用户名: 密码: 验证码:
支持向量机及密码子偏性在序列识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组计划和模式生物基因组计划的完成,公共数据库中生物数据的增长速度越来越快。如何从海量的生物数据中解读、提取和获得有用的生物信息,已成为基因组计划下一步亟待解决的问题。
     本课题的主旨是尝试利用机器学习的方法并结合某些核酸或者蛋白的序列特征来解决一些生物信息学中的问题。具体研究可以分为二个部分:基因同义密码子使用偏性进行的分析;以密码子使用偏性作为序列特征,利用支持向量机来对生物序列进行的识别。
     在第一部分中,我们对A型流感病毒、衣原体以及酵母的密码子使用模式进行了分析,并且对导致这些物种采用各自密码子使用模式的内在因素进行了探讨。基因组的碱基组成和基因翻译选择的压力被认为是决定物种基因密码子使用的最主要的两种因素。但是,在我们所分析的生物中,这些内在因素并不尽相同。除了上述的两种主要因素,我们发现DNA复制过程中引起的链间的碱基差异、基因所编码蛋白的亲疏水性、基因的功能类型和基因所处区域的减数分裂重组率等都是能影响基因的同义密码子使用偏性的因素。这些探讨性的研究对于理解物种的进化以及指导基因的体外表达都有着重要作用。
     我们还发现在基因的不同区段里,其密码子使用偏性也有区别。为此,我们定义了相关的统计量:密码子区段使用偏性。通过对酵母和冠状病毒基因的计算分析,我们发现在mRNA编码起始端附近区域的密码子使用偏性与整条序列的偏性存在着差别:稀有密码子相对于其它区段来说,更倾向于出现在编码区的起始位点附近,这可以用“弱势密码子调节假说”来解释。另外,我们也观察到,在冠状病毒基因编码终止端附近,弱势密码子出现的频率也相对较高,我们推测,这也许与基因的表达调控有关。
     在论文的第二部分中,我们利用支持向量机,结合基因的同义密码子使用偏性,对生物信息学中的一些热点问题进行了研究:我们首次利用核酸序列的信息对G蛋白偶联受体分子的类型进行识别(前人主要利用的是氨基酸序列信息),并取得了很好的预测效果;我们独创性地对酵母基因组减数分裂重组冷热点区的ORF序列进行了分类,结果表明密码子使用偏性是很好的区分重组冷热点的统计量,我们还发现重组冷热点区ORF所编码的蛋白序列存在氨基酸组成上的差异;我们考察了使用支持向量机与密码子使用偏性对细菌基因组水平转移基因进行识别的能力,我们提出,在对细菌基因组的水平转移基因进行识别时,要将受体基因组前导链和滞后链上的基因区别对待,这样在对水平转移基因的预测时会取得更好的结果。另外,我们利用支持向量机技术,使用双联核苷酸使用频率作为序列特征,对干扰RNA的降解效率进行识别,我们取得的预测效果超过通常基于序列特征的打分算法。
With the achievement of genome project of human and some other model organisms, the amount of available biological data in public databases grows more and more rapidly. How can we learn biological information from these raw data? It has been an urgent problem in genome project.
     In this paper, synonymous codon usage of genes in influenza A viruses, chlamydiae and yeast is analyzed. It is found that codon usage is influenced by several factors. Although genomic base composition and gene expression level are thought to be the most dominant factors which can affect codon usage, other factors such as strand-specific mutational bias, hydropathy level of corresponding protein, gene function and meiotic recombination rate are also related to codon usage variation.
     It is assumed that codon usage is alterable in different regions of a given gene. The synonymous codon usage in the translational initiation and termination regions of genes in yeast and Coronavirus is analyzed. It is found that most minor codons are preferentially used in the translational initiation region, which is thought to have a negative effect on gene expression and can be explained by the‘minor codon modulator hypothesis’. Besides, minor codons are observed to be preferentially used in the terminal regions of genes in Coronavirus, which may also regulate the level of gene expression.
     Based on the result of codon usage analysis, support vector machine (SVM) is applied to solve several hot problems in bioinformatics. First, the information of nucleotide sequence is firstly used to recognize the family of G-protein coupled receptors, which leads to a high prediction accuracy. Second, a novel SVM method is presented for classification of meiotic recombination hot and cold ORFs located in hotspots and coldspots respectively in Saccharomyces cerevisiae, which relies on codon composition differences. Moreover, it is found that there is a considerable correlation between meiotic recombination rate and amino acid composition of certain residues, which probably reflects the structural and functional dissimilarity between the hot and cold groups. Third, the prediction of the horizontally transferred genes is improved by a SVM based algorithm which deals with the genes on the leading strand and the lagging strand separately. In addition, a small interfering RNA (siRNA) efficacy prediction algorithm is developed by using SVM with dinucleotide composition as sequence attribute. This algorithm achieves a better performance than several previous published methods.
