用户名: 密码: 验证码:
古龙地区姚家组一段层序地层学与隐蔽油气藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以经典层序地层学和高分辨率层序地层学相结合为理论依据,综合应用地震、测井、录井、岩心等资料,从古生物特征、岩石、矿物特征、地球化学特征、测井曲线响应、地震剖面特征五个方面在古龙地区姚家组一段地层建立了区域上的四级等时层序地层格架。在层序框架控制下的沉积特征和生、储、盖组合特征研究基础上,从构造、沉积、成岩、裂缝、油气的运移聚集几方面与油气藏的关系讨论了古龙地区油气成藏机理,综合分析了成藏主控因素和油气的分布规律,并指明了有利目标。
     层序研究表明古龙地区姚家组一段地层为松辽盆地二三级层序的低位体系域,层序受构造沉降、气候、古地貌等多重控制,可划分完整的三个四级层序SQ1、SQ2、SQ3,层序界面和体系域界面在古生物特征、岩石、矿物特征、地球化学特征、测井曲线响应、地震剖面特征方面均有规律可循。研究区姚一段层序充填表现为多物源——北部、齐齐哈尔、西部物源,沉积呈环带分布——受盆地边缘环带状坡折带影响,三角洲前缘水下分流河道极为发育——受湖盆可容纳空间控制,席状砂砂层薄,错叠连片,但纵向有夹层泥岩,横向多不联通等几点特点。
     构造作用研究表明古龙凹陷周边鼻状构造为有利的油气运聚区,尤其龙南背斜处于常家围子向斜和他拉哈向斜之间,而且隆起幅度明显,因此最有利于油气的聚集,勘探实践也证明了这一点。长垣以西系列鼻状构造紧邻生油凹陷,为油气有利的运移指向,但若无断层、岩性等其它条件构成圈闭,油气只能是路过,而聚集于构造位置更高的大庆长垣背斜圈闭之中。断裂在活动期起到通道作用,通过油源断裂的沟通油气运移至储集层,断裂在静止期起封堵作用,一般在断裂拐弯最大处或者断裂交叉处,断裂泥发育,有利于油气的聚集。
     沉积作用研究表明沉积基准面的变化控制砂体成因类型与空间分布,低水位体系域发育地层超覆圈闭和多类型复合圈闭,水进体系域发育复合岩性圈闭、岩性尖灭圈闭、透镜体圈闭,高位体系域发育岩性上倾尖灭圈闭和透镜体圈闭。在层序地层格架中,三个体系域均可发育有利的储集层,但它们在形成油气藏时的作用和地位却存在着较大的差异。盆地边缘斜坡带发育的坡折区有利于形成地层超覆油气藏、地层不整合油气藏和构造尖灭油气藏;坡折带之下盆地中心部位,有利于形成多类型复合岩性圈闭;研究区南部有利于形成砂岩透镜体岩性圈闭带。
     成岩作用研究表明本地区次生孔隙形成的主控因素为有机质热解生成有机酸和碳酸溶蚀及大气水淋滤作用,并预测古龙凹陷是次生孔隙发育区。
     裂缝成因研究表明新站地区储层裂缝主要为构造裂缝,沉积作用控制下的形成的夹于泥岩中的薄砂层是裂缝形成的岩性基础,在区域构造背景下该区的特定构造演化的作用下,最终导致了新站地区葡萄花油层形成裂缝型储层的特征,储层超压的存在是裂缝形成不容忽视的因素。
     油气运移聚集的主控分析研究表明超压和浮力作用(动力)与毛细管阻力作用(阻力)双重作用下对油气水运移的影响是向斜低孔低渗滞留油藏纯油、向斜斜坡区中孔低渗半滞留油藏油水同层和构造高部位中孔中渗油水重力分异的关键。
     通过以上古龙地区油气藏形成机理研究可以看出控制本区油藏类型、油气分布的主要因素有四个方面:1)砂体类型及空间叠置决定了古龙地区油藏的空间展布及石油充满程度;2)储层类型对油气的控制作用;3)构造类型及所处位置对油气的控制作用;4)断层排列及演化对油气的控制作用。将古龙凹陷姚一段葡萄花油层由凹陷周边到凹陷内划分为四个油藏带即鼻状构造油藏带、他拉哈-英台构造-岩性复合油藏带、古龙-茂兴向斜区复杂岩性油藏带和凹陷斜坡区上倾尖灭-断层岩性油藏带,并指明了有利的地层-岩性有利目标。
Adopting the classic and high-solution sequence stratigraphy as theoretical basis, this dissertation uses the seismic, well log, geologic log and core data to establish four-order regional chronostratigraphic framework by the characteristics of palaeotology, petrology, mineralogy, geochemistry, well logging response and seismic section in K2y1 in Gulong Region. Based on the study of sedimentary feature and source-reservoir-cap rock association within sequence framework, the dissertation discusses the formation mechanism of oil and gas reservoir through the relationship between the structure, sedimentary, diagenesis, fracture, migration and the reservoir, and comprehensively analyzes the main controlling factors of reservoir formation and petroleum distribution, and points to the favorable targets.
