用户名: 密码: 验证码:
葡萄四倍体诱导及其生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以二倍体青岛早红、鞍山早红、力扎马特和诱变获得的同源四倍体玫瑰香葡萄为试材,系统研究了提高秋水仙素诱变葡萄茎尖成功率的方法、不同世代的变异规律、同源四倍体玫瑰香嫩枝扦插生根特性变异、光合特性变异以及部分多倍体鉴别指标的评价方法。主要结果如下:
     1、进一步完善了秋水仙素茎尖诱变技术
     在系统研究的基础上,秋水仙素诱变葡萄茎尖的成活率较对照提高了3.9%~13.3%,其中“秋水仙素处理+保湿袋+报纸袋+遮阳网”以及处理后逐渐解除保护的方法,诱变节位的成活率达到了90.6%;系统完善了VM1代的初次选择技术,以及VM1代和VM2代的快速分离技术;提出了秋水仙素诱变获得的葡萄多倍体材料,在无性繁殖过程中存在较大幅度的变异,在后代筛选时应增加VM2代的群体数量。创新了13份鞍山早红和力扎马特葡萄同源多倍体种质资源。
     2、系统研究了秋水仙素茎尖诱变不同世代的变异规律
     同源四倍体葡萄的叶脉结构发生了显著的变异,其主脉的主导地位被消弱,主脉上分生的侧脉对称性降低,叶片形状变为楔形或肾形比率显著增加,叶脉数量明显减少。利用秋水仙素诱变葡萄茎尖后,其VM1代叶片的宏观结构和微观结构均发生了广泛的变异。其中叶片形状、大小、叶脉、叶缘等13个宏观性状的变异幅度增加,出现了一些新的叶片类型。
     3、探明了同源多倍体葡萄生根特性的变异
     (1)在形态学方面,同源四倍体葡萄嫩枝扦插生根能力较母株显著下降,扦插不定根发生率、平均每个插条的不定根数量和不定根总长度均显著低于其二倍体母株。
     (2)在解剖学方面,同源四倍体玫瑰香嫩枝插条的髓部面积增大、髓射线数量减少;在根原基诱导阶段,其表皮细胞和皮层细胞过早、过量分化,根原基诱导期延长了1d;在根原基发育期,其根原基体积变大、顶部变平。上述形态与解剖性状的变异可能是导致同源四倍体玫瑰香生根能力下降的原因。并提出,将同源四倍体葡萄插条不定根发育可划分为根原基诱导期、根原基发育期和不定根发育期三个阶段。
     (3)在生理学方面,同源四倍体玫瑰香嫩枝插条在扦插生根过程中的碳素营养、酚类和黄酮物质、IAAO酶活性、POD酶活性、PPO酶活性和内源激素代谢发生了显著的变异:①同源四倍体玫瑰香在扦插初期的可溶性糖含量、淀粉含量显著低于二倍体玫瑰香。同源四倍体玫瑰香的淀粉含量在根原基诱导期与二倍体玫瑰香品种的变化态势相反,且在扦插第3~12d其淀粉含量始终低于二倍体玫瑰香。②同源四倍体玫瑰香嫩枝插条基部皮层的黄酮含量在根原基诱导初期显著高于二倍体玫瑰香、后期又显著低于二倍体玫瑰香,两个不同倍性品种的变化态势相反。同源四倍体玫瑰香的多酚含量在根原基诱导初期高于二倍体玫瑰香,第3d以后低于二倍体玫瑰香。③在根原基诱导期,同源四倍体玫瑰香的IAAO酶活性显著高于二倍体玫瑰香,POD酶活性显著低于二倍体玫瑰香,PPO酶活性高于二倍体玫瑰香,而在此期以后PPO酶活性又低于二倍体玫瑰香。④玫瑰香葡萄同源加倍以后,不仅改变了不同时期插条生根部位皮层的内源激素水平,也改变了该部位对外施NAA的反应。在不定根诱导期(0~3 d),促进生根的生长素水平下降,抑制生根的脱落酸和赤霉素含量上升,生长素与脱落酸和赤霉素的比值下降;应用NAA处理以后,在根原基诱导期(0~3 d),赤霉素、玉米素和玉米素核苷含量不降反升,改变了内源激素的整体变化态势。
     4、探讨了同源多倍体葡萄光合特性的变异
     同源四倍体玫瑰香较二倍体玫瑰香单位面积的叶绿素含量增大,栅栏组织细胞长度与宽度增加,单位叶片解剖长度内栅栏组织细胞层数减少。其光合特性发生了显著变异:①同源四倍体玫瑰香最适的光合温度为20℃左右。在温度诱导条件下,同源四倍体玫瑰香2号对温度的敏感性最强,表现具有较强的耐高温能力。同源四倍体玫瑰香1号和二倍体玫瑰香对温度的反应较迟钝。②在自然条件下,同源四倍体玫瑰香与二倍体玫瑰香的光合作用曲线均为双峰曲线。不同倍性玫瑰香葡萄的蒸腾速率、气孔导度和净光合速率为:M4x-1﹥M2x﹥M4x-2。同源四倍体玫瑰香1号和二倍体玫瑰香光合作用曲线相似,第一个峰值均出现在上午9:00时,第二个峰值均出现在14:00时,第一个峰值大于第二个峰值,且9:00~11:00时的净光合速率下降不明显;同源四倍体玫瑰香2号的第一个峰值也出现在上午9:00时,但第二个峰值出现在13:00,第一个峰值与第二个峰值相当,且9:00~11:00净光合速率明显下降。
     5、探索改进了部分性状的评价方法
     简化了观测气孔的制片方法;该方法简便易行,效果良好,提高了气孔性状观测效率。提出了一种测量花蕾大小的新方法;应用这种方法可以准确测量花蕾的大小,消除由于测量误差而导致的评判失误。探索了叶面平展度量化的评价方法。该方法以充分展开叶片背面在30度入射光角度下垂直拍摄的数码照片为材料,以“100-标准偏差”作为叶片平展度的量化指标,该数值越接近100,叶面越平展;该数值越小,叶面平展度越差。提出以充分展开叶片的亮度标准差与母株该部位叶片的亮度标准差的比值大于1.3作为判别变异发生的临界值,是否合适有待研究。
The protocal for increasing the ployploid inducing rates were studied by using diploid grapes of Qingdao Zaohong, Anshan Zaohong, and Rizamat, and their VM1 and VM2 progeny were studied on patterns of variation. The autotetraploid Muscat Hamburg, which was obtained by inducement of Colchicine, was studied on variation of rooting ability of green cuttings and leave photosynthesis, and on some indexes for polyploid evaluation. The main results were as followed.