引文
1. Snyder M. Completion of a rough draft of the DNA sequence of human: an important milestone [J]. Funct Integr Genomics, 2000, 1(3): 153
    2. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome [J]. Nature, 2001, 409: 860 – 921
    3. Jasny B R, Kennedy D. The Human Genome [J]. Science, 2001, 291: 1153
    4. Venter J C, Adams M D, Myers E W, et al. The Sequence of the Human Genome [J]. Science, 2001, 291: 1304-1351
    5. Bensmail H, Haoudi A. Postgenomics: proteomics and bioinformatics in cancer research [J]. J Biomed Biotechnol, 2003, 2003: 217-230
    6. Chakrabarty A M. Environmental biotechnology in the postgenomics era [J]. Biotechnol Adv, 2003, 22(1-2): 3-8
    7. Steinmetz L M, Davis R W. Maximizing the potential of functional genomics [J]. Nature Reviews Genetics, 2004, 5: 190 -201
    8. 袁建刚, 周严, 强伯勤. 基因组 [M]. 北京: 科学出版社, 2003. 1-3
    9. Johnson R S. The human genome project: what impact on basic research [J]? FASEB J, 1987, 1(6): 502-505
    10. Smith L M, Automated. DNA sequencing and the analysis of the human genome [J]. Genome, 1989,
    31(2): 929-937
    11. Watson J D, Jordan E. The Human Genome Program at the National Institutes of Health [J]. Genomics, 1989, 5(3): 654-656
    12. Barnhart B J. The human genome project: a DOE perspective [J]. Basic Life Sci, 1988, 46: 161-166
    13. Barnhart B J. The Department of Energy (DOE) Human Genome Initiative [J]. Genomics, 1989, 5(3): 657-660
    14. McKusick V A. The Human Genome Organization: history, purposes and membership [J]. Genomics, 1989, 5(2): 385-387
    15. Dulbecco R A. Turning point in cancer research, sequencing the human genome [J]. Science, 1986, 231: 1055-1056
    16. Blattner F R, Plunkett G, Bloch C A, et al. The complete genome sequence of Escherichia coli K-12 [J]. Science, 1997, 277: 1453-1474
    17. Foury F, Roganti T, Lecrenier N, et al. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae [J]. FEBS Lett, 1998, 440 (3):325-331
    18. Drickamer K, Dodd R B. C-Type lectin-like domains in Caenorhabditis elegans: predictions from the complete genome sequence [J]. Glycobiology, 1999, 9(12):1357-1369
    19. Inouye S, Yuki S, Saigo K. Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element 297 [J]. Eur J Biochem, 1986, 154(2): 417-425
    20. Taylor R N. The future of endometriosis research: genomics and proteomics [J]? Gynecol Obstet Invest, 2004, 57(1): 47-49
    21. Blueggel M, Chamrad D, Meyer H E. Bioinformatics in proteomics [J]. Curr Pharm Biotechnol, 2004, 5(1): 79-88
    22. Lowe D, and Jermutus L. Combinatorial protein biochemistry for therapeutics and proteomics [J]. Curr Pharm Biotechnol, 2004, 5(1): 17-27
    23. Sung Y H, Song J, Lee H W. Functional genomics approach using mice [J]. J Biochem Mol Biol, 2004,37(1): 122-32
    24. Mori H. From the sequence to cell modeling: comprehensive functional genomics in Escherichia coli [J]. J Biochem Mol Biol, 2004, 37(1): 83-92
    25. Preiss T. Functional genomics: strict tempo and hierarchical vocabularies [J]. Genome Biol, 2004, 5(2): 307
    26. Auffray C, Imbeaud S, Roux-Rouquie M, et al. From functional genomics to systems biology: concepts and practices [J]. C R Biol, 2003, 326(10-11): 879-92
    27. Boguski M S. Bioinformatics [J]. Curr Opin Genet Dev, 1994, 4(3): 383-288
    28. Benton D. Bioinformatics: principles and potential of a new multidisciplinary tool [J]. Trends Biotechnol, 1996, 14(8): 261-272
    29. Ruediger N. Bioinformatics: new frontier calls young scientists [J]. Science, 1996, 273: 265.
    30. Gershon D, Sobral B W, Horton B, et al. Bioinformatics in a post-genomics age [J]. Nature, 1997, 389: 417-422
    31. Koonin S E. An independent perspective on the Human Genome Project [J]. Science, 1998, 279: 36-37
    32. Andrade M A, Sander C. Bioinformatics: from genome data to biological knowledge. Curr Opin Biotechnol, 1997, 8(6): 675-683
    33. 陈润生. 生物信息学 [J]. 生物物理学报, 1999, 15(1): 5-12
    34. 陈润生. 当前生物信息学的重要研究任务 [J]. 生物工程进展, 1999, 19(4): 11-14
    35. Jain E. Current trends in bioinformatics [J]. Trends Biotechnol, 2002, 20(8): 317-319
    36. Bassett D E, Eisen M B, Bogushi M S. Gene expression informatics - it’s all in your mine [J]. Nature Genetics supplement, 1999, 21: 51-55
    37. 孙啸, 陆祖宏, 谢建明. 生物信息学基础 [M]. 北京: 清华大学出版社, 2005. 1-35
    38. Jimenez-Sanchez G, Childs B, Valle D. Human disease genes [J]. Nature, 2001, 409: 853-855
    39. Futreal P A, Kasprzyk A, Birney E, et al. Cancer and genomics [J]. Nature, 2001, 409: 850-852
    40. Lyall A. Bioinformatics in the pharmaceutical industry [J]. Bioinformatics, 1996, 14: 308-321
    41. 赵善荣, 林茂伟. 陈凯先生物信息学在药物设计中的应用 [J]. 药学进展, 1997, 21(2): 65-70
    42. 李伟章, 恽榴红. 生物信息学与新药研究[J]. 科学, 1999, 51(2): 17-20
    43. Drews J. Drug discovery: a historical perspective [J]. Science, 2000, 287: 1960-1964
    44. Vapnik V. The nature of statistical learning theory [M]. New York: Springer, 1995. 1-10
    45. Vapnik V. Statistical learning theory [M]. New York: Wiely, 1998. 1-10
    46. Brown M, Grundy W, Lin D , et al. Knowledge-based analysis of microarray gene expression data by using support vector machines [J]. Proc Natl Acad Sci USA, 2000 , 97 (1): 262-267
    47. Zien A, Ratsch G, Mika S, et al. Engineering support vector machine kernels that recognize translation initiation sites [J]. Bioinformatics, 2000, 16 (9): 799-807