     Sequence research shows that the K2y1 layer in Gulong Region belongs to the LST (Lower System Tract) 2nd and/or 3rd-order sequence in Songliao Basin, which is controlled by tectonic subsidence, palaeoclimate and palaeogeomorphology etc. and can be divided into three 4th-order sequences SQ1, SQ2, SQ3, and the sequence boundary and system boundary can be determined by palaetologic, petrologic, mineral, geochemical, well logging response and seismic section features. The K2y1 sequence in research zone is filled by multi-provenance from the north, Qiqihaer and the west, the ring distribution of deposits is controlled by the ring slope-break zone at the edge of the basin. The underwater distributary channels of delta front are very well developed which is controlled by the accommodation of the lacustrine basin, but the thin blanket sands are almost unconnected laterally with interlayered mudstone vertically.
     Structure research shows that the nosing structures around Gulong Sag are the most favorable zone for oil and gas migration and accumulation, especially Longnan Anticline, located between Changjiaweizi Syncline and Talaha Syncline with high uplift, is favorable to the petroleum migration and accumulation, which has been confirmed by the exploration practices. A series of nosing structures on the west of Daqing Placanticline are close to the petroleum generative depression and considered as the favorable migration direction, but if there are not necessary factors forming the traps, such as fault and lithology, the oil and gas will pass by these nosing structures and accumulates in the structure traps upon the higher placanticline. The fracture serves as the channel in active period through which the oil and gas can migrate from the source rock to the reservoir, vise versa in repose period. Fault clay in the fracture turning and/ or in the intersection of fractures is favorable to the oil and gas accumulation.
     Sedimentary research shows that the change of base level of deposition controls the genetic type of sand bodies and their distribution in space, and that in LST develop stratigraphic overlap trap and sorts of combination traps, and in TST (Transgressive System Tract) develop composite lithologic trap, lithologic pinchout trap and lens trap, and in HST (High System Tract) lithologic upward pinchout trap and lens trap. Of all the three system tracts in the sequence stratigraphic framework develop the favorable reservoir, but they play different roles during the process of oil and gas reservoir formation. In the slope-break zone at the edge of basin is prone to form the stratigraphic overlap reservoir, stratigraphic unconformity reservoir and structural pinchout reservoir, while in the center of basin below the slope-break zone develop types of composite lithologic traps and in south of the research zone is the lithologic trap belt composed of sand bodies.
     Diagenesis research shows that the main controlling factors of secondary porosity in this region are the organic acid generated from organic pyrolysis, carbon acid corrosion and meteoricwater eluviation. Based on the result the dissertation predicts that Gulong Sag is the secondary porosity development area.
     Fracture research shows that in Xinzhan Region reservoir fracture is structure fracture, and that under the control of deposition the thin sand interlayer within mudstone is the lithologic basis for fracture formation, and that in the tectonic setting the special structural evolution leads to the fractured reservoir formation in Putaohua oil-bearing layer in Xinzhan Region, reservoir overpressure is another important factor in fracture formation.
