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud.,4 (2004),307-322.
    [54]T. D' Aprile, D. Mugnai, Standing waves in the Maxwell-Schrodinger equation and an optimal configuration problem, Calc. Var. Partial Differential Equa-tions,25 (2006),105-137.
    [55]T. D' Aprile, J. C. Wei, On bound states concentrating on spheres for the Maxwell-Schrodinger equation, SIAM J. Math. Anal.,37 (2005),321-342.
    [56]T. D' Aprile, J. C. Wei, Standing waves in the Maxwell-Schrodinger equation and an optimal configuration problem, Calc. Var. Partial Differential Equa-tions,25 (2006),105-137.
    [57]D. G. de Figueiredo, J. M. do O, B. Ruf, An Orlicz-space approach to super-linear elliptic systems, J. Funct. Anal.,224 (2005),471-496.
    [58]D. G. de Figueiredo, P. L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc.,343 (1994),99-116.
    [59]D. G. de Figueircdo, J. F. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal.,33 (1998),211-234.
    [60]M. del Pino, P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations,4 (1996), 121-137.
    [61]M. del Pino, P. L. Felmer, Semi-classical states for nonlinear Schrodinger equa-tions, J. Funct. Anal.,149 (1997),245-265.
    [62]M. del Pino, P. L. Felmer, Multi-peak bound states for nonlinear Schrodinger equations, Ann. Inst. H. Poincare Anal. Non Lineaire,15 (1998),127-149.
    [63]M. del Pino, P. L. Felmer, Semi-classical states of nonlinear Schrodinger equa-tions:a varational reduction method, Math. Ann.,324 (2002),1-32.
    [64]Y. H. Ding, L. Jeanjean, Homoclinic orbits for a nonperiodic Hamiltonian sys-tem, J. Differential Equations,237 (2007),473-490.
    [65]Y. H. Ding, S. J. Li, Existence of entire solutions for some elliptic systems, Bull. Austral. Math. Soc.,50 (1994) 501-519.
    [66]M. Esteban, P. L. Lions, Stationary solutions of nonlinear Schrodinger equations with an external magnetic field, Partial differential equations and the calculus of variations, Vol. I,401-449, Progr. Nonlinear Differential Equations Appl., 1, Birkhauser Boston, Boston, MA,1989.
    [67]A. Floer, A. Weinstein, Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential, J. Funct. Anal.,69 (1986),397-408.
    [68]C. J. He, G. B. Li, The existence of a nontrivial solution to the p and q-Laplacian problem with nonlinearity asymptotic to up-1 at infinity in RN, Non-linear Anal.,68 (2008),1100-1119.
    [69]B. Helffer, Semiclassical analysis for the Schrodinger operator with magnetic wells, Quasiclassical methods,99-114, IMA Vol. Math. Appl.,95, Springer, New York,1997.
    [70]B. Helffer, On spectral theory for Schrodinger operators with magnetic poten-tials, Spectral and scattering theory and applications,113-141, Adv. Stud. Pure Math.,23, Math. Soc. Japan, Tokyo,1994.
    [71]B. Helffer, J. Sjostrand, The tunnel effect for the Schrodinger equation with magnetic field, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4)14 (1987),625-657.
    [72]J. Hulshof, R. van de Vorst, Differential systems with strongly indefinite vari-ational structure, J. Funct. Anal.,114 (1993),32-58.
    [73]I. Ianni, Solutions of the Schrodinger-Poisson problem concentrating on spheres, II. Existence, Math. Models Methods Appl. Sci.,19 (2009),877-910.
    [74]I. Ianni, G. Vaira, Solutions of the Schrodinger-Poisson problem concentrat-ing on spheres. I. Necessary conditions, Math. Models Methods Appl. Sci.,19 (2009),707-720.
    [75]I. Ianni, G. Vaira, On concentration of positive bound states for the Schrodinger-Poisson problem with potentials, Adv. Nonlinear Stud.,8 (2008), 573-595.
    [76]L. Jeanjean, On the existence of bounded Palais-Smale sequences and applica-tion to a Landesman-Lazer-type problem set on RN, Proc. Roy. Soc. Edinburgh Sect., A 129 (1999),787-809.
    [77]W. Kryszewski, A. Szulkin, An infinite-dimensional Morse theory with appli-cations, Trans. Amer. Math. Soc.,349 (1997),3181-3234.
    [78]W. Kryszewski, A. Szulkin, Generalized linking theorem with an application to a semilinear Schrodinger equation, Adv. Differential Equations,3 (1998), 441-472.
    [79]K. Kurata, Existence and semi-classical limit of the least energy solution to a nonlinear Schrodinger equation with electromagnetic fields, Nonlinear Anal., 41 (2000), Ser. A:Theory Methods,763-778.
    [80]M. K. Kwong, Uniqueness of positive solutions of Δu-u+up=O in RN, Arch. Rational Mech. Anal.,105 (1989),243-266.
    [81]Y. Y. Li, On a singularly perturbed equation with Neumann boundary condi-tion, Comm. Partial Differential Equations,23 (1998),487-545.