    48. Hua S J, Sun Z R. Support vector machine approach for protein subcellular localization prediction [J]. Bioinformatics, 2001, 17(8): 721-728
    49. Cai Y D, Liu X J, Xu X B, et al. Support vector machines for prediction of protein subcellular location [J]. Mol Cell Biol Res Commun, 2000, 4(4): 230-233
    50. Cai Y D, Liu X J, Xu X B, et al. Support vector machines for prediction of protein subcellular location by incorporating quasi-sequence-order effect [J]. J Cell Biochem, 2002, 84(2): 343-348
    51. Liu H X, Yao X J, Zhang R S, et al. Prediction of the tissue/blood partition coefficients of organic compounds based on the molecular structure using least-squares support vector machines [J]. J Comput Aided Mol Des, 2005, 30: 1-10
    52. Zhang X H, Leslie C S, Chasin L A. Computational searches for splicing signals [J]. Methods, 2005, 37(4): 292-305
    53. Hayashida Y, Honda K, Osaka Y, et al. Possible prediction of chemoradio sensitivity of esophageal cancer by serum protein profiling [J]. Clin Cancer Res, 2005, 11(22): 8042-8047
    54. Honda K, Hayashida Y, Umaki T, et al. Possible detection of pancreatic cancer by plasma protein profiling [J]. Cancer Res, 2005, 65(22): 10613-10622
    55. Lin H H, Han L Y, Cai C Z, et al. Prediction of transporter family from protein sequence by support vector machine approach [J]. Proteins, 2005, 62(1): 218-231
    56. Bhardwaj N, Langlois R E, Zhao G, et al. Kernel-based machine learning protocol for predicting DNA-binding proteins [J]. Nucleic Acids Res, 2005, 33(20): 6486-6493
    57. Niijima S, Kuhara S. Multiclass molecular cancer classification by kernel subspace methods with effective kernel parameter selection [J]. J Bioinform Comput Biol, 2005, 3(5): 1071-88
    58. Burgoon L D, Eckel-Passow J E, Gennings C, et al. Protocols for the assurance of microarray data quality and process control [J]. Nucleic Acids Res, 2005, 33(19): e172
    59. Al-Shahib A, Breitling R, Gilbert D. Feature selection and the class imbalance problem in predicting protein function from sequence [J]. Appl Bioinformatics, 2005, 4(3): 195-203
    60. Tsai C H, Chen B J, Chan C H, et al. Improving disulfide connectivity prediction with sequential distance between oxidized cysteines [J]. Bioinformatics, 2005, 21(24): 4416-4419
    61. Harz M, Rosch P, Peschke K D, et al. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions [J]. Analyst, 2005, 130(11): 1543-1550
    62. Rausch C, Weber T, Kohlbacher O, et al. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs) [J]. Nucleic Acids Res, 2005, 33(18): 5799-5808
    63. Duan K B, Rajapakse J C, Wang H, et al. Multiple SVM-RFE for gene selection in cancer classification with expression data [J]. IEEE Trans Nanobioscience, 2005, 4(3): 228-234
    64. Yang Z R, Johnson F C. Prediction of T-cell epitopes using biosupport vector machines [J]. J Chem Inf Model, 2005, 45(5): 1424-1428
    65. Man T K, Chintagumpala M, Visvanathan J, et al. Expression profiles of osteosarcoma that can predict response to chemotherapy [J]. Cancer Res, 2005, 65(18): 8142-8150
    66. Lo S L, Cai C Z, Chen Y Z, et al. Effect of training datasets on support vector machine prediction of protein-protein interactions [J]. Proteomics, 2005, 5(4): 876-884
    67. Riedesel H, Kolbeck B, Schmetzer O, et al. Peptide binding at class I major histocompatibility complex scored with linear functions and support vector machines [J]. Genome Inform Ser Workshop Genome Inform, 2004,15(1): 198-212
    68. Nguyen M N, Rajapakse J C. Multi-class support vector machines for protein secondary structure prediction [J]. Genome Inform Ser Workshop Genome Inform, 2003, 14: 218-227
    69. Pham T H, Satou K, Ho T B. Prediction and analysis of beta-turns in proteins by support vector machine [J]. Genome Inform Ser Workshop Genome Inform, 2003, 14: 196-205
    70. Busuttil S, Abela J, Pace G J. Support vector machines with profile-based kernels for remote protein homology detection [J]. Genome Inform Ser Workshop Genome Inform. 2004, 15(2): 191-200
    71. Wang L H, Liu J, Li Y F, et al. Predicting protein secondary structure by a support vector machine based on a new coding scheme [J]. Genome Inform Ser Workshop Genome Inform, 2004, 15(2): 181-190
    72. Burckin T, Nagel R, Mandel-Gutfreund Y, et al. Exploring functional relationships between components of the gene expression machinery [J]. Nat Struct Mol Biol, 2005, 12(2): 175-182
    73. Briem H, Gunther J. Classifying "kinase inhibitor-likeness" by using machine-learning methods [J]. Chembiochem, 2005, 6(3): 558-566
    74. Wang Y, Tetko I V, Hall M A, et al. Gene selection from microarray data for cancer classification--a machine learning approach [J]. Comput Biol Chem, 2005, 29(1): 37-46
    75. Begg R, Kamruzzaman J. A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data [J]. J Biomech, 2005, 38(3): 401-408
    76. Ghosh T. Studies on codon usage in Entamoeba histolytica [J]. International Journal of Parasitology, 2000, 30: 715-722
    77. Karlin S, Mrazek J. What drives codon choices in human genes [J]? J Mol Biol, 1996, 262: 459-472
    78. Gouy M, Gautier C. Codon usage in bacteria: correlation with gene expressivity [J]. Nucleic Acids Res, 1982, 10: 7055-7074
    79. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system [J]. J of Mol Biol, 1981, 151: 389-409