     By analyzing the main controlling factors of oil and gas migration and accumulation, the dissertation considers that overpressure + buoyancy (driving force) and capillary force (resistance force) are the key in the migration of oil, gas and water to the pure oil accumulation in occluded oil reservoir with low porosity and permeability in syncline, the oil-water bearing layer formation in semi- occluded oil reservoir with middle porosity and low permeability in the slope of syncline and gravitational differentiation of oil and water in reservoir with middle porosity and permeability in high structure.
     The above research on the mechanism of oil and gas reservoir formation shows that the main controlling factors of the type of oil and gas reservoir and the distribution of oil and water in space include: (1) the type of sand body and the superposition in space determining the distribution of oil reservoir in space and the degree of oil filling the reservoir in Gulong Region; (2) the type of reservoir; (3) the type of structure and its location; (4) evolution and arrangement of faults. In the end the dissertation divides the K2y1 Putaohua oil-bearing layer in Gulong Sag into four oil reservoir belts from the boundary into the center of the sag—nosing structure reservoir belt, structural-lithologic combination reservoir belt in Talaha-Yingtai Region, complex lithologic reservoir belt in Gulong-Maoxing Syncline and upward pinchout-fault-lithologic reservoir belt in the slope of sag, and also points to the favorable stratigraphic-lithologic targets.
引文
[1]大庆油田石油地质志编辑委员会.中国石油地质志(卷一)-大庆油田[M].北京:石油工业出版社,1993.55-56.
    [2]杨万里,王志武,钟其权等.松辽陆相盆地石油地质[J].北京:石油工业出版社,1985.1~386.
    [3]高瑞祺,萧德铭..松辽及其外围盆地油气勘探新进展[M].北京:石油工业出版社, 1995,1~229.
    [4]陈昭年,陈发景.松辽盆地反转构造[M].北京:地质出版社,1998,1~62
    [5]王永春.松辽盆地南部岩性油藏的形成和分布[M].北京:石油工业出版社,2001.131-177
    [6] Cross T A, Lessenger M A. Sediment volume partitioning:rationale for stratigraphic model evaluation and high resolution stratigraphic correlation[A]. Gradstein F M, Sandvik K O, Milton N J, eds. Sequence Stratigraphy Concepts and Applications[M]. NPF Special Publication, 1998,8:171~195
    [7] Galloway W E. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units[J]: American Association of Petroleum Geologists Bulletin 73,1989a:125~142
    [8] Galloway W E.Genetic stratigraphic sequences in basin II:application to northwest Gull of Mexico Cenozoic basin[J]:.AAPG Bull,1989,73(2):143-154
    [9] Vail P R, Mitchum R M Jr,Todd R G, et al. Seismic stratigraphy and global changes of sea level.In:Payton C E, ed. Seismic stratigraphy-application of hydrocarbon exploration[J]. AAPG Memoir,1977,26:49-212.
    [10] Vail P.R. and M.Michum Jr and S.Thompson III. Seismic stratigraphy and global changes of sea level, part 3: global cycles of relative changes of sea level. In C.E.Payton editor[J]:Seismic stratigraphy application to Hydrocarbon Exploration, AAPG Memoir,1977a, 26: 63-82.
    [11]姜在兴.层序地层学原理及应用[M].北京:石油工业出版社, 1996,18-20.
    [12]薛良清.层序地层学在湖相盆地中的应用探讨[J].石油勘探与开发,1990,17(6):29-34.
    [13]薛良清,Galloway W E.扇三角洲、辫状河三角洲与三角洲体系的分类[J ].地质学报,1991,(4):141 ~152
    [14]王东坡,刘招君,刘立.松辽盆地演化与海平面升降[M].北京:地质出版社,1994
    [15]魏魁生,徐怀大.二连盆地白垩系非海相沉积层序地层学特征[J].地球科学--中国地质大学学报,1994,19(2):181~193
    [16]蔡希源,张明学.陆相盆地层序地层学研究中几个问题的讨论[J].现代地质,1999,13(3):287-290.
    [17]李勇,曾允孚.龙门山前陆盆地充填序列.成都理工学院学报, 1994.21(3):46-55. [18]李思田.层序地层分析与海平面变化研究—进展与争论,地质科技情报,1992.11(4):23~30
    [19]顾家裕.陆相盆地层序地层学格架概念及模式[J].石油勘探与开发,1995,22(4):6~10.