     1. Improving of protocal in shoot tips inducement of Colchicine
     The shoot tips survival rates after treated with Colchicine were increased by using the combination of moisture keeping bags, newspaper bags, and shading net, and removing these materials gradually. The surving rate could reach higher than 90%. The primary selection technic for VM1 progeny was systematically improved, and the technic for fast seclection for VM1 and VM2 was as also. It was found that the polyploid plants obtained from inducement of Colchicine had a big varivation after asexual propagation. The amount of VM2 plants should be increased for selection. There were 13 new polyploid strains of Anshan Zaohong and Rizamat grapes obtained in this experiment.
     2. Systematical studing in the variation patterns after shoot tips inducement of Colchicine
     Significant variation was found in vein macro-structure of leaves in autotetraploid grapes. The dominant feature of main vein was abreaction. The symmetry of side veins along the main veins was weak. More leaves became cuniform or nephroid in shape, and had less veins.
     A broad variation was found among the VM1 progeny in terms of the leaves macro-structure or micro-structure after the inducement of Colchicine, including thirteen aspects in macro-structure such as leaf shape, size, vein, margin, etc. New patterns of leaves occurred.
     3. Variation of autotetraploid grapes in rooting characteristics
     (1) In the aspect of morphology, the green cuttings of autotetraploid grapes had poor rooting ability compared to their mother plants in terms of their adventitious rooting rate, adventitious roots number per cuttings, and lengh of total adventitious roots.
     (2) In the aspect of anatomy, the green cuttings of autotetraploid grapes had larger medullary area and fewer medullary rays. During the phase of primary root inducement, its epidermal cells and cortex cells differentiation too early and too much, that led this phase last for one day longer; and during the phase of primary root development, the top of the primary roots became flat, smooth, and big in size. That could be the reason to lead the poor rooting ability of the autotetraploid Muscat Hamburg. The development of the rooting of green cuttings in autotetraploid grapes could be divided into three phases as primary root inducement, primary root development, and adventitious root development.
     (3) In the aspect of physiology, the carbon nutrition, phenolics, flavone, enzyme activities of IAAO, POD, and PPO, and hormone changed significantly in the autotetraploid Muscat Hamburg during the process of the rooting of green cuttings.①The content of soluble solid sugar in the autotetraploid Muscat Hamburg was lower than that of the diploid Muscat Hamburg all the time during the rooting process. The content of starch in the autotetraploid Muscat Hamburg was higher than that of the diploid Muscat Hamburg at the beginning of the primary roots inducement, but lower than that during the late of the primary roots inducement with different changing tendency. The content was lower for the autotetraploid during the 3rd day to 15th day period.
     ②The content of flavone in cortex at basal part of the green cuttings in autotetraploid was significant higher at the beginning of the primary root inducement phase than that of the diploid, and lower at the late period with different changing tendency. The content in the autotetraploid was lower than that of the diploid after the 3rd day. The content of phenolics in the autotetraploid was higher in the beginning of the primary root inducement phase than that of the diploid and lower after the 3rd.
     ③During the primary root inducement phase, the activity of IAAO in the autotetraploid was significant higher than that of the diploid; the activity of POD in the autotetraploid was significant lower than that of the diploid; and the activity of PPO in the autotetraploid was significant higher than that of the diploid and lower than that at the late period.
     ④It was not only the hormone content in cortex of cuttings was changed during the different phases of cutting’s rooting, but also the reaction of that part to NAA applied was changed after the double of its chromosome. During the adventitious inducement period (0~3 d), the content of Auxin that supposed to promote the rooting decreased and the content of ABA and GA that supposed to inhibit the rooting increased, and the ratio of Auxin to ABA and GA dropped. With application of NAA, the content of GA, ZT, and ZR did not decrease as normal but increase, and the tendency of hormone was changed.
     4. Variation of photosynthesis characteristics in autopolyploidy
     The content of chlorophyll of the autotetraploid Muscat Hamburg increased, the lengh and width of cells in palisade tissue increased, and the layers of cells in palisade tissue decreased compared to the diploid plants. Its photosynthesis characteristics had a significant variation.①The optimal temperature for photosynthesis of autotetraploid Muscat Hamburg was 20℃. Under controlled temperature condition, the autotetraploid Muscat Hamburg No.2 showed highest sensitivity to the changing of temperature with highest ability of tolerating to the high temperature. The No. 1 and diploid plants showed less sensitivity to the changing of temperature.
     ②Under natural condition, the patterns of photosynthesis of both autotetraploid Muscat Hamburg and diploid Muscat Hamburg were double peak curves. For the autotetraploid Muscat Hamburg No.1 and diploid Muscat Hamburg, the first peak occurred at 9:00 and the second peak occurred at 14:00, and the value of the first peak was higher than that of the second one. During 9:00 to 11:00, the net photosynthetic rate did not decrease significantly. The first peak of the autotetraploid Muscat Hamburg No.2 occurred at 9:00 and the second peak occurred at 13:00, and the value of the first peak was about the same as the second. During 9:00 to 11:00, the net photosynthetic rate decreased significantly. Then the net photosynthetic rate of the autotetraploid Muscat Hamburg No.2 was low. The transpiration rate, stomatal conductance, and net photosynthetic rate for differnet ploidy plants were as M4x-1﹥M2x﹥M4x-2.