    80. Sharp P, Tuohy T, Mosurski K. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes [J]. Nucleic Acids Res, 1986, 14: 5125-5143
    81. Thanaraj T, Argos P. Ribosome-mediated translational pause and protein domain organization [J]. Protien Science, 1996, 5: 1594-1612
    82. Thanaraj T, Argos P. Protein secondary structural types are differentially coded on messenger RNA [J]. Protien Science, 1996, 5: 1973-1983
    83. 柳树群, 刘次全. mRNA的序列、结构以及翻译速率与蛋白质结构的关系 [J]. 动物学研究, 1999, 20(56): 457-461
    84. Xie T, Ding D. The relationship between synonymous codon usage and protein structure [J]. FEBS Letters, 1998, 434: 93-96
    85. Oresic M, Shalloway D. Specific correlations between relative synonymous codon usage and protein secondary structure [J]. Journal of Molecular Biology, 1998, 281: 31-48
    86. Morton B R. Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability [J]. J Mol Evol, 1993, 37: 273-280
    87. McInerney J O. GCUA: general codon usage analysis [J]. Bioinformatics, 1998, 14(4): 372-373
    88. Comeron J M, Aguade M. An evaluation of measures of synonymous codon usage bias [J]. J Mol Evol, 1998, 47(3): 268-274
    89. Sharp P M, Li W H The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications [J]. Nucleic Acids Res, 1987, 15: 1281-1295
    90. Gribskov M, Devereux J, Burgess R R. The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression [J]. Nucleic Acids Res., 1984; 12: 539-549
    91. Mathe C, Peresetsky A, Dehais P, et al. Classification of Arabidopsis thaliana gene sequences: clustering of coding sequences into two groups according to codon usage improves gene prediction [J]. J Mol Biol, 1999, 285: 1977-1991
    92. Borodovsky M, Danchin A. Detection of new genes in a bacterial genome using Markov models for three gene classes [J]. Nucl. Acid Res, 1995, 23: 3554-3562
    93. Chiapello H, Risler J L. Codon usage as a tool to predict the cellular location of eukaryotic ribosomal proteins and aminoacyl-tRNA synthetases [J]. Nucleic Acids Res, 1999, 27: 2848-2851
    94. Ma J M, Zhou T, Gu W J, et al. Cluster analysis of the codon use frequency of MHC genes from different species [J]. Biosystems, 2002, 65(2-3): 199-207
    95. 周童, 马建民, 顾万君, 等. 哺乳动物MHC密码子使用概率的聚类分析[J]. 东南大学学报(自然科学版), 2001, 31(2), 1-5
    96. Adzhubei I A, Adzhubei A A. ISSD Version 2.0: taxonomic range extended [J]. Nucleic Acids Res, 1999, 27: 268-271
    97. Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from the international DNA sequence databases: status for the year 2000 [J]. Nucleic Acids Res, 2000, 28: 292
    98. Pesole G, Attimonelli M, Liuni S. A backtranslation method based on codon usage strategy [J]. Nucleic Acids Res, 1988, 16: 1715-1728
    99. Zhou T, Gu W J, Ma J M, et al. Analys is of synonymous codon usage in H5N1 virus and other influenza A viruses [J]. Biosystems 2005, 81: 77-86
    100. Gu W J, Zhou T, Ma J M, et al. Analysis of synonymous codon usage in SARS Coronavirus and other viruses in the Nidovirales [J]. Virus Res, 2004, 101: 155-161
    101. Gu W J, Zhou T, Ma J M, et al. The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens [J]. Biosystems, 2004, 73: 89-97
    102. Zhou T, Gu W J, Ma J M, et al. Site discrepancy of synonymous codon usage in SARS coronavirus and other viruses in Coronaviridae [J]. Journal of Southeast University (English Edition), 2005, 21(2): 203-206
    103. Zhou T, Gu W J, Ma J M, et al. Synonymous codon usage in environmental chlamydia UWE25 reflects an evolutional divergence from pathogenic chlamydiae [J]. Gene, 368: 117-125
    104. Zhou T, Lu Z H, Sun X. The correlation between recombination rate and codon bias in yeast mainly results from mutational bias associated with recombination rather than Hill-Robertson interference [CD]. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005
    105. Wright F. The ‘effective number of codons’ used in a gene [J]. Gene, 1990, 87: 23-29
    106. John A N. Accounting for background nucleotide composition when measuring codon usage bias [J]. Mol Biol Evol, 2002, 19(8): 1390-1394
    107. Letondal C. A web interface generator for molecular biology programs in Unix [J]. Bioinformatics, 2001, 17(1): 73-82
    108. http://acnuc.univ-lyon1.fr/mva/coa.html [OL], DNA sequences multivariate analysis server
    109. http://www.genetique.uvsq.fr/afc.html [OL], Codon usage correspondence analysis server
    110. Norton P, McGregor R. MFC开发Windows 95/NT 4 应用指南 [M]. 北京: 清华大学出版社, 1998. 1-10
    111. 何希琼. 实用Access详解 [M]. 北京: 电子工业出版社, 1996. 1-10
    112. 苏金明, 傅荣华. 统计软件SPSS for Windows实用指南 [M]. 北京: 电子工业出版社, 2000. 1-10
    113. 阮桂海. SPSS实用教程 [M]. 北京: 电子工业出版社, 2000. 1-10
    114. Simon H A. 人类的认知:思维的信息加工理论 [M]. 北京: 科学出版社, 1986. 1-50
    115. 杨炳儒. 知识工程于知识发现 [M]. 北京: 冶金工业出版社, 2000. 1-50
    116. Han J W, Kamber M. Data Mining :Concepts and Techniques [M]. USA: Morgan Kaufmann Publishers, 2001. 1-10
    117. Mitchell T M. 机器学习 [M]. 北京: 机械工业出版社, 2003. 1-10
    118. 张军平. 生物信息学研究报告 [EB/OL]. http://www.iipl.fudan.edu.cn/people/zhangjp/publications, 2002-8-28
    119. 闫友彪, 陈元琰. 机器学习的主要策略综述 [J]. 计算机应用研究, 2004, 7: 4-13
    120. 张学工. 关于统计学习理论与支持向量机 [J]. 自动化学报, 2000, 26(1): 32-42
    121. Vapnik V N. An overview of statistical learning theory [J]. IEEE Trans on NN, 1999, 10(3): 988-999
    122. Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
    123. 肖健华, 吴今培, 杨叔子. 基于SVM的综合评价方法研究 [J]. 计算机工程, 2002, 28(8): 28-30