    [82]Y. Y. Li, Nonautonomous nonlinear scalar field equations, Indiana Univ. Math. J.,39 (1990),283-301.
    [83]G. B. Li, X. Y. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of p-q-Laplacian type on RN, Nonlinear Anal.,71 (2009),2316-2334.
    [84]G. B. Li, S. J. Peng, C. H. Wang, Infinitely many solutions for nonlinear Schrodinger equations with electromagnetic fields, J. Differential Equations, 251 (2011),3500-3521.
    [85]G. B. Li, S. J. Peng, C. H. Wang, Multi-bump solutions for the nonlinear Schrodinger-Poisson system, J. Math. Phys.,52 (2011),053505,19 pp.
    [86]G. B. Li, S. J. Peng, S. S. Yan, Infinitely many positive solutions for the nonlin-ear Schrodinger-Poisson system, Commun. Contemp. Math.,12 (2010),1069-1092.
    [87]G. B. Li, A. Szulkin, An asymptotically periodic Schroinger equation with indefinite linear part, Commun. Contemp. Math.,4 (2002),763-776.
    [88]G. B. Li, C. H. Wang, The existence of nontrivial solutions to a semilinear elliptic system on RN without the Ambrosetti-Rabinowitz conditionm, Acta Math. Sci. Ser. B Engl. Ed.,30 (2010),1917-1936.
    [89]G. B. Li, J. F. Yang, Asymptotically linear elliptic systems, Comm. Partial Differential Equations,29 (2004),925-954.
    [90]G. B. Li, C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal.,72 (2010),4602-4613.
    [91]G. B. Li, H. S. Zhou, The existence of a positive solution to asymptotically linear scalar field equations, Proc. Roy. Soc. Edinburgh Sect., A 130 (2000), 81-105.
    [92]G. B. Li, H. S. Zhou, Asymptotically linear Dirichlet problem for the p-Laplacian, Nonlinear Anal.,43 (2001), Ser. A:Theory Methods,1043-1055.
    [93]G. B. Li, H. S. Zhou, Multiple solutions to p-Laplacian problems with asymp-totic nonlinearity as up-1 at infinity, J. London Math. Soc., (2) 65 (2002), 123-138.
    [94]G. B. Li, H. S. Zhou, Dirichlet problem of p-Laplacian with nonlinear term f(x,u)-up-1 at infinity, Morse theory, minimax theory and their applications to nonlinear differential equations,77-89, New Stud. Adv. Math.,1, Int. Press, Somerville, MA,2003.
    [95]E. H. Licb, B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advances in Math.,23 (1977),22-116.
    [96]L. S. Lin, Z. L. Liu, Multi-bump solutions and multi-tower solutions for equa-tions on RN, J. Funct. Anal.,257 (2009),485-505.
    [97]L. S. Lin, Z. L. Liu, S. Chen, Multi-bump solutions for a semilinear Schrodinger equation, Indiana Univ. Math. J.,58 (2009),1659-1689.
    [98]P. L. Lions, The concentration-compactness principle in the calculus of varia-tions, The locally compact case. Ⅰ. Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984),109--145.
    [99]P. L. Lions, The concentration-compactness principle in the calculus of varia-tions, The locally compact case. Ⅱ. Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984),223-283.
    [100]P. L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys.,109 (1987),33-97.
    [101]P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor equations, Springer-Verlag, Vienna,1990.
    [102]C. Mercuri, Positive solutions of nonlinear Schrodinger-Poisson systems with radial potentials vanishing at infinity, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.,19 (2008),211-227.
    [103]O. H. Miyagaki, M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations,245 (2008),3628-3638.
    [104]E. S. Noussair, S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. London Math. Soc., (2) 62 (2000),213-227.
    [105]Y. J. Oh, Existence of semiclassical bound states of nonlinear Schrodinger equations with potentials of the class (V)a, Comm. Partial Differential Equa-tions,13 (1988),1499-1519.
    [106]Y. J. Oh, On positive multip-bump bound states nonlinear Schrodinger equa-tions under multiple well potential, Comm. Math. Phys.,131 (1990),223-253.
    [107]A. Pistoia, M. Ramos, Locating the peaks of the least energy solutions to an elliptic system with Dirichlet boundary conditions, NoDEA Nonlinear Differ-ential Equations Appl.,15 (2008),1-23.
    [108]A. Pistoia, M. Ramos, Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions, J. Differential Equations, 201 (2004),160-176.
    [109]P. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential equations, Nonlinear Analysis, pp.161-177. Academic Press, New York,1978.
    [110]P. H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys.,43 (1992),270-291.
    [111]M. Reed, B. Simon, Methods of modern mathematical physics. Ⅳ. Analysis of operators. Academic Press, New York-London,1978.
    [112]D. Ruiz, Semiclassical states for coupled Schrodinger-Maxwell equations:con-centration around a sphere, Math. Models Methods Appl. Sci.,15 (2005),141-164.