     5. Modification of some evaluation methods for polyploid selection
     The slide making process for the stoma observation was simplified for easy-to-do and having better result, which could increase the efficiency. A new method for mesuring alabastrum size was developed with higher precision. Leaf flat grade was applied to the variation evaluation. The procedure was that: taking picture of lower surface of leaf from 30 degree incident light angle by using digital camera, caculating its leaf flat grade as“100-standard deviation”, and it was considered as variation occurred when the ratio of offsprings to its mother plants of the some position leaves reached 1.3.
引文
[1]梁凤山,罗耀武.多倍体及其在农业生产中的应用[J].国外农学—杂粮作物,1999,19(2):20-23
    [2]贺普超.葡萄学[M].北京:中国农业出版社,1999. 308,140
    [3] Islam-Farid M N, Mujeeb-Kazi A. Visualization of secale cerele DNA in wheat germ plasm by FISH[J]. Theo-Apple-Genet, 1995, 90: 595-600
    [4]沈德绪.果树育种学[M].北京:中国农业出版社,1999. 118-120
    [5]石荫坪,李雅志,王强生.果树突变育种[M].上海:上海技术出版社,1986. 58-61,179-201
    [6]蒲富慎,黄礼森,孙秉钧,等.我国野生梨和栽培品种染色体数目观察[J].园艺学报,1985,(3):155-158
    [7]潘春云,亓桂梅,汤小宁,等.葡萄三倍体育种初报[J].山东农业大学学报(自然科学版),1998,29(3):299-302
    [8]赵胜建,郭紫娟,赵淑云,等.三倍体葡萄新品种——无核早红[J].园艺学报,2002,27(2):155
    [9]赵胜建,郭紫娟,赵淑云,等.三倍体葡萄新品种——红标无核[J].园艺学报,2003,30(6):758
    [10]尹永胜,徐增凯,张爱波,等.巴梨四倍体芽变品种的选育[J].中国农学通报,1996,12(5):31-32
    [11]刘孝林,王如玉,徐耀山.鸭梨的四倍体大果型芽变——天海鸭梨[J].山西果树,1995,(2):13-14
    [12]蒲富慎,林盛华,张德学,等.我国山楂一些种和品种的染色体数目观察[J].中国果树,1987,(2):17-19
    [13]曲泽洲,王永德,吕增仁,等.枣和酸枣的染色体数目研究[J].园艺学报,1986,(4):232
    [14]陈立松,万蜀渊.一个新的碰柑突变体——‘桂林良丰’无核柑的细胞学鉴定[J].武汉植物学研究,1996,14(1):1-5
    [15]景士西.园艺植物育种学总论[M].北京:中国农业出版社,2000. 225
    [16]曹家树,申书兴.园艺植物育种学[M].北京:中国农业大学出版社,2001. 187
    [17]王长泉,张文胜,李雅志,等.苹果叶片离体培养中秋水仙素加倍效应的研究[J].果树科学,1999,16(2):104-109
    [18]刘庆忠,赵红军,刘鹏,等.秋水仙素处理离体叶片获得皇家嘎啦苹果四倍体植株[J].果树学报,2001,18(1):7-10
    [19]韩礼星,赵改荣,李玉红,等.猕猴桃多倍体诱导研究[J].果树科学,1998,15(3):273-276
    [20]雷家军,吴禄平,代汉萍,等.草莓茎尖染色体加倍研究[J].园艺学报,1999,26(1):13-18
    [21]严仁玲,刘贵仁,张磊,等.离体诱导同源四倍体金丝小枣的研究[J].天津农学院学报,1996,(3):1-4
    [22]王娜.枣体细胞胚胎发生及倍性种质创新,[D].河北农业大学,2007
    [23]陈俊,李登科,李太保,等.诱导葡萄多倍体研究,果树科学,1995,12(3):151-155
    [24]陈俊,唐晓萍,李登科,等.早熟大粒优质葡萄新品种——早黑宝[J].园艺学报,2001,28(3):277
    [25]石雪晖,徐小万,王先荣,等.秋水仙素对刺葡萄萌发种子诱变的影响[J].中外葡萄与葡萄酒,2007(5):7-9
    [26]罗耀武,乔子靖,朱子英,等.人工诱变获得四倍体玫瑰香葡萄的研究[J].园艺学报,1997,24(2):125-128
    [27]钱春.白香蕉葡萄芽变突变体鉴定及四倍体诱导研究[D]. 2006
    [28]马爱红,范培格,孙建设,等.四倍体葡萄诱导技术研究[J].中国农业科学,2005,38(8):1645-1651
    [29]陶颖.秋水仙素诱导葡萄多倍体的研究,[D]. 2007
    [30]宗桦,王永清,周晔.红地球葡萄的秋水仙素诱变及鉴定研究,江苏农业科学[J],2008(3):177-180
    [31]卢炳芝,李佩芬,于向荣,等.诱变葡萄体细胞胚获得同质四倍体体植株的研究[J].果树科学,1997,14(3):145-148.
    [32]王敏琴,鲍雪珍,王晓红.葡萄多倍体诱导的初步研究[J].山东农业科学,2000,(1):19-20.
    [33]杨晓明.组织培养中秋水仙素诱导葡萄多倍体研究[D].2003.