    124. Sch?lkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution [J]. Neural Comput, 2001, 13: 1443-1471
    125. Sandberg R, Branden C, Ernberg I, et al. Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G + C content [J]. Gene, 2003, 311: 35-42
    126. Karlin S, Burge C, Campbell A M. Statistical analyses of counts and distributions of restriction sites in DNA sequences [J]. Nucleic Acids Res, 1992, 20: 1363-1370
    127. Goldman, N. Nucleotide, dinucleotide and trinucleotide frequencies explain patterns observed in chaos game representations of DNA sequences [J]. Nucleic Acids Res, 1993, 21: 2487-2491
    128. Karlin S, Ladunga I. Comparisons of eukaryotic genomic sequences [J]. Proc Natl Acad Sci, 1994, 91: 12832-12836
    129. Karlin S, Mrazek J, Campbell A M. Compositional biases of bacterial genomes and evolutionary implications [J]. J Bacteriol, 1997, 179: 3899-3913
    130. Richard J E, Lin K, Tan, T. A functional significance for codon third bases [J]. Gene, 2000, 245: 291-298
    131. Romero H, Zavala A, Musto H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces [J]. Nucleic Acids Res, 2000, 28: 2084-2090
    132. McLean M J, Wolfe K H, Devine K M. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J Mol Evol, 1998, 47: 691-696
    133. Kliman R M, Irving N, Santiago M. Selection conflicts, gene expression, and codon usage trends in yeast [J]. J Mol Evol, 2003, 57: 98-109
    134. Kliman R M, Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster [J]. Mol Biol Evol, 1993, 10: 1239-1258
    135. Marais G, Mouchiroud D, Duret L. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes [J]. Proc Natl Acad Sci USA, 2001, 98: 5688-5692
    136. Marais G, Piganeau G. Hill-Robertson interference is a minor determinant of variations in codon bias across Drosophila melanogaster and Caenorhabditis elegans genome [J]. Mol Biol Evol, 2002, 19: 1399-1406
    137. Comeron J M, Kreitman M, Aguade M. Natural selection on synonymous sites is correlated with gene length and recombination rate in Drosophila [J]. Genetics, 1999, 151: 239-249
    138. McVean G A T, Charlesworth B. The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation [J]. Genetics, 2000, 155: 929-944
    139. Perry J, Ashworth A. Evolutionary rate of a gene affected by chromosomal position [J] Curr Biol, 1999, 9: 987-989
    140. Fullerton S M, Bernardo Carvalho A, Clark A G. Local rates of recombination are positively correlated with GC content in the human genome [J]. Mol Biol Evol, 2001, 18: 1139-1142
    141. 童克中. 基因及其表达 [M]. 北京: 科学出版社, 1998. 1-100
    142. Lewis R M. PROBFIND: a computer program for selecting oligonucleotide probes from peptide sequences [J]. Nucleic Acids Res, 1986, 14: 567-570
    143. Drummond M, Stamper J. DNAPROBE, a computer program which generates oligonucleotide probes from protein alignments [J]. Nucleic Acids Res, 1999, 27: 3493-3494
    144. Webster R G. A molecular whodunit [J]. Science, 2001, 293 (5536): 1773-1775
    145. Osterhaus A D, Rimmelzwaan G F, Martina B E , et al. Influenza B virus in seals [J]. Science, 2000, 288(5468): 1051-1053
    146. 郭潮潭, 陈勇. 流感病毒的受体结构与跨越物种传播的分子机制 [J]. 国外医学·流行病学传染病学分册, 2005, 32(2): 80-83
    147. 蔡剑平, 肖尧, 周晓阳. 禽流感病毒的生物学特性及其实验室检测 [J]. 中华检验医学杂志, 2005, 28(3): 232-234
    148. Reynolds D. Avian influenza [J]. Vet Rec, 2005, 157(19): 598
    149. Neumann G, Fujii K, Kino Y, et al. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production [J]. Proc Natl Acad Sci USA, 2005, 102(46): 16825-16829
    150. Taubenberger J K, Reid A H, Lourens R M, et al. Characterization of the 1918 influenza virus polymerase genes [J]. Nature, 2005, 437(7060): 889-893
    151. Beigel J H, Farrar J, Han A M, et al. Avian influenza A (H5N1) infection in humans [J]. N Engl J Med, 2005, 353(13): 1374-1385
    152. Mase M, Kim J H, Lee Y J, et al. Genetic comparison of H5N1 influenza A viruses isolated from chickens in Japan and Korea [J]. Microbiol Immunol, 2005, 49(9): 871-874
    153. Bartlett J G, Hayden F G. Influenza A (H5N1): will it be the next pandemic influenza? Are we ready [J]? Ann Intern Med, 2005, 143(6): 460-462
    154. Kwon Y K, Joh S J, Kim M C, et al. Highly pathogenic avian influenza (H5N1) in the commercial domestic ducks of South Korea [J]. Avian Pathol, 2005, 34(4): 367-370
    155. Li Z, Chen H, Jiao P, et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model [J]. J Virol, 2005, 79(18): 12058-12064
    156. Maines T R, Lu X H, Erb S M, et al. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals [J]. J Virol, 2005, 79(18): 11788-11800
    157. Hoffmann E, Lipatov A S, Webby R J, et al. Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines [J]. Proc Natl Acad Sci USA, 2005, 102(36): 12915-12920
    158. Klenk H D. Infection of the endothelium by influenza viruses [J]. Thromb Haemost, 2005, 94(2): 262-265
    159. Coulombier D, Ekdahl K. H5N1 influenza and the implications for Europe [J]. BMJ, 2005, 331(7514): 413-414
    160. Sturm-Ramirez K M, Hulse-Post D J, Govorkova E A, et al. Are ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus in Asia [J]? J Virol, 2005, 79(17): 11269-11279
    161. Ng E K, Cheng P K, Ng A Y, et al. Influenza A H5N1 detection [J]. Emerg Infect Dis, 2005, 11(8): 1303-1305
    162. Sims L D, Domenech J, Benigno C, et al. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia [J]. Vet Rec, 2005, 157(6): 159-164