    [20]解习农.断陷盆地构造作用与层序样式[J].地质论评,1996,42(3):398-412.
    [21]池英柳,张万选,张厚福,孙红军.陆相断陷盆地层序成因初探[J].石油学报,1996,17(3):19~25.
    [22]邱中建,龚再升.中国油气勘探[M] ,北京:石油工业出版社, 1999
    [23]李思田,潘元林等.断陷湖盆隐蔽油藏预测及勘探的关键技术——高精度地震探测基础上的层序地层学研究[J],地球科学:中国地质大学学报,2002.27(5):592-598
    [24]姜秀芳,宗国洪等.断裂坡折带低位扇成因及成藏特征[J],石油与天然气地质,2002.23(2): 143~144
    [25]魏志平,唐振兴等.长岭凹陷层序地层分析[J],石油与天然气地质,2002.23(2):170~173
    [26]朱筱敏,况军等.准噶尔盆地东北缘侏罗系含煤岩系层序地层和隐蔽圈闭[J],石油与天然气地质,2002.23(2):121~126
    [27] Vail P R. Audermard F, Bowman S A., Gisner P N., Perez-Cruz C. The stratigraphic signatures of teconics, eustasy and sedimentology-an overview. In: G Einsele, W Ricken, A Seilacher(eds)[J].Cycles and events in stratigraphy. Berlin, Springer-Verlag, 1991.865-943.
    [28]纪友亮,张世奇.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996.1-83.
    [29]大庆油田石油地质志编辑委员会.中国石油地质志(卷一)-大庆油田[M].北京:石油工业出版社,1993.94-105.
    [30]孟鹏,刘立,孙晓明等.微体古生物-层序地层学相结合方法在地层划分中的应用[J].微体古生物学报,2005,22(4):417-424.
    [31]殷鸿福,童金南,1995.层序地层界面与年代地层界线的关系[J].科学通报,40(5):539-54
    [32]殷鸿福,童金南,张克信等,1997.为层序地层学服务的生态地层学研究[J].中国科学(D辑),27(2):155-163
    [33]谢寅符,李洪奇等井资料高分辨率层序地层学[J].地球科学-中国地质大学学报,2006,31(2):237-244
    [34] Adams K D, Wesnousky S G.. The lake Lahontan highstand: Age, surficial characteristics,soil development,and regionalshoreline correlation [J]. Geomorphology, 1999, 30: 377-383.
    [35] Clemmense Lars B, Kent D V, Jenkins Jr F A. A late Triassic lake system in East Greenland: Facies, deposition cycles andpalaeoclimate [J]. Palaeogeo., Palaeoc., Palaeoe., 1998, 140: 149-150.
    [36] Duchanfour P. Pedology [M]. London: Allen and Unwin, 1982, 448-449.
    [37] Gardner T W, Willians E G, Holbrook P W. Pedogenesis ofsome Pennsylvanian underclays, groud-water, topographic andtectonic controls [R]. Geological Society of America Special Pa-per, 1998, 216: 81-101.
    [38] Hanneman D L, Wideman C J, Halvorson J W. Calcic pale-osols: their use in subsurface stratigraphy [J]. Am. Assoc. Pet.Geol. Bull, 1994, 78: 1 360-1 371.
    [39] Koch P L, Zachos J C, Gingerich P D. Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary [J]. Nature, 1992, 358, 319-322.
    [40] Kraus M J. Paleosol in clastic sedimentary rocks: Their geologic applications [J]. Earth-science Reviews, 1999, 47: 41-70.
    [41] Mack G H, James W C, Monger H C. Classification of pale-osols [J]. Geol. Soc. Am. Bull., 1993, 105: 129-136.
    [40]魏魁生,徐怀大.华北典型箕状断陷盆地层序地层学模式及其与油气赋存关系[J].地球科学,1993,18(2):139~149
    [42] Mack G H, James W C. Paleoclimate and global distribution of paleosols [J]. The Journal of Geology, 1994, 102: 360-365.
    [43] McCarthy Paul J, Plint A Guy. Recognition of interfluve se-quence boundaries:Intergrating paleopedology and sequence stratigraphy [J]. Geology, 1998, 26 (5): 387-388.