    [34]杨晓明,王翠玲.葡萄多倍体诱导及其特征特性研究[J].甘肃农业大学学报,2005,40(6):741-744
    [35]杨晓明.葡萄体胚发生、遗传稳定性及其多倍体植株再生研究,[D]. 2007
    [36] A. Wakana, N. Hanada, S. Min Park, Production of Tetraploid Forms of Acid Citrus Cultivars by Top Grafting of Shoots with Sprouting Axially Buds Treated with Colchicine[J]. Fac. Agr., Kyushu Univ.,2005,50(1):93-102
    [37]周广芳,王成强.果树多倍体育种途径与成就[J].落叶果树,1997(增刊):50-52
    [38]谷晓峰,罗正荣.柿品种禅寺丸的花粉染色体加倍研究[J].中国农业科学,2003,36(4):426-428
    [39]李世诚,金佩芳,蒋爱丽,等.与四倍体杂交的无核葡萄胚珠培养获得三倍体植株[J].上海农业学报,1998,14(4):13-17.
    [40]孙绍宾.葡萄新品种——巨峰玫瑰[J].北京农业,2002,(9):35.
    [41]石荫坪,王强生,尹永胜.大玫瑰香葡萄的细胞学和育种行为[J].山东农学院学报,1982,(1~2):1-12
    [42]李树玲,曹玉芬,黄礼森,等.大鸭梨与不同倍性梨品种杂交后代染色体数目鉴定[J].天津农学院学报,1998,5(4):1-7
    [43]山东农学院组培组.苹果胚乳三倍体完整植株培养成功[J].果树科技资料,1978,(2):115-116
    [44]石荫坪,耿如震,白瑞云,等.枣胚乳三倍体的育成及生物学细胞学研究[J].山东果树,1985,(1):1-3
    [45]桂耀林,母锡金,徐廷玉,等.猕猴桃胚乳植株形态分化研究[J].植物学报,1982,24:216-221
    [46]黄贞光,皇甫幼丽,徐乐茵.猕猴桃胚乳培养获得了三倍体植株[J].科学通报,1982,(4):247-250
    [47]赵惠祥.锦丰梨胚乳植株的诱导及其倍性[J].植物学报,1983,(2):38-39
    [48]孟新法,周维燕.桃胚乳离体培养再生植株的研究[J].北京农业大学学报,1981,(4):95-98
    [49]庄东红,石田雅士.柿树胚乳培养及其再生植株染色体倍性变化的研究[J].汕头大学学报(自然科学版),1995,10(1):42-47
    [50]邓秀新,Grosser J W, Gmitter F G.柑桔种间体配融合及培养研究[J].遗传学报,1995,22(4):316-321
    [51]刘继红,胡春根,邓秀新.电场诱导原生质体融合获得柑橘属间四倍体体细胞杂种[J].园艺学报,2002,29(4):372-374.
    [52]李树贤.植物同源多倍体育种的几个问题,西北植物学报,2003,23(10):1829-1841
    [53]朱子英,皇甫中四,常金华,等.四倍体玫瑰香葡萄形态特征与生长发育规律[J].河北农业大学学报,1995,18(3):5-9.
    [54]李赟,石荫坪,束怀瑞.利用苹果花粉粒形态进行倍性鉴定[J].园艺学报,1998,25(2):133-138
    [55]张文樾.白香蕉葡萄芽变系‘吉香’的细胞学研究[J].北方园艺, 1982 , (4 ): 1-5
    [56]石荫坪,王强生,尹永胜.大玫瑰香葡萄的细胞学和育种行为[J].山东农学院学报, 1983 (8 ): 1-6
    [57]石荫坪,王强生,贾元淑,等.枣胚乳三倍体的细胞学,中国果树资源细胞学之六,武汉植物学报,1985,3 (4) :389-396
    [58]祁碧菽,罗耀武,任清.四倍体葡萄花粉母细胞减数分裂与坐果率关系的研究,河北农业大学学报,2000,23(4):49-52
    [59]魏文娜.巨峰葡萄花粉母细胞减数分裂的观察[J].园艺学报,1984,11(3):171-176.
    [60]齐永顺,张京政,王同坤,等.同源四倍体玫瑰香葡萄嫩枝扦插不定根发生的外部形态变化研究[J].中外葡萄与葡萄酒,2008(5):8-10
    [61]齐永顺,杜国强,张志华,等.同源四倍体玫瑰香葡萄硬枝扦插不定根发生性状研究[J].中国农学通报,2008(12):331-334
    [62]石荫坪,王强生.果树的多倍体[J].园艺,1983(2):6-11
    [63]石荫坪,王强生.果树的多倍体[J].园艺,1983(3):5-12
    [64]王强生,石荫坪.大鸭梨的组织学和细胞学研究[J].中国农业科学,1984(4):33-39
    [65]戴洪义.葡萄的染色体倍性与气孔性状的关系及其差别分析[J].葡萄栽培与酿酒,1990(2):5-9
    [66]常月梅.果树多倍体鉴定进展[J].山西林业科技,2000,(1):1-4
    [67] Chandler, C.K. & P. M. Lyrene. Relationship Between Guard Cell Length and Ploidy inVaccinium. Hortscience 1982,17(1):53-54
    [68] Dermen, H. Polyploid Pears. Jour. Hered. 1947, 38(6):189-192
    [69] Sapra, V.T. Hughes, J.L. & Sharma, G. G. Frequency, Size and Distribution of Stomata in Triticale Leaves. Crop Sci. 1975,105:356-358
    [70] Soloveva, LV. Number of chloroplasts in the stoma guard cell as an index of ploidy in apple seedlings Tsitologiya Genetika, 1990, 24 (4) : 213-219
    [71] Bingham, E.T. Stomatal chloroplasts in alfalfa at four ploidy levels Crop. Sci., 1968, 8: 509-510
    [72] Jacobs, J. & Yoder J. I. Ploidy levels in transgenic tomato plants determinated by chloroplast number. Plant Cell Reports. 1989, 7: 662-664
    [73] HoIWan, Y. Widholm, J.M. etal. The use of stomatal chloroplast number for rapid determination of ploidy level in maize. Plant Breeding, 1995, 105: 203-210
    [74] Vandenhout, H. Ortiz, R. Vaylsteke, D. etal. Effect of ploidy on stomatal and other quantitative traits in plantain and banana hybrids. Euphytica, 1995, 83: 117-122
    [75]裴新澍.多倍体诱导与育种[M].上海:上海科学技术出版社,1963
    [76]巴拉诺夫.鲍文奎译.植物多倍体[M].北京,科学出版社,1959
    [77]王同坤,于凤鸣,吴限策.玫瑰香葡萄二倍体与四倍体的三种生化指标比较研究[J].河北职业技术师范学院学报,1997,11(2):23-26
    [78]闫爱玲,张国军,徐海英.葡萄多倍体研究进展,园艺学进展(第七辑):727-731
    [79]任清,罗耀武,柳术杰,等.人工诱变四倍体玫瑰香葡萄的遗传稳定性研究[J].园艺学报,2000,27 (4) : 285-286
    [80]陈学森.用梢端切片法鉴定多倍体芽变[J].落叶果树,1988(3):11-12
    [81]陈学森,郭延奎,卓小能.几种果树多倍体与二倍体梢端细胞组织学的研究[J].山西农业大学学报,1991,22(2):146-154
    [82]晁无疾,段丛.去壁低渗法在葡萄染色体观察上的应用[J].葡萄栽培与酿酒,1985,(3):1-3.