    163. Tian G, Zhang S, Li Y, et al. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics [J]. Virology, 2005, 341(1): 153-162
    164. Ferguson N M, Cummings D A, Cauchemez S, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia [J]. Nature, 2005, 437(7056): 209-214
    165. Longini I M, Nizam A, Xu S, et al. Containing pandemic influenza at the source [J]. Science, 2005, 309(5737): 1083-1087
    166. Choi Y K, Nguyen T D, Ozaki H, et al. Studies of H5N1 influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004 [J]. J Virol, 2005, 79(16): 10821-10825
    167. Drake J W, Holland J J. Mutation rates among RNA viruses [J]. Proc Natl Acad Sci USA, 1999, 96: 13910-13913
    168. Gareth M J, Edward CH. The extent of codon usage bias in human RNA viruses and its evolutionary origin [J]. Virus Res, 2003, 92: 1-7
    169. Adams M J, Antoniw J F. Codon usage bias amongst plant viruses [J]. Arch Virol, 2004, 149: 113-135
    170. Krushkal J, Li W H. Substitution rates in the hepatis delta virus [J]. J Mol Evol, 1995, 41: 721-726
    171. Zhao K N, Liu W J, Frazer I H. Codon usage bias and A+T content variation in human papillomavirusgenomes [J]. Virus Res, 2003, 98: 95-104
    172. Moriyama E N, Powell J R. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli [J]. Nucleic Acids Res, 1998, 26: 3188-3193
    173. 邱昌庆. 衣原体分类研究进展 [J]. 中国兽医科技, 2000, 30(12): 19-21
    174. Bush R M, Everett K D E. Molecular Evolution of the Chlamydiaceae [J]. Int J Syst Evol Microbiol, 2001, 51: 203-220
    175. Horn M, Collingro A, Schmitz-Esser S, et al. Illuminating the evolutionary history of chlamydiae [J]. Science, 2004, 304: 728-730
    176. Lobry J R. Asymmetric substitution patterns in the two DNA strand of bacteria [J]. Mol Biol Evol, 1996, 13: 660-665
    177. Lobry J R, Sueoka N. Asymmetric directional mutation pressures in bacteria [J]. Genome Biol, 2002, 3: research0058.1-research 0058.14
    178. Grocock R J, Sharp P M. Synonymous codon usage in Pseudomonas aeruginosa PA01 [J]. Gene, 2002, 289: 131-139
    179. Gupta S K, Ghosh T C. Expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa [J]. Gene, 2001, 273: 63-70
    180. McInerney J O. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi [J]. Proc Natl Acad Sci USA, 1998, 95: 10698-10703
    181. Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein [J]. J Mol Biol, 1982, 157: 105-132
    182. Andersson S G E, Sharp P M. Codon usage and base composition in Rickettsia prowazekii [J]. J Mol Evol, 1996, 42: 525-536
    183. Carmen P, Jennifer J W. A strong effect of AT mutational bias on amino acid usage in Buchnera is mitigated at high-expression genes [J]. Mol Biol Evol, 2002, 19: 1575-1584
    184. Moran N. Accelerated evolution and Muller’s ratchet in endosymbiotic bacteria [J]. Proc Natl Acad Sci USA, 1996, 93: 2873-2878
    185. Rispe C, Delmotte F, van Ham R C, et al. Mutational and selective pressures on codon and amino acid usage in Buchnera, endosymbiotic bacteria of aphids [J]. Genome Res, 2004, 14: 44-53
    186. Kowalczuk M, Mackiewicz P, Mackiewicz D, et al. DNA asymmetry and the replicational mutational pressure [J]. J Appl Genet, 2001, 42: 553-577
    187. Tillier E R, Collins R A. The contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes [J]. J Mol Evol, 2000, 50: 249-257
    188. Frank A C, Lobry J R. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms [J]. Gene, 1999, 238: 65-77
    189. Hodges P E, McKee A H, Davis B P, et al. The Yeast Proteome Database (YPD): a model for the organization and presentation of genome-wide functional data [J]. Nucleic Acids Res, 1999, 27(1):
    9-73
    190. Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles [J]. Nucleic Acids Res, 2003, 31(1): 374-378
    191. Lichten M, Goldman A S. Meiotic Recombination Hotspots [J]. Annu Rev Genet, 1995, 29: 423-444
    192. Baudat F, Nicolas A. Clustering of meiotic double-strand breaks on yeast chromosome III [J]. Proc Natl Acad Sci USA, 1997, 94: 5213-5218
    193. Kirkpatrick D T. Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes [J]. Mol Cell Biol, 1999, 19: 7661-7671
    194. Gerton J L, DeRisi J, Shroff R, et al. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae [J]. Proc Natl Acad Sci USA, 2000, 97: 11383-11390
    195. Birdsell J A. Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution [J]. Mol Biol Evol, 2002, 19(7): 1181-1197
    196. Bennetzen J L, Hall B D. Codon selection in yeast [J]. J Biol Chem, 1982, 257: 3026-3031
    197. Sharp P M, Cowe E. Synonymous codon usage in Saccharomyces cerevisiae [J]. Yeast, 1991, 7: 657-678
    198. Sharp P M, Li W. Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons [J]. Nucleic Acids Res, 1986, 14: 7737-7749
    199. Chen G T, Inouye M. Suppression of the negative effect of minor arginine codons on gene expression: preferential usage of minor codons within the first 25 of the Escherichia coli genes [J]. Nucleic Acid Res, 1990, 18: 1465-1473
    200. Ramesh V, De A, Nagaraja V. Engineering hyperexepression of bacteriophage Mu C protein by removl of secondary structure at the translation initiation region [J]. Protein Engineering, 1994, 7: 1053-1057
    201. Humphreys D P, Sehdev M, Chapman A P. High-level periplasmic expression in Escherichia coli using a eukaryoticsignal peptide: Importance of codon usage at the 5’ end of the coding sequence [J]. Protein Expr Purif, 2000, 20(2): 252-264