    [44] Neltletion W D, Wysocki D A. Paleosol classification: Problems and solutions [J]. Catena, 2000, 41: 61-62.
    [45]魏钦廉,伊海生,肖玲.陆源碎屑岩中的古土壤在地层分析中的应用[J].古地理学报,2006,8(2)211-218
    [46]欧阳自远.世纪之交矿物学岩石学地球化学的回顾与展望[M].北京:原子能出版社,1998: 373-378
    [47]李美俊,李思田等.层序地层地球化学及其在油气勘探中的作用[J].地学前缘,2005,12(3)219-226.
    [48]李美俊,周东升.层序地层地球化学-地球化学研究的新进展[J].石油实验地质,2003,25(5)488-491.
    [49]田景春,陈高武等.沉积地球化学在层序地层分析中的应用[J].成都理工大学学报,2006,33(1):30-35
    [50]赵俊青,纪友亮,张善文.地球化学在高分辨率层序界面识别中的应用[J].石油与天然气地质,2003,24(3):264-273.
    [51]赵俊青,纪友亮,张善文.识别陆相层序界面的地球化学方法[J].新疆石油地质,2004,25(1)37-40.
    [52] BEST J, FIELDING C, JARVIS I, et al.Report of the edi-tors[J].Sedimentology, 2003, 50: 619-622.
    [53]鲁洪波,姜在兴.稀土元素地球化学分析在岩相古地理研究中的应用[J],石油大学学报(自然科学版),1999,23(1)6-9.
    [54] Hamilton D S, et al. Utility of Coal Seams as Genetic Stratigraphic Sequence Boundaries in Nonmarine Basins:An Example From the Gunnedah Basin,Australia[J].AAPG Bulletin, 1994,78(2):267-286
    [55] Hendrix M S, et al. Sedimentology Organic Geochemistry and Petroleum Potential of Jurassic Coal Measures:Tarim,Junggar and Turpan Basins,Northwest China [J].AAPG Bul-letin,1995,7(7):929-959
    [56] Stephen Creaney and Passey Q R. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework[J]. AAPG Bulletin, 1993,77(3):386-401.
    [57]杨玉峰,王占国,张维琴.松辽盆地湖相泥岩地层有机碳分布特征及层序分析[J].沉积学报,2003,21(2)340-344
    [58]柳成志.齐家—古龙地区葡萄花油层层序特征及隐蔽油气藏预测[J].2006
    [59]邓宏文,王洪亮,宁宁.沉积物体积分配原理-高分辨率层序地层学的理论基础[J].地学前缘,2000,7(4):305~313.
    [60]邓宏文,王洪亮等.层序地层地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177~184.
    [61]池英柳.可容空间概念在陆相断陷盆地层序分析中的应用-以渤海湾盆地下第三系为例[J].沉积学报,1998,16(4):8~13.
    [62]冯有良,李思田,解习农.陆相断陷盆地层序形成动力学及层序地层模式[J].地学前缘,2000,7(3):119~131.
    [63] Bathurst R G C. Carbonate Sedimentary and Their Diagenesis [M]. Amsterdam: Elsevier,1971.
    [64] Blatt H, Middleten G V, Murray R C. Origin of Sedimentary Rocks[M]. EnglewoodCliffs, N J, Prentice-Hall, 1972. 634.
    [65] Brakenridge G R. Geology and global change. Geo-times, 1992, (5): 45-60
    [66] Fyfe W S. Towards the wide use of planet earth: the challenge to world society [J]: Geol Soc Japan, 1993, 9(1): 173-190
    [67] GROTZINGER J P, WATTERS W A, KNOLL A H. Calci-fied metazoans in thrombolite-stromatolite reefs of the termi-nal Proterozoic Nama Group, Namibia [J].Paleobiology,2000, 26: 334-359.
    [68] Keith M L.Geodynamics and mantle flow: an altenative earth model [J]. Earth Sco Rev, 1993, 33(3-4): 141-147
    [69] Oliver J. Solid earth science during the 21th century.EOS, 1991, 72(11): 172-190
    [70] Pettijohn F J, Potter P E, Siever R. Sand and Sandstone[M].New York: Springer-Verlag, 1972.