    [113]D. Ruiz, The Schrodinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal.,237 (2006),655-674.
    [114]M. Schechter, A variation of the mountain pass lemma and applications, J. London Math. Soc., (2) 44 (1991),491-502.
    [115]M. Schechter, Superlinear elliptic boundary value problems, Manuscripta Math.,86 (1995),253-265.
    [116]M. Schechter, W. Zou, Superlinear problems, Pacific J. Math.,214 (2004), 145-160.
    [117]E. Sere, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z.,209 (1992),27-42.
    [118]B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in RN, Adv. Differential Equations,5 (2000),1445-1464.
    [119]W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys.,55 (1977),149-162.
    [120]C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc., (3) 45 (1982),169-192.
    [121]C. A. Stuart, Magnetic field wave equations for TM-modes in nonlinear optical waveguides, Reaction diffusion systems (Trieste,1995),377-400, Lecture Notes in Pure and Appl. Math.,194, Dekker, New York,1998.
    [122]C. A. Stuart, H. S. Zhou, Applying the mountain pass theorem to an asymp-totically linear elliptic equation on RN, Comm. Partial Differential Equations, 24 (1999),1731-1758.
    [123]C. A. Stuart, H. S. Zhou, A variational problem related to self-trapping of an electromagnetic field, Math. Methods Appl. Sci.,19 (1996),1397-1407.
    [124]C. Sulem, P. L. Sulem, The nonlinear Schrodinger equation. Self-focusing and wave collapse, Applied Mathematical Sciences,139. Springer-Verlag, New York, 1999.
    [125]A. Szulkin, T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal.,257 (2009),3802-3822.
    [126]Z. W. Tang, Multi-bump bound states of nonlinear Schrodinger equations with electromagnetic, fields and critical frequency, J. Differential Equations, 245 (2008),2723-2748.
    [127]Z. W. Tang, Multiplicity of standing wave solutions of nonlinear Schrodinger equations with electromagnetic fields, Z. Angew. Math. Phys.,59 (2008),810-833.
    [128]R. C. A. M. Van der Vorst, Variational identities and applications to differen-tial systems, Arch. Rational Mech. Anal.,116 (1992),375-398.
    [129]X. F. Wang, On concentration of positive bound states of nonlinear Schrodinger equations, Comm. Math. Phys.,153 (1993),229-244.
    [130]Z. Q. Wang, Existence and symmetry of multi-bump solutions for nonlinear Schrodinger equations, J. Differential Equations,159 (1999),102-137.
    [131]L. P. Wang, J. C. Wei, S. S. Yan, A Neumann problem with critical expo-nent in non-convex domain and Lin-Ni's conjecture, Trans. Amer. Math. Soc., 362(2010),4581-4615.
    [132]X. F. Wang, B. Zeng, On concentration of positive bound states of nonlin-ear Schrodinger equations with competing potential functions, SIAM J. Math. Anal.,28 (1997),633-655.
    [133]Z. P. Wang, H. S. Zhou, Positive solution for a nonlinear stationary Schrodinger-Poisson system in R3, Discrete Contin. Dyn. Syst.,18 (2007),809-816.
    [134]J. C. Wei, S. S. Yan, Infinitely many positive solutions for the nonlinear Schrodinger equations in RN, Calc. Var. Partial Differential Equations,37 (2010),423-439.
    [135]J. C. Wei, S. S. Yan, Infinitely many solutions for the prescribed scalar curva-ture problem on SN, J. Funct. Anal.,258 (2010),3048-3081.
    [136]J. C. Wei, S. S. Yan, On a stronger Lazer-McKenna conjecture for Ambrosetti-Prodi type problems, Ann. Sc. Norm. Super. Pisa Cl. Sci., (5) 9 (2010),423-457.
    [137]J. C. Wei, S. S. Yan, Infinitely many positive solutions for an elliptic problem with critical or supercritical growth, J. Math. Pures Appl., (9) 96 (2011),307-333.
    [138]M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhauser Boston, Inc., Boston, MA,1996.
    [139]M. Willem, W. Zou, On a Schroinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J.,52 (2003),109-132.
    [140]J. Yang, X. Zhu, On the existence of nontrivial solution of a quasilinear elliptic boundary value problem for unbounded domains,Ⅰ. Positive mass case. Acta Math. Sci.,7 (1987),341-359.
    [141]J. F. Yang, Nontrivial solutions of semilinear elliptic systems in RN, Electron. J. Differ. Equ. Conf.,6 (2000),343-357.
    [142]F. K. Zhao, L. G. Zhao, Y. H. Ding, Multiple solutions for asymptotically lin-ear elliptic systems, NoDEA Nonlinear Differential Equations Appl.,15 (2008), 673-688.
    [143]C. K. Zhong, X. L. Fan, W. Y. Cheng, An introduction to nonlinear functional analysis, Lanzhou Univ. Press, Lanzhuo,1998.
    [144]H. S. Zhou, Positive solution for a semilinear elliptic equation which is almost linear at infinity, Z. Angew. Math. Phys.,49 (1998),896-906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700