    [83]常金华,任清,罗耀武.人工诱变四倍体玫瑰香葡萄的倍性鉴定[J].核农学报,2003,17(3):221-224
    [84]刘继红,曾少华,徐春永,等.澳洲指橘与粗柠檬体细胞杂种倍性FCM分析及其花粉活力检测[J].果树学报,2003,20(4):251-255
    [85]河北农业大学主编.果树栽培学总论,北京,农业出版社,1980:298
    [86]孟繁静主编.植物生理学,2000,278-279.
    [87]刘崇怀,沈育杰,陈俊,等.葡萄种质资源描述规范和数据标准[M].北京,中国出版社,2006:25-32
    [88]沈阳市葡萄诱变调查组.关于玫瑰香葡萄芽变调查研究初报[J].葡萄科技,1980(2):11-14.
    [89]尹永胜.玫瑰香葡萄芽变简报:山东平度县发现玫瑰香四倍体芽变[J].中国果树,1982(2):34-35
    [90] Kazunori Notsuka, Takekazu Tsuru and Mikio Shiraishi. Induced Polyploid Grapes via vitro Chromosome Doubling. J. Japan. Soc. Hort. Sci. 2000, 69(5):543-551
    [91]樊启昶.发育生物学原理,北京:高等教育出版社,2002,P187
    [92]石荫坪,李雅志,王强生.果树突变育种[M].上海:上海技术出版社,1986:217-218
    [93]齐永顺,赵春明.葡萄无公害标准化生产技术,石家庄:河北科学技术出版社,2006:39-40
    [94]高海生,齐永顺.优质酿酒葡萄高产栽培技术,北京:金盾出版社,2000:52-54
    [95]肖强,叶文景,朱珠,等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J].生态学杂志,2005,24(6):711-714
    [96]苑克俊,刘庆忠,李圣龙,等.利用数码相机测定果树叶面积的新方法[J].园艺学报,2006, 33 (4):829~832
    [97]王钦,干友民.四川野生马蹄金的坪用特性研究[J].安徽农业科学,2005,33(4):630-631
    [98]费凌,干友民,等.西南区野生马蹄金坪用景观价值研究,北方园艺,2008(1):165~169
    [99]余琳.叶卷曲基因调控机制的研究[D].中国科学院研究生院博士学位论文
    [100]喻诚鸿,陈泽濂.华南木本双子叶植物叶的宏观结构资料I术语与方法.中国科学院华南植物所集刊.1986年第2集.83—97
    [101]张奠湘.紫荆族的脉序研究[J].热带亚热带植物学报, 1994,2(4):45—57
    [102]张文澄,吕海亮,张遂申.四棱草属比较形态及其分类系统位置的研究,II四棱草属及其近缘属叶片宏观结构[J].西北植物学报,1995,15(2):110—115
    [103]郝刚,胡启明.绣球亚科的脉序研究[J].广西植物,1996, 16(2):155—160
    [104]杨庆峰,蔡雪珍,陈涛长.长果安息香属和秤锤树属植物叶片脉序研究[J].广西植物1997,17(2):145—148
    [105]文香英,林祁.国产五味子科五种植物叶片脉序研究[J].生命科学研究.1999,3(1):69-74
    [106]刘剑秋,李和阳.福建防己科植物叶脉序比较研究[J].福建师范大学学报(自然科学版),2000,16(2):80-84
    [107]周桂玲,魏岩.十字花科四属植物叶片脉序的比较研究[J].武汉植物学研究,2002,20(4):258-262
    [108]黄芯婷,方玉霖,刘剑秋.福建柃属植物叶片脉序的比较研究[J].福建师范大学学报(自然科学版),2004,20(2):82-90
    [109]姬燕,周翔陆.葡萄叶面积与叶片纵横经相关性研究[J].河南农业科学,1992(7):24
    [110]喻诚鸿,陈泽濂.华南木本双子叶植物叶的宏观结构资料I术语与方法.中国科学院华南植物所集刊.1986年第2集.83—97
    [111]孙启高,宋书银,王宇飞,等.介绍双子叶植物叶结构分类术语.植物分类学报1997,35(3):275—288
    [112]方玉霖,刘剑秋,姜业芳.福建薯蓣属植物叶脉序特征及其分类学意义.福建师范大学学报(自然科学版)2002,18(2):65-69
    [113]黄安,奚伟鹏,陈美谷.华南胡椒属植物叶片宏观结构的研究.中南林学院学报.2004,24(1):16-19
    [114]任毅,胡正海.独叶草叶二叉分枝脉序中网结脉和盲脉的形态学研究植物分类学报1996,34(6):569-576
    [115]王长泉,李雅志,崔德才.果树诱变育种研究进展.山东农业大学学报,1996(12):4-7
    [116]王中英,解思敏.葡萄的组织解剖构造研究,果树科学,1986(4):24-29
    [117]韩其谦,李万军,武伏珍,等.葡萄插条生根解剖学初步观察,河北农业大学学报[J],1983(3):45-48
    [118]李万军,马宝焜,武伏珍.葡萄茎插条不定根根起源的组织学观察,中国果树[J].1984(3):17-19
    [119]马俊红,陈思维,马宝焜,等.苹果试管苗不定根起源及其发育状况分研究[J].,河北农业大学学报,1992,15(4):46-49
    [120]廖康,刘全华,田兴朴,等.葡萄试管苗不定根发生发育的组织学和细胞学研究[J].新疆农业大学学报,1997,20(3):37-41
    [121]李云,田砚亭,钱永强,等. NAA和IBA对四倍体刺槐试管苗生根影响及不定根发育过程解剖观察3[J].林业科学,2004,40(3):75-79
    [122]王清民,彭伟秀,吕宝聚,等.核桃试管苗不定根的组织学观察[J].西北植物学报,2006,26(4):0719-0724
    [123] Argles, G.K. Root formation and root development in stem cuttings: a re-examination of certain fundamental aspects. Annals of Applied Biology. 1959,47, 626-678
    [124] Dore,J. Physiology of regeneration in cormophytes in Encyclopaedia of Plant Physiology. 1965,15, (2):1-91
    [125] Girouard, R.M. Initiation and development of adventitious roots in stem cuttings of Hedera helix. Anatomical studies of the juvenile growth phase. Canadian Journal of Botany, 1967,45, 1877-1882
    [126] Cameron, R.J. & Thomson, G.V. The vegetative propagation of Pinus radiate: root initiation in cuttings. Botanical Gazette. 1969,130, 242-251
    [127] Sircar, P. K. & Chatterjee, S.K. Physiological and biochemical control of meristemization and advebtitious root formation in Vigan hypocotyl cuttings. The Plant Propagator, 1973,19, 17-26
    [128] White, J. & Lovell, P.H. The anatomy of root initiation in cuttings of GriseUma littoralis and Griselinia lucida. Annals of Botany. 1984,54. 7-20