    [71] Reading H G. Sedimentary Environments and Facies[M]. Ox-ford-Boston: Blackwell, 1978.
    [72] Reineck H E, Singh I B. Genesis of laminated sand and graded rhythmites in stome-sand layers of shelf mud[J].Sedimen-tology,1973, 18, 123-128.
    [73] Seibold E. Five trends in earth science[M]. Episodes, 1988,11(2): 120-142.
    [74] Visher G S. Use of vertical profile in environment reconstruction [J].AAPG, 1965, 49:41-61.
    [75]何起祥.沉积地球科学的历史回顾与展望[J].沉积学报,2003,21(1): 10-18.
    [76]李思田,沉积盆地的动力学分析-盆地研究领域的主要趋向[J].地学前缘,1995,2(3~4)1-8
    [77]刘宝珺,中国沉积学的回顾和展望[J].矿物岩石2001(2)1-7.
    [78]孙枢.中国沉积学的今后发展:若干思考与建议[J].地学前缘,2005,12(2):3-10.
    [79]孙枢,李思田,王成善.沉积盆地研究的基本趋向和对我国今后研究的设想[A].
    [80]于兴河,郑秀娟,沉积学的发展历程与未来展望[J].地球科学进展, 2004,19(2)173-182
    [81]曾允孚覃建雄沉积学发展现状与前瞻。成都理工学院学报1999,26(1)1-7
    [82]李瑞,侯哲国,李能根.测井-井旁地震道约束反演合成记录[J].测井技术,1997,21(1):46-49
    [83]李晓松,赵占银,李春雷等.三维地震资料解释技术研究及实例.见:中国石油天然气股份有限公司勘探与生产分公司编.地震资料解释新技术应用成果交流会论文集[J].北京:石油工业出版社,2001.153-161
    [84]石万忠,陈开远,李梦溪. JASON在东濮凹陷H99块储层预测中的应用[J].地质科技情报,2001,20(2):46-50.
    [85]罗权生,吴永富,陈旋.模型反演技术在浅层储集层研究中的作用[J].新疆石油地质,2000,21(4):331-350.
    [86]刘震,张万选.陆相断陷盆地地震相解释专家系统[J].石油地球物理勘探,1992,27(2): 261-269.
    [87]朱仕军,黄继祥.微地震相分析在沉积相研究中的应用[M]. 1995,17(4):14~19.
    [88]姜秀芳,宗国洪,郭玉新等.断裂坡折带低位扇成因及成藏特征[J].石油与天然气地质,2002,23(2):143~144.
    [89]刘招君,董清水,王嗣敏.陆相层序地层学导论与应用[J].北京:石油工业出版社.2002.138-139,154.
    [90]魏魁生,徐怀大.华北典型箕状断陷盆地层序地层学模式及其与油气赋存关系[J].地球科学,1993,18(2):139~149
    [91]张厚福,曾洪流.陆相断陷盆地区域地震地层学方法探讨[J].石油与天然气地质,1988,9(3):231-241.
    [92] Aplin, A.C., Larter,S.R., Bigge, M.A.,Macleod, G., et al. Confocal microscopy of fluid inclusions reveals fluid- pressure histories of sediments and an unexpect- ed origin of gas condensate.Geology, 2000,28,1047~1050.
    [93] A.Dutkiewicz, H.Volk, J.Ridley, et al.Geochemistry of oil in fluid inclusions in a middle Proterozoic igneous intrusion: implications for the source of hydrocar- bons in crystalline rocks. Organic Geochemistry, 2004, 35:937~957.
    [94] Anderson,R.N, P.Fleming, S.Losh,J.Austin,and R.Woodhams. Gulf of Mexico growth fault seen oil, gas migration pathway[J]: oil & gas journal,1994,V.92(23):97~104.
    [95] Bhullar A G, Karlsen D A,Backer Owe K, et al. Dating reservoir filling-A case history from the North Sea. [J]:Marine and Petroleum Geology,1999,16:581~603.
