用户名: 密码: 验证码:
脱落酸调控油菜素甾醇初级信号通路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物激素在共同调节植物生长发育和生理生化过程中发挥重要的作用,但目前对激素互作的分子机制了解甚少。
     油菜素甾醇(brassinosteroids,BRs)是上世纪70年代发现的第六大植物激素,其在植物的很多发育过程中起着重要作用,包括茎和根中的细胞分裂和伸长、光形态建成、生殖发育、叶片衰老、以及对胁迫的反应等。脱落酸(abscisic acid,ABA)作为另一类作用广泛的植物激素,也调控着植物生长发育的诸多方面,包括参与植物的胚胎发育、种子休眠与萌发、气孔关闭、开花时间和果实成熟等生理过程以及植物对胁迫的适应性反应。已有研究表明,BRs和ABA共同调控数百个基因的表达,从而共同调节很多发育和生理过程。同时,已经发现BR的一些突变体具有对ABA反应改变的表型,两者在发芽率上表现出相互拮抗的生理效应。然而,对于两者互作是否通过修饰或介入到初级信号途径中,抑或通过平行或独立的途径起作用,却仍然未知。
     本研究工作主要包括:首先利用BR相关的多种遗传材料,系统研究了BRs和ABA两类激素在调节种子发芽率上具有相互拮抗的作用,为研究信号互作奠定生理基础。接着利用分子(DWF4和CPD转录水平)和生化标记(BES1的磷酸化状态)并结合ABA合成缺失突变体,证明外源的ABA能快速抑制BR的信号输出。再者,研究发现BR受体BRI1的强突变体bri1-116中,ABA仍能调节BR的信号输出;且在BKI1-YFP过表达系中,BKI1-YFP的亚细胞定位也不受ABA的影响,已知油菜素内酯(BRs中最具活性的一种形式)能促使BKI1-YFP从膜上解离;而用LiCl处理使下游组分BIN2失活却抑制了ABA对BR信号输出的调节。最后,利用ABA早期信号突变体abi1和abi2,得出ABA调控BR的初级信号转导途径主要依赖于ABA信号组分ABI2,部分依赖于ABI1。因此我们提出了BRs与ABA信号互作的模型,ABA对BR初级信号转导途径的调节界定在受体BRI复合体的下游,BIN2(含BIN2)的上游。这一模型有力的解释了为什么受BR调节的基因有一大部分也受到了ABA的调节,同时为BRs和ABA信号的互作提供了新的分子机制。
     本研究通过遗传、细胞和分子水平的系统深入研究,确定了ABA影响BR的初级信号输出,且界定了信号互作的区域,同时形成了ABA对BR信号输出影响的初步模型。本研究从分子层面有力的支持了BRs和ABA在生理实验中的拮抗效应,具有重要的理论意义。同时为研究激素互作提供了很好的范例,也为植物更好的适应环境提供理论依据和目标基因。
Phytohormones play essential roles in coordinately regulating a large array of developmental processes.Studies have revealed that brassinosteroids and abscisic acid interact to regulate hundreds of genes'expression,governing many biological processes.However,whether their interaction is through modification or intersection of their primary signaling cascades or by independent or parallel pathways remains a big mystery.
     Using biochemical and molecular markers of brassinosteroid signaling and abscisic acid biosynthetic mutants,we demonstrated that exogenous abscisic acid rapidly inhibits brassinosteroid signaling outputs as indicated by the phosphorylation status of BES1 and brassinosteroid-responsive gene expression.Experiments using a bri1 null-allele,bri1-116,and analysis of subcellular localization of BKI1-YFP further revealed that the brassinosteroid receptor complex is not required for abscisic acid to act on brassinosteroid signaling outputs.However,when the BR downstream signaling component BIN2 is inhibited by LiCl,abscisic acid failed to inhibit brassinosteroid signaling outputs.Furthermore,using a set of abscisic acid insensitive mutants,we found that regulation of abscisic acid on brassinosteroid primary signaling pathway is dependent on the abscisic acid early signaling components ABI1 and ABI2.We propose that the signaling cascades of abscisic acid and brassinosteroid primarily crosstalk after brassinosteroid perception,but before their transcriptional activation.
     This model provides a reasonable explanation for why a large proportion of brassinosteroid-responsive genes are also regulated by abscisic acid,and provides novel insight into the molecular mechanisms by which brassinosteroids could interact with abscisic acid.