    202. Vervort E B, van Ravestein A, van Peij N N. Optimizing heterologous expression in dectyostelium: Importance of 5’ codon adaptation [J]. Nucleic Acids Res, 2000, 28(10): 2069-2074
    203. Hooper S D, Berg O G. Grandients in nucleotide and codon usage along Escherichia coli genes [J]. Nucleic Acids Res, 2000, 28(18): 3517-3523
    204. Ohno H, Sakai H, Washio T, et al. Preferential usage of some minor codons in bacteria [J]. Gene, 2001, 276: 107-115
    205. 李炜疆. 同义密码子用语的位置依赖 [J]. 生物物理学报, 2001, 17(3): 529-534
    206. Zhou T, Gu W J, Ma J M, et al. Site discrepancy of synonymous codon usage in SARS coronavirus and other viruses in Coronaviridae [J]. Journal of Southeast University (English Edition), 2005, 21(2): 203-206
    207. 尹燕斌, 罗静初, 姜颖. G蛋白偶联受体及其生物信息学研究 [J]. 科学通报, 2003, 48(4): 307-312
    208. Gudermann T, Nurnberg B, Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: Structure and function [J]. J Mol Med, 1995, 73 (2): 51-63
    209. Palczewsi K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: A G protein-coupled receptor [J]. Science, 2000, 289 (5480): 739 – 745
    210. 赵玉华, 刘秉文. G蛋白偶联受体的研究进展 [J]. 国外医学·分子生物学分册, 2002, 24 (5): 302-305
    211. Bockaert J, Pin J P. Molecular tinkering of G protein-coupled receptors: an evolutionary success [J]. EMBO, 1999, 18: 1723-1729
    212. Horn F, Mokrane M, Weare J, et al. G-protein coupled receptors or the power of data [A]. Genomics and Proteomics: Functional and Computational Aspects [C]. New York: Kluwer Academic/Plenum, 2000. 192 -214
    213. Lapinsh M, Gutcaits A, Prusis P, et al. Classification of G-protein-coupled receptors by alignment independent extraction of principal chemical properties of primary amino acid sequences [J]. Protein Sci, 2002, 11(4): 795-805
    214. Joost P, Methner A. Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands [J] . Genome Biol, 2002, 3(11): 1-16
    215. 候永丰, 李通化. HMM用于G蛋白偶联受体超家族的识别 [J]. 同济大学学报(自然科学版), 2004, 32(12): 1696-1700
    216. Karchin R, Karplus K, Haussler D. Classifying G-protein coupled receptors with support vector machines [J]. Bioinformatics, 2002, 18: 147-159
    217. Bhasin M, Raghava GPS. GPCRpred: an SVM-based method for prediction of families and subfamilies of G-protein coupled receptors [J]. Nucleic Acids Res, 2004, 32: W383-W389
    218. Karlin S, Blaisdell B E, Bucher P. Quantile distributions of amino acid usage in protein classes [J]. Protein Eng, 1992, 5: 729-38
    219. Cedano J, Patrick A, PerezPons J, et al. Relation between amino acid composition and cellular location of proteins [J]. J Mol Biol, 1997, 266: 594-600
    220. Nakashima H, Nishikawa K. Discrimination of intracellular and extracellular proteins using amino acid compositions and residuepair frequencies [J]. J Mol Biol, 1994, 238: 54-61
    221. 高玲, 慕小倩, 林煜, 等. 真核生物减数分裂重组热点的研究进展 [J]. 遗传, 2005, 27(4): 641-650
    222. Baudat F, Nicolas A. Clustering of meiotic double-strand breaks on yeast chromosome III [J]. Proc Natl Acad Sci USA, 1997, 94: 5213-5218
    223. Klein S, Zenvirth D, Dror V, et al. Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes [J]. Chromosoma, 1996, 105: 276-84
    224. Zenvirth D, Arbel T, Sherman A, et al. Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae [J]. EMBO J, 1992, 11: 3441-3447
    225. Lin K, Kuang Y, Joseph J S, et al. Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: lessons from supervised machine learning in functional genomics [J]. Nucleic Acids Res, 2002, 30: 2599-2607
    226. Dufraigne C, Fertil B, Lespinats S, et al. Detection and characterization of horizontal transfers in prokaryotes using genomic signature [J]. Nucleic Acids Res, 2005, 33(1): e6
    227. 欧剑虹, 谢志雄, 陈向东, 等. 水平基因转移 [J]. 遗传, 2003, 25(5): 623-627
    228. 江凌晓, 俞守义. 基因水平转移 [J]. 中国地方病学杂志, 2004, 23(5): 509-511
    229. Syvanen M. Horizontal gene transfer: evidence and possible consequences [J]. Annu Rev Genet, 1994, 28: 237-261
    230. Koonin E V, Makarova K S, Aravind L. Horizontal gene transfer in prokaryotes: quantification and classification [J]. Annu Rev Microbiol, 2001, 55: 709-742
    231. Kobayashi I, Nobusato A, Kobayashi-Takahashi N, et al. Shaping the genome-restriction-modification systems as mobile genetic elements [J]. Curr Opin Genet Dev, 1999, 9: 649-656
    232. Naito T, Kusano K, Kobayashi I. Selfish behavior of restriction-modification systems [J]. Science, 1995, 267, 897-899
    233. Ochman H, Lawrence J G, Groisman E A. Lateral gene transfer and the nature of bacterial innovation [J]. Nature, 2000, 405: 299-304
    234. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms [J]. Mol Biol Evol, 1985, 2: 13-34
    235. Karlin S, Mrazek J, Campbell A M. Codon usages in different gene classes of the Escherichia coli genome [J]. Mol Microbiol, 1998, 29: 1341-1355
    236. Karlin S, Burge C. Dinucleotide relative abundance extremes: a genomic signature [J]. Trends Genet, 1995, 11: 283-290
    237. Karlin S, Mrazek J, Campbell A. Compositional biases of bacterial genomes and evolutionary implications [J]. J Bacteriol, 1997, 179: 3899-3913
    238. Karlin S, Mrazek J. What drives codon usage in humangenes [J]? J Mol Biol, 1996, 262: 459-472
    239. Pride D T, Blaser M J. Identification of horizontally acquired genetic elements in Helicobacter pylori and other prokaryotes using oligonucleotide difference analysis [J]. Genome Lett, 2002, 1: 2-15