    [96] Bradford E. Prather.Controls on reservoir distribution, architecture and stratigraphic trapping in slope settings [J]:Marine and Petroleum Geology,2003, 20:529~545
    [97] David C. Jennette,Khaled Fouad,Tim Wawrzyniec.Slope and basin-floor reservoirs from the Miocene and Pliocene of the Veracruz Basin, southeastern Mexico[J] :Marine and Petroleum Geology 2003,20:587~600
    [98] Eadington P J, Hamilton, Bai G P. Fluid history analysis-a new concept for prospect evaluation[J]:APEA Journal, 1991, 282~294.
    [99] Gary J. Hampson, Peter J. Sixsmith, Howard D. Johnson.A sedimentological approach to refining reservoir architecture in a mature hydrocarbon province[J]: the Brent Province, UK North Sea.Marine and Petroleum Geology, 2004, 21 :457–484
    [100] George S C,Krieger F W,Eadington P J,et al.Geochemical comparison of oil-bearing fluid inclusinons and produced oil from the Toro sandstone[J]:Papua New Guinea.Organic Geochemistry,1997, 26:155~173.
    [101] George S C,Lisk M,Summons R E,et al.Constraining the oil charge history of the South Pepper oil field from the analysis of oil bearing fluid inclusions [J]:Organic Geochemistry,1998,29:631~648.
    [102] George S C,Ruble T E,Dutkiewicz A,et al.Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours[J]:Applied Geochemistry,2001,16:451~473.
    [103]沈守文,彭大钧,颜其彬等.试论隐蔽油气藏的分类及勘探思路[J].石油学报,2000,21(1): 16~22
    [104]卢双舫,刘新颖,王振平,王跃文.松辽盆地深层剥蚀量探讨及其意义[J].大庆石油地质与开发,2005,24 (01):20-22.
    [105]杨万里等.松辽陆相盆地石油地质[M].石油工业出版社.1985
    [106]王睿勇,周文,吴庆余等.聚胞藻热模拟产烃研究[J],南京大学学报(自然科学版),1999.35(5):525~531
    [107]蒋启贵,王勤,承秋泉,张彩明等.不同组分烃源岩生烃动力学特征浅析[J],石油实验地质,2005,27(5):512~518
    [108]Tissot.B.P., Welte.D.H..Petroleum Formation and Occurrence,Springer-Verlag,Berlin Heidelberg,New York.1978
    [109]黄第藩等.陆相有机质的演化和成烃机理[M].石油工业出版社. 1984
    [110]卢双舫等.海拉尔盆地呼和湖凹陷有机质原始生烃潜力和原始丰度的恢复[J].大庆石油学院学报,1995.19(1).
    [111]刘大锰,金奎励,姚素平.沉积有机质的成烃模拟实验研究[J].地质论评,1995,41(6):544-552.
    [112]史斗,刘文汇,郑军卫.深层气理论分析和深层气潜势研究[J].地球科学进展,2003,18(2)236~244
    [113]刘耀光.松辽盆地深层生油岩评价[J].大庆石油学院学报,1982.4(4)
    [114]庞雄奇等.含油气盆地地史热史生留排烃史数值模拟研究[M].地质出版社.1993.
    [115]庞雄奇.排烃门限控油气理论及其应用[M].石油工业出版社. 1995.
    [116]庞雄奇,李丕龙,金之钧,张善文等.油气成藏门限研究及其在济阳坳陷中的应用[J].石油与天然气地质,2003.24(3)
    [117]卢双舫等.煤岩有机质成油成气热模拟动力学模型的建立及标定[J].地质科学. 1996.
    [118]卢双舫.有机质成烃动力学理论及其应用[M].石油工业出版社. 1996.
    [119]卢双舫,薛海涛,钟宁宁.石油保存下限的化学动力学研究[J].石油勘探与开发,2002.29(6):1~3
    [120]卢双舫,黄第藩,程克明.煤成烃生成、运移模拟实验的固体残样特征及其演化[J].石油勘探与开发,1994.21(3)46~51
    [121]李延均,陈义才,朱江.1997.松辽盆地古龙地区葡萄花油层油气成因与凝析气藏形成分布[J].西南石油学院,19(3).