    [129]林艳,詹亚光,刘玉喜,等.白桦嫩枝扦插不定根形成的解剖学观察[J].东北林业大学学报,1996,24(3):15-19
    [130]许晓岗,童丽丽,垂丝海棠插穗扦插生根过程解剖学研究[J].安徽农业科学,2006,34(19):4889-4891
    [131]石晓东,卫世珍,高润梅,等.几种激素对猬实扦插生根的影响[J].山西农业大学学报,2005(3) :286-288
    [132]王雪莲,蔡永革,冯建荣,等.生长调节剂对雪柳嫩枝条扦插效果的影响[J].石河子大学学报:自然科学版,2001 ,5(4):302-30
    [133]董健,黄国学,吴月亮,等.欧洲云杉嫩枝扦插育苗技术[J].东北林业大学学报,2001 ,29(4) :57-59
    [134] [美]H.T.哈特曼D.E.凯斯特著,郑开文等译.植物繁殖原理和技术,北京:中国林业出版社,1985,P302
    [135] Nanda, K.K., Kochhar, V.K. & Gupta. S. Effects of auxins, sucrose and morphactin in the rooting of phypocotyl cuttings of Impatiens balsamina during difterent seasons. Biology Land Plant.1972: 181-187
    [136] Patrick, J.W. & Wareing, P.F. Auxin-promoted transport of metabolites in stems of Phaseolus vulgaris L. Some characteristics of the experimental transport systems. Journal of Experimental Botany, 1973,24: 1158-1171
    [137] Patrick, J.W. & Wareing, P.F. Auxin-promoted transport of metabolites in stems of Phaseolus vulgaris L. Effects at the site of hormone application. Journal of Experimental Botany,1974: 969-982
    [138] Altman A.& wareing, P.F. The effect of IAA on sugar accumulation and basipetal transport of 14C-labelled assimilates in relation to root formation in Phaseolus vulgaris cuttings. Physiologia Plantarum, 1975,33: 32-38
    [139] Andersen, A.S., Hansen, J.,Veierskov, B. & Eriksen, E. N. Stock Plant conditions and root initiation on cuttings. Acta Horticulturae,1975, 54: 33-37
    [140] Haissig, B.E. Carbohydrate and amino acid concentrations during adventitious root primordium development in Pinus banksiana Lamb. cuttings. Forest Science, 1982,28: 813-821
    [141]郭素娟.林木扦插生根的解剖学及生理学研究进展[J].北京林业大学学报,1997,19(4):64-69
    [142]彭子模,程伟,高雁,等.萘乙酸对几种植物扦插生根的影响[J].新疆师范大学学报, 2002,21(2):34-38
    [143]张志良,瞿伟青.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2003:110-113
    [144]刘永军,郭守华,杨晓玲.植物生理生化实验[M].中国农业出版社. 126-129, 149-152
    [145]王若仲,萧浪涛,蔺万煌,等.亚种间杂交稻内源激素的高效液相色谱测定法[J].色谱,2002,20(2):148-150
    [146] Bhattacharya N C. Enzyme activities during advent pious rooting [A]. In: Dave is T D, Hissing B E, Sinkhole N, eds. Advent ions Root Form on Cutting [C]. Discords: Portland, 1989: 88-101
    [147] Kieliszew ska-Rokicha B. Effect of treating Scot spine (Pinups Sylvester’s L.) Seedlingswith phytohorm one on the growth of the root system and on heperoxidase and IAA oxidize enzyme Activities in roots [J]. Arbortum-Kornckie, 1989, 32: 207-219
    [148] Bagatharia S Buchanan S V. Changes in peroxides and IAA oxidize Activities during cell elongation in Phase lush hypocotyls [J]. Act Physiology Plant, 1998, 20 (1): 9-13
    [149] Devi S Reprised M N V. Ferules acid mediated changes in oxidative enzymes of may seedlings implication in growth[J]. Boil Plant, 1996, 38 (3): 387-395
    [150] Frenkel C, Hess C E. Misogynic changes in relation to root initiation in mug bean [J]. Can J Bot, 1973, 52: 295-297
    [151] Bouillenne R, Bouillenne-Walrand M. Axons et outrages [A]. Proc 14 Inshore Cong [C]. 1955, 1: 231-238
    [152] Haissig B E. Influence of axons and synergists on adventitious root primordial in initiation and development [J]. New Zealand J For Sci, 1974, 4: 311-323
    [153] Michzel B. Jackson, New Root Formation in Plants and Cuttings[M].1986:154
    [154] Reuveni, o. & Adato, I. Endogenous carbohydrates, root promoters and root inhibitors in easy- and difficult-to-root date palm (Phoenix dactylifera L.) offshoots. Journal of the American Society for Horticultural Science, 1974,99: 361-363