    240. Hooper S, Berg O. Detection of genes with atypical nucleotide sequence in microbial genomes [J]. J Mol Evol, 2002, 54: 365-375
    241. Sandberg R, Winberg G, Branden C, et al. Capturing whole-genome characteristics in short sequences using a naive Bayesian Classifier [J]. Genome Res, 2001, 11: 1404-1409
    242. Tsirigos A, Rigoutsos I. A new computational method for the detection of horizontal gene transfer events [J]. Nucleic Acids Res, 2005, 33(3): 922-933
    243. Jain R, Rivera M C, Lake J A. Horizontal gene transfer among genomes: the complexity hypothesis [J]. Proc Natl Acad Sci USA, 1999, 96: 3801-3806
    244. Brochier C, Philippe H, Moreira D. The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome [J]. Trends Genet, 2000, 16: 529-533
    245. Doolittle R F, Handy J. Evolutionary anomalies among the aminoacyl-tRNA synthetases [J]. Curr Opin Genet Dev, 1998, 8: 630-636
    246. Wolf Y I, Aravind L, Grishin N V, et al. Evolution of aminoacyl-tRNA synthetases—analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events [J]. Genome Res, 1999, 9: 689-710
    247. Woese C R, Olsen G J, Ibba M, et al. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process [J]. Microbiol Mol Biol Rev, 2000, 64: 202-236
    248. Fire A, Xu S, Montgommery M. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature, 1998, 391(6593): 806-811
    249. Zamore P, Tuschl T, Sharp P, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals [J]. Cell, 2000, 101(1): 25-33
    250. Nykanen A, Haley B, Zamore P. ATP requirements and small interfering RNA structure in the RNA interference pathway [J]. Cell, 2001, 107(3): 309-321
    251. Elbashir S, Harborth J, Lendeckel W. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature, 2001, 411(6836): 494-498
    252. Holen T, Amarzguioui M, Wiiger M T, et al. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor [J]. Nucleic Acids Res, 2002, 30(8): 1757-1766
    253. Brummelkamp T, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells [J]. Science, 2002, 296(5567): 550-553
    254. Rubinson D, Dillon C, Kwiatkowski A, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference [J] Nat Genet, 2003, 33(3): 401-406
    255. Dykxhoorn D, Novina C, Sharp P. Killing the messenger: short RNAs that silence gene expression [J]. Nat Rev Mol Cell Biol, 2003, 4(6): 457-467
    256. McManus M, Sharp P. Gene silencing in mammals by small interfering RNAs [J]. Nat Rev Genet, 2002, 3(10): 737-747
    257. Zamore P. RNA interference: listening to the sound of silence [J]. Nat Struct Biol, 2001, 8(9): 746-750
    258. Hannon G. RNA interference [J]. Nature, 2002, 418(6894): 244-251
    259. Amarzguioui M, Prydz H. An algorithm for selection of functional sirna sequences [J]. Biochem Biophys Res Commun, 2004, 316(4): 1050-1058
    260. Harborth J, Elbashir S M, Vandenburgh H, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing [J]. Antisense Nucleic Acid Drug Dev, 2003, 13(2): 83-105
    261. Hsieh A C, Bo R, Manola J, et al. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens [J]. Nucleic Acids Res, 2004, 32(3): 893-901
    262. Khvorova A, Reynolds A, Jayasena S D. Functional sirnas and mirnas exhibit strand bias [J]. Cell, 2003, 115: 209-216
    263. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference [J]. Nature Biotech, 2004, 22(3):326-330
    264. Vickers T A, Koo S, Bennett C F, et al. Efficient reduction of target rnas by small interfering RNA and RNase H-dependent antisense agents. a comparative analysis [J]. J Biol Chem, 2003, 278(9): 7108-7118
    265. Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective sirna sequences for mammalian and chick RNA interference [J]. Nucleic Acids Res, 2004, 32: 936-948
    266. Takasaki S, Kotani S, Konagaya A. An effective method for selecting siRNA target sequences in mammalian cells [J]. Cell Cycle, 2004, 3(6): 790-795
    267. Karlin S, Cardon L R. Computational DNA sequence analysis [J]. Annu Rev Microbiol, 1994, 44: 619-654
    268. S?trom P, Sn?ve O J. A comparison of siRNA efficacy predictors [J]. Biochem Biophys Res Commun, 2004, 321(1): 247-253
    269. Perriere G, Thioulouse J. Use and misuse of correspondence analysis in codon usage studies [J]. Nucleic Acids Res, 2002, 30: 4548-4555
    270. Chou K C, Elrod D W. Prediction of membrane protein types and subcellular locations [J]. PROTEINS: Structure, Function, and Genetics, 1999, 34:137-153
    271. Sarda D, Chua G H, Li K B, et al. pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties [J]. BMC Bioinformatics, 2005, 6:152
    272. Cai Y D, Chou K C. Predicting subcellular localization of proteins in a hybridization space [J]. Bioinformatics, 2004, 20: 1151-1156
    273. Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction [J]. Bioinformatics, 2001, 17: 721-728
    274. Reinhardt A, Hubbard T. Using neural networks for prediction of the subcellular location of proteins [J]. Nucleic Acids Res, 1998, 26: 2230-2236
    275. Chou K C, Elrod D W. Prediction of membrane protein types and subcellular locations [J]. Proteins, 1999, 34: 137-153
    276. Bhasin M, Raghava G P S. ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST [J]. Nucleic Acids Res, 2004, 32: W414-419

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700