引文
Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311: 91-94
    Achard P, Herr A, Baulcombe D, Harberd N (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131: 3357-3365
    Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69: 451-462
    Allan A, Trewavas A (1994) Abscisic acid and gibberellin perception: inside or out? Am Soc Plant Biol, 104: 1107-1108
    Anderson B, Ward J, Schroeder J (1994) Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Am Soc Plant Biol, 104: 1177-1183
    Asami T, Mizutani M, Shimada Y, Goda H, Kitahata N, Sekimata K, Han SY, Fujioka S, Takatsuto S, Sakata K, Yoshida S (2003) Triadimefon, a fungicidal triazole-type P450 inhibitor, induces brassinosteroid deficiency-like phenotypes in plants and binds to DWF4 protein in the brassinosteroid biosynthesis pathway. Biochem J 369: 71-76
    Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J (2001) Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiol 127: 450-458
    Busk P, Pages M (1998) Regulation of abscisic acid-induced transcription. Plant Molecular Biology 37: 425-435
    Chen JG, Pandey S, Huang J, Alonso JM, Ecker JR, Assmann SM, Jones AM (2004) GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol 135: 907-915
    Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26: 573-582
    Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim
    SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139: 1750-1761
    Chory J, Nagpal P, Peto CA (1991) Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell 3: 445-459
    Clouse S (2008) The molecular intersection of brassinosteroid-regulated growth and flowering in Arabidopsis. Proc Natl Acad Sci U S A 105: 7345
    Clouse SD, Sasse JM (1998) BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development. Annu Rev Plant Physiol Plant Mol Biol 49: 427-451
    Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59: 387-415
    Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14 Suppl: S15-45
    Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12: 599-609
    Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421: 740-743
    Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19: 485-494
    Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54: 137-164
    Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Bio 5: 379-391
    Gao Y, Wang S, Asami T, Chen JG (2008) Loss-of-function mutations in the Arabidopsis heterotrimeric G-protein alpha subunit enhance the developmental defects of brassinosteroid signaling and biosynthesis mutants. Plant Cell Physiol 49: 1013-1024
    Gendron J, Haque A, Gendron N, Chang T, Asami T, Wang Z (2008) Chemical genetic dissection of brassinosteroid-ethylene interaction. Mol Plant 1: 368
    Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABB gene by positional cloning. Plant Cell 4: 1251-1261
    Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris P, Bouvier-Durand M, Vartanian N (1994) Current advances in abscisic acid action and signalling. Plant Mol Biol 26: 1557-1577
    Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55: 526-542
    Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134: 1555-1573
    Gomez-Cadenas A, Verhey S, Holappa L, Shen Q, Ho T, Walker-Simmons M (1999) An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. National Acad Sciences, 96: 1767-1772
    Gomez-Cadenas A, Zentella R, Walker-Simmons MK, Ho TH (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13: 667-679
    Gregory L, Mandava N (1982) The activity and interaction of brassinolide and gibberellic acid in mung bean epicotyls. Physiol Plant 54: 239-243
    Halliday KJ (2004) Plant hormones: the interplay of brassinosteroids and auxin. Curr Biol14:R1008-1010
    Hansen M, Chae HS, Kieber JJ (2009) Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J 57: 606-614
    Hardtke CS (2007) Transcriptional auxin-brassinosteroid crosstalk: who's talking? Bioessays 29: 1115-1123
    Hartung W, Gimmler H (1994) A stress physiological role for abscisic acid(ABA) in lower plants. Progress in botany 55: 157-173
    He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307: 1634-1638
    He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A 99: 10185-10190
    He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288: 2360-2363
    Hornberg C, Weiler E (1984) High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310: 321-324
    Jackson MB, Hall KC (1987) Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits. Plant Cell Environ 10:121-130
    Kim H, Park PJ, Hwang HJ, Lee SY, Oh MH, Kim SG (2006) Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development. Biosci Biotechnol Biochem 70: 768-773
    Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433: 167-171
    Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47: 343-355
    Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, Karssen CM (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh. TAG Theoretical and Applied Genetics 61: 385-393
    Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61: 377-383
    Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci U S A 95: 15837-15842
    Leon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JAD, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10: 655-661
    Leubner-Metzger G (2001) Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213: 758-763
    Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Biol 49: 199-222
    Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929-938
    Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398-401
    Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295: 1299-1301
    Li J, Nam KH, Vafeados D, Chory J (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol 127: 14-22
    Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110: 213-222
    Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17: 2738-2753
    Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axrl mutants of Arabidopsis. Plant Cell 2: 1071-1080
    Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315: 1712-1716
    Lotan T, Ohto M-a, Yee KM, West MAL (1998) Arabidopsis LEAFY COTYLEDON 1 Is Sufficient to Induce Embryo Development in Vegetative Cells. Cell 93
    Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Sciencexpress 10.1126/1172408
    Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABU and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25: 295-303
    Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30: 601-609
    Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312: 264-266
    Mitchell JW, Mandava N, Worley JF, Plimmer JR, Smith MV (1970) Brassins-a new family of plant hormones from rape pollen. Nature 225: 1065-1066
    Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev 18: 448-460
    Mussig C (2005) Brassinosteroid-promoted growth. Plant Biol (Stuttg) 7: 110-117
    Mussig C, Fischer S, Altmann T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129: 1241-1251
    Nakaya M, Tsukaya H, Murakami N, Kato M (2002) Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol 43: 239-244
    Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110: 203-212
    Nambara E, Hayama R, Tsuchiya Y, Nishimura M, Kawaide H, Kamiya Y, Naito S (2000) The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Dev Biol 220: 412-423
    Neill S, Horgan R, Parry A (1986) The carotenoid and abscisic acid content of viviparous kernels and seedlings ofZea mays L. Planta 169: 87-96
    Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126: 467-475
    Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2: E258
    Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007) ABA-Hypersensitive Germinationl encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50: 935-949
    Pandey S, Chen J-G, Jones AM, Assmann SM (2006) G-Protein Complex Mutants Are Hypersensitive to Abscisic Acid Regulation of Germination and Postgermination Development. Plant Physiol. 141: 243-256
    Pandey S, Nelson D, Assmann S (2009) Two Novel GPCR-Type G Proteins Are Abscisic Acid Receptors in Arabidopsis. Cell 136: 136-148
    Parcy F, Valon C, Kohara A, Misera S, Giraudat J (1997) The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9: 1265-1277
    Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Culter SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Sciencexpress 10.1126/1173041
    Peng P, Li J (2003) Brassinosteroid signal transduction: A mix of conservation and novelty. J Plant Growth Regul 22: 298-312
    Peng P, Yan Z, Zhu Y, Li J (2008) Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Mol Plant 1: 338
    Reyes J, Chua N (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49: 592-606
    Richards DE, King KE, Ait-Ali T, Harberd NP (2001) HOW GIBBERELLIN REGULATES PLANT GROWTH AND DEVELOPMENT: A molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52: 67-88
    Rock C (2000) Pathways to abscisic acid-regulated gene expression. Seed 2: 359
    Rogers J, Rogers S (1992) Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. Plant Cell 4: 1443-1451
    Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez P (2008) HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell 20: 2972
    Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872-1874
    Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443: 823-826
    Soderman E, Brocard I, Lynch T, Finkelstein R (2000) Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol 124: 1752-1765
    Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125: 763-769
    Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55: 197-223
    Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171-182
    Taiz L, Zeiger E. (2006) Plant physiology [M]. Massachusetts, America: Sinauer Associates
    Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321: 557-560
    Taylor IB, Burbidge A, Thompson AJ (2000) Control of abscisic acid synthesis. J Exp Bot 51: 1563-1574
    Teale WD, Ditengou FA, Dovzhenko AD, Li X, Molendijk AM, Ruperti B, Paponov I, Palme K (2008) Auxin as a model for the integration of hormonal signal processing and transduction. Mol Plant 1: 229-237
    Timpte C, Wilson AK, Estelle M (1994) The axr2-l mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138: 1239-1249
    Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signalling. Nature 441: 96-100
    Vert G, Nemhauser JL, Geldner N, Hong F, Chory J (2005) Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol 21: 177-201
    Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci U S A 105: 9829-9834
    Wang K, Li H, Ecker J (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14: S131
    Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313: 1118-1122
    Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17: 1685-1703
    Wang X, Li X, Meisenhelder J, Hunter T, Yoshida S, Asami T, Chory J (2005) Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev Cell 8: 855-865
    Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2: 505-513
    Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410: 380-383
    Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NFd, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1: 198-217
    Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144: 1240-1246
    Xu W, Huang J, Li B, Li J, Wang Y (2008) Is kinase activity essential for biological functions of BRI1? Cell Res 18: 472-478
    Yang G, Komatsu S (2004) Microarray and proteomic analysis of brassinosteroid- and gibberellin-regulated gene and protein expression in rice. Genomics Proteomics Bioinformatics 2: 77-83
    Yang GX, Jan A, Shen SH, Yazaki J, Ishikawa M, Shimatani Z, Kishimoto N, Kikuchi S, Matsumoto H, Komatsu S (2004) Microarray analysis of brassinosteroids- and gibberellin-regulated gene expression in rice seedlings. Mol Genet Genomics 271: 468-478
    Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120: 249-259
    Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109: 181-191
    Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T (2006) ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol 140:115-126
    Zentella R, Yamauchi D, Ho T (2002) Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14: 2289
    Zentella R, Zhang, ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, and Sun TP (2007) Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19: 3037-3057.
    Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A 101: 9508-9513
    Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126: 1438-1448
    Zhu S, Yu X, Wang X, Zhao R, Li Y, Fan R, Shang Y, Du S, Wang X, Wu F (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19: 3019-3033
    Zurek DM, Rayle DL, McMorris TC, Clouse SD (1994) Investigation of Gene Expression, Growth Kinetics, and Wall Extensibility during Brassinosteroid-Regulated Stem Elongation. Plant Physiol 104: 505-513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700