    [155] Veierskov, B., Hansen, J. & Andersen, A.S. Influence of cotyledon excision and sucrose on root formation in pea cuttings. Physiologia Plantarum, 1976,36: 105-109
    [156] Reuveni, o.& Raviv,M. Importance of leaf retention to rooting of avocado cuttings. Journal of the American Society for Horticultural Science, 1980,106:127-130
    [157] Leakey, R.R.B. Stockplant factors affecting root initiation in cuttings of Triplochiton scleroxylon K. Schum., an indigenous harswood of West Africa. Journal of Horticultural Science, 1983,58: 277-290
    [158]宋金耀,何文林,李松波,等.毛白杨嵌合体扦插生根相关理化特性分析[J].林业科学,2001,(5):64-67
    [159]汪杰.猕猴桃扦插生根的生理基础及调控机理研究[D].安徽:安徽农业大学,2001,(6): 96-102
    [160]李忠光,龚明.植物多酚氧化酶活性测定方法的改进[J].云南师范大学学报(自然科学版),2005,(1):44-49
    [161] Balakrishnamurthy, O. Madhava, R. V. N. Changes in phenols during rhizogensis in rosa (Rosa bourboniana Desp. [J] Curr. Sci., 1988,57(17):960-962
    [162] Hartman, T. & Kseter, D. E. Plant propagation principke and practice: 3nd [M]. New Delhi: Prentice Hall of India.1976:47-86
    [163]张宇和.果树繁殖.上海.上海科学技术出版社,1984,210-213
    [164]李明,黄卓烈,谭绍满,等.难易生根桉树过氧化物酶活性及其同工酶多型性比较研究[J].华南农业大学学报,2000,(21):56-59
    [165] Foong, T. W., Barnes, M. F. The levels of reserve metabolites and oxidative enzymes in the cutting of easy-to-root and difficult-to-root rhodotendrons.[J]. Biochem Physiology.1981,176:206-216
    [166] Berthon, J. Y. et al., Early tests using phenolic compounds and xidase activity to improve in vitro rooting of Sequoiadendon giganteum (Lind1). Sausurea ,1993(24) :7-13
    [167] Pacheco, P. et al., Flavonoids as regulators and markers of root formation by shoots of Eucalyptus globulus raised in vitro. Plant Perox. Newslett., 1995 (5) : 9-12
    [168] Surholt E. & Hoesel W. Screening for flavonol 3-glycoside specificβ-glycosidesa in plant using a spectrometric enzymatic assay[J]. Phytochemistry,1978(17):873-877
    [169]宋丽红,曹帮华.光叶楮扦插生根的吲哚乙酸氧化酶、多酚氧化酶、过氧化物酶活性变化研究[J].武汉植物学研究,2005,23(4):347-350
    [170] Calderon-Baltierra X. V. Changes in peroxides activity during root Formation in Eucalyptus globules shoots raised in vitro [J]. Plant Per ox Newsletter, 1994 (4): 27-29
    [171] Moncousin C. h. Peroxides as a marker for rooting improve-meant of clones of vat is cultured in vitro [A]. In: Gripping H etal. eds. Molecular And Physiological A sects of Plant Peron i-dase[C]. Geneva: University of Geneva, 1986: 379-385
    [172] Pacheco Petal. Falconoid as regulators and markers of root formation By shoots of Eucalyptus globules raises in vitro [J]. 1995 (5): 9-12
    [173] Gaspar T., Panel, C. D., Haggle, et al. Peroxides in plant growth, differentiation, and development processes[A]. lob Rzewski J.H Gripping, C Panel, 2000, 4: 125-152
    [174] Gaspar T., Panel C., Thorpe J., Kevels C. Peroxides 1970-1980. A Survey of Their Biochemical and Physiological Roles in Higher Plants [M]. Geneva: University of Geneva, 1992: 25-32
    [175]李明,黄卓烈,谭绍满.难易生根桉树多酚氧化酶、吲哚乙酸氧化酶及其同工酶的比较研究[J].林业科学研究,2000,13(5):493-500
    [176]黄卓烈,李明,詹福建.不同生长素处理对桉树无性系插条氧化氧化酶活性影响的比较研究[J].林业科学,2002,38(4):46-56
    [177] Mato M. C., Rue M. L. Ferro Exchanges in levels of peroxides and phonemics during root formation in vatic cultured in vitro [J]. Physiology Plant.1998, 72: 84-88
    [178] Bassuk N L, Hunter L D, Howard B H. The apparent of polyphone Oxidize and pylori in the production of apple rooting factors [J]. J. Horsts, 1981, 56 (4): 313-322
    [179] Molnar J M, La Croix L J. Studies of the rooting of cuttings of Hydrangea macrophylla: enzyme changes [J]. Can J Bot, 1972, 50: 315-322