    [122]肖乾华,李宏伟,李云松.层序地层学原理与方法在隐蔽油气藏勘探中的应用[J].断块油气田,1998,5(2):6-9
    [123]薛良清.湖相盆地中的层序、体系域与隐蔽油气藏[J].石油与天然气地质,2002,23(2):113~120
    [124]查明,陈发景,张一伟.压实流盆地流体势与油气运聚关系.现代地质[M],1996,10(1):106~109.
    [125]陈荷立.油气运移研究的有效途径.石油与天然气地质[M],1995,16(2):126~130
    [126]付广等.不整合面在油气藏形成中的作用[J].大庆石油学院学报.2001,25(1):1~4.
    [127]付广等.断裂输导系统及其组合对油气成藏的控制作用[J].世界地质,2001,20(4):344~349.
    [128]付广等,油气运移输导系统及其对成藏的控制[J].新疆石油地质,2001,2,22(1):24~25.
    [129]刘震,张善文,赵阳等.东营凹陷南斜坡输导体系发育特征[J].石油勘探与开发, 2003, 30(3):84~86.
    [130]庞雄奇,李丕龙,张善文.陆相断陷盆地相-势耦合控藏作用及其基本模式[J].石油与天然气地质,2007,28(5):641-663
    [131]杨占龙,陈启林,郭精义,流体势分析技术在岩性油气藏勘探中的应用[J],石油实验地质,2007,29(6)623-627
    [132]吴河勇,梁晓东,向才富,王跃文.松辽盆地向斜油藏特征及成藏机理探讨.中国科学D辑[J]:地球科学,2007,37(2):185-191
    [133]张小莉,查明,王鹏.单砂体高部位油水倒置分布的成因机制[J].沉积学报,2006,24(1):148-152
    [134]陈冬霞,庞雄奇,姜振学等.透镜体油气成藏机理研究现状与发展趋势.地球科学进展[M], 2000,17(6):871~874.
    [135]高永进,邱桂强,陈冬霞等.牛庄洼陷岩性油藏含油气性及主控因素[J].石油与天然气地质,2004,25(3):284~287.
    [136]庞雄奇,陈冬霞,李丕龙等.砂岩透镜体成藏门限及控油气作用机理[J].石油学报,2003,24(3):38~41.
    [137]邱楠生,万晓龙,金之钧等.渗透率级差对透镜状砂体成藏的控制模式[J].石油勘探与开发, 2003,30(3):48~52.
    [138]袁选俊,薛良清,池英柳等坳陷型湖盆层序地层特征与隐蔽油气藏勘探-以松辽盆地为例[J],石油学报,2003,24(3)11-15
    [139]戴金星,裴锡古,戚厚发主编.中国天然气地质学(卷一).北京:石油工业出版社,1992.
    [140]杜金虎.二连盆地隐蔽油藏勘探[M].北京:石油工业出版社,2003. [141]高瑞祺,赵政璋.中国油气新区勘探(第三卷)渤海湾盆地隐蔽油藏勘探[M].北京:石油工业出版社,2001.
    [142]李丕龙,庞雄奇等.陆相断陷盆地隐蔽油气藏形成-以济阳坳陷为例[J].北京:石油工业出版社,2004.
    [143]林畅松,潘元林等.“构造坡折带”-断陷盆地层序分析和油气预测的重要概念[J].地球科学,2000,25(3):260~266.
    [144]薛叔浩,刘雯林,薛良清等.湖盆沉积地质与油气勘探[J].北京:石油工业出版社,2002. 476-482,491-494.
    [145]池秋鄂.层序地层学原理及在油气勘探开发中的应用[M].北京:中国石油天然气集团公司石油经济和信息研究中心,1999:43~78.
    [146]高瑞祺,赵传本,郑玉龙,宋之琛,黄嫔,王鑫甫.松辽盆地深层早白垩世孢粉组合研究[J].古生物学报,1994,33(6):659-675.
    [147]顾家裕.层序地层学回顾与展望[J].海相油气地质[J],2001,6(4):15~26.
    [148]贾承造,刘德来,赵文智等.层序地层学研究新进展[J].石油勘探与开发,2002,29(5):1~4.
    [149]纪友亮,张世奇等.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996.31-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700