    [180] Brunner, H. Influence of various growth substances and metabolic inhibitors on root regenerating tissue of phaseolus vulgaris L. Changes in the contents of growth substances and in peroxidase and IAA oxidase activities[J]. Zeitschrift fur Pflanzenphysiologie, 1978,88,13-23
    [181] weigel, U., Horn, W.& Hock, B. Endogenous auxin levels in terminal stem cuttings of Chrysanthemum morifolium during adventitious rooting [J]. Physiologia Plantarum, 1984, 61, 422-428
    [182] Nag S., Saha K. & Choudhuri MA. Role of auxin and polyamines in adventitious root formation in relation tochanges in compounds involved in rooting [J]. Journal of Plant Growth Regulation, 2001,20, 182-194
    [183] Fabijan. D., Taylor, J.S. & Reid, D.M. Adventitious rooting in hypocotyls of sunflower (Helianthus annus) seedlings.Ⅱ. Action of gibberellins, cytokinins, auxins and ethylene [J]. Physiologia Plantarum, 1981,53,589-597
    [184] Brian, P. W., Hemming, H. G. & Lowe, D. Inhibition of rooting of cuttings by gibberellic acid [J]. Annals of Botany, 1960,24, 407-419
    [185] Kato, J. Studies on the physiological effect of gibberellin.Ⅱ.On the interaction of gibberellin with auxins and growth inhibitors [J]. Physiologia Plantarum, 1958,11, 10-15
    [186] Hartung, W., Ohl, B. & Kummer, V. Abscisic acid and the rooting of Runner Bean cuttings [J]. Zeitschrift fur pflanzenphysiologie, 1980, 98,95-103
    [187] Fernqvist, I. Studies on factors in adventitious root formation[J]. Lantbruskhogskolans Annaler, 1966,32,109-244
    [188] Erikaen, E. N. Root formation in pea cuttings.Ⅲ. The influence of cytokinins at different developmental stages[J]. Physiologia Plantarum, 1974,30,163-167
    [189] Humphries, E. C. Inhibition of root development on petioles and hypocotyls of dwarf bean (phaseolus vulgaris) by kinetin[J]. Physiologia Plantarum, 1960, 12,659-663
    [190] Skoog, F. & Miller, C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro[J]. Symposia of the Society for Experimental Biology, 1957,11, 118-131
    [191] Brian, P. W. & Radley, M. A physiological comparison of gibberellic acid with some auxins[J]. Physiologia Plantarum, 1955,8,899-912
    [192] Skoog, F., Schmtz, R. Y., Bock, r. m. & Hecht, H. M. Cytokinin antagonists: synthesis and physiological effects of 7-substituted 3-methylpyrazolo [4.3-d] pyrimidines[J]. Phytochemistry, 1973,12,25-37
    [193]晁无疾,段丛.去壁低渗法在葡萄染色体观察上的应用[J].葡萄栽培与酿酒,1985,(3):1-3
    [194]李斌,石荫坪,束怀瑞.应用气孔性状对苹果与梨的倍性差别分析[J].果树科学,1999,16(1):9-131
    [195]林盛华,贾定贤,蒲富慎,等.我国苹果品种(系)染色体数目观察[J].中国果树. 1985,(3),33-34
    [196]贺普超.葡萄学[M].北京:中国农业出版社,1999,315-316
    [197]白宝璋.植物生理学测试技术,北京:中国科学技术出版社,37-39
    [198]张振贤.蔬菜生理.北京:中国农业科技出版社,1993:74
    [199] R. Romero-Aranda, B. R. Bondada, J. P. Syvertsen and J. W. Grosser. Leaf Characteristics and Net Gas Exchange of Diploid and Autotetraploid Citrus[J]. Annals of Botany, 1997,79:153-160
    [200]刘庆忠,刘鹏,赵红军,等.同源四倍体皇家嘎啦苹果的生物学及光合生理特性研究[J].国农业科学,2002,35(1):1573-15782
    [201]万寅生,刘惠吉.二倍体与四倍体矮脚黄白菜光合特性比较[J].中国蔬菜,1998(1):38-39
    [202]刘文革,阎志红,王鸣.不同染色体倍性西瓜光合速率日变化的研究[J].中国西瓜甜瓜,2003(2):4-6
    [203]徐伟钰,张蜀宁,万双粉,等.二四倍体萝卜光合特性比较研究[J].国生态农业学报,2008,16(1):164-167
    [204]傅亚萍,颜红岚,李玲方,等.不同染色体倍性水稻植株光合特性的研究[J].中国水稻科学,1999,13(3):157-160
    [205]蒋观敏,罗耀武,李喆浩.同源四倍体高梁不育系和保持系的生物学及生理特性研究[J].作物学报,2000,26(4):444-448
    [206]何长征,刘明月,宋勇,等.马铃薯叶片光合特性的研究[J].湖南农业大学学报(自然科学版),2005,31(5):518-520
    [207]刘振岩,李振三.山东果树.上海:上海科学技术出版社,2000:166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700