用户名: 密码: 验证码:
光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文较为系统和全面的介绍了Lagrange有限元法、光滑粒子法和一种光滑粒子与有限元的耦合算法的基本原理及离散思想。详细讨论了这三种方法中的一些基本问题,如有限元法中的离散格式、滑移面问题,光滑粒子法中的离散格式、核函数、光滑长度等问题,以及耦合算法中有限元单元向光滑粒子的转换问题、光滑粒子与有限元交界面上的滑移计算和交界面附近光滑粒子的计算等问题。最后将耦合算法应用于一维应变波传播和高速碰撞计算,通过与有限元及纯光滑粒子法的对比计算说明耦合算法的特点和长处。
     首先介绍了采用Lagrange有限元离散连续介质力学守恒方程的基本思想和计算步骤。讨论了有限元法在高速侵彻模拟计算中出现的滑移面问题和单元大畸变问题,给出了相应的处理方法。
     然后利用插值理论,给出光滑粒子算法中函数及函数各阶导数的核估计,分析了光滑粒子法离散连续介质力学守恒方程组的基本方法及相应的离散形式。此外还讨论了光滑粒子法中的一些基本问题,比如核函数的性质、光滑长度的选取、人工粘性、守恒光滑法、本构关系以及该方法计算的主要步骤和时间步长选取等。
     接着介绍了一种光滑粒子与有限元的耦合算法,这种算法在初始时刻用有限元方法建模,随着变形的增大,大变形区域的有限元单元将自动转换成光滑粒子进行模拟计算,从而保证计算的正常进行。讨论和分析了耦合算法中的三个主要难点,有限元单元向光滑粒子的转换问题、光滑粒子与有限元交界面上的滑移计算问题和交界面附近光滑粒子的计算问题,提出了解决的方法并给出了全部算式。
     粒子搜索算法在耦合算法和光滑粒子法中都起着非常重要的作用,直接决定了计算效率,以此为目标,利用核函数影响域的局域性,提出了一种搜索简便、计算效率获得很大提高的分区搜索算法。边界的确定也是耦合算法与光滑粒子法的一个难点。本文通过引入粒子边界圆的概念,提出了依据边界圆的覆盖方式区分边界点和内点,有效地解决了边界难以确定的问题。
     将耦合算法应用于一维应变波计算是冲击力学数值方法研究中的重要内容之一。一维应变波算例的结果显示,耦合算法完全可以用于弹塑性波传播和演化规律的数值模拟,其精度与有限元法和纯光滑粒子法相当,但其计算效率要比光滑粒子法高。这为材料和结构冲击响应的数值方法研究积累了经验,拓宽了耦合算法的应用范围。
     最后本文研究了二维轴对称条件下光滑粒子法的离散思想、方法和全部算式,并将耦合算法成功应用于高速碰撞和侵彻贯穿模拟计算。通过Taylor碰撞的考核计算,验证了耦合算法计算高速碰撞和大变形问题的能力和精度。在高速碰撞和侵彻贯穿计算中,比较了有限元法、纯光滑粒子法和耦合算法的计算结果,讨论了三种
In this thesis the basis theory and discretization method of Lagrange Finite Element Method(FEM), Smoothed Particle Hydrodynamics(SPH) and a coupling method (linking of Smoothed Particle Hydrodynamics methods to standard finite element methods) are described. Some related problems are discussed, such as discretization forms and sliding surface in FEM; discretization forms, kernel functions and smoothing length in SPH; conversion of elements to particles, sliding algorithms on the interface between elements and particles and the computation of the particles near the interface in coupling method. Finally, the coupling method is applied to the study of one-dimensional strain wave propagation and hyperveiocity impact phenomenon, the results show that the method has good performance in the numerical study of impact dynamics.
    First, the basic idea of the discretization method of conservation equations in continuum mechanics with Lagrange Finite Element Method and the flowchart of computations are described. The problems of sliding surface and severely distorted element in hyperveiocity impact simulations are discussed, and the corresponding solving ways are proposed.
    Kernel estimate of a function and its derivatives are the key point in SPH method and their various forms are obtained by kernel interpolation theory. Based on the analysis of SPH method, the discretization formations of conservation equations in continuum mechanics are established. In addition, several topics, such as kernel function properties, the choice of smoothing length, artificial viscosity, constitution relations, conservative smoothing method and flowchart of computations, are discussed in details.
    Then a coupling method (linking of Smoothed Particle Hydrodynamics methods to standard finite element methods) is proposed, which creates the model with finite element at the beginning and automatically convert distorted elements into smoothed particles during dynamic deformation. Three difficulties in the coupling method are discussed, such as the conversion of elements to particles, the contact and sliding algorithms between elements and particles and the computation of the particles near the interface, and some ways are proposed to solve these problems.
    Particle searching algorithm plays a very important role in coupling method and SPH computations since it takes most computational time and hence it determines the computation efficiency. Considering kernel function as a strong compact support function, a subdomain searching algorithm is suggested, which is a simple method and increases computation efficiency greatly. One problem in coupling method and SPH is hard to define the boundary. In order to solve the problem, we use the concept of particle boundary circle to determine it and the boundary particle is identified by whether the particle circle is
引文
[1] S. N. Atluri and T. Zhu, A new meshless local Petrov-Galekin(MLPG) approach in computational mechanics. Comput. Mech. 22;117-127(1998).
    [2] S. W. Attaway, M. W. Heinstein and J. W. Swegle, Coupling of smooth particle hydrodynamics with the finite element method. Nucl. Engng Design 150, 199-205(1994)
    [3] I. Babuska and J. M. Melenk, The partition of unity finite element method. University of Maryland, Technical Note BN-1185(1995).
    [4] D. S. Balsara, Von neumann stability analysis of smoothed particle hydrodynamics— suggestions for optimal algorithms. J. Comput. Phys. 121:357-372(1995).
    [5] V. V. Bashurov, G. V. Bebenin and A. G. Ioilev, Numerical simulation of rod particles hy-pervelocity impact effectiveness at various attack angles. Int. J. Impact Engng, Vol.20, pp.79-88(1997).
    [6] V. V. Bashurov, G. V. Bebenin and G. V. Belov, Experimental modeling and numerical-simulation of high-velocity and hypervelocity space debris impact to spacecraft shield protection, Int. J. Impact Engng. 20: 69-78(1997).
    [7] T. Belytschko, Y. Y. Lu and L. Gu, Element-free Galerkin methods. Int. J. Num. Meth Eng. 37:229-256(1994).
    [8] T. Belytschko, Y. Krongauz and D. Organ, Meshless methods: An overview and recent developments. Comput. Meth. Appl. Mech. Engng. 139:3-47(1996).
    [9] W. Benz and E. Asphaug, Impact simulations with fracture. I.Methods and tests, ICARUS 107:98-116(1994).
    [10] W. Benz and E. Asphaug, Simulations of brittle solids using smoothed particle hydrodynamics, COmput. Phys. COmm. 87:253-265(1995).
    [11] J. Bonet and T.-S.L. Lok, Variational and momentum preservation aspects of smoothed particle hydrodynamics formulations. Comput. Methods Appl. Mech. Engng. 180:97-115(1999).
    [12] J. Bonet and S. Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with application in metal forming simulation. Int. J. Numer. Meth. Engng. 47: 1189-1214(2000).
    [13] J. Bonet, B. Hassani and L.-T. Lok, Corrected smooth particle hydrodynamics-a reproducing kernel meshless method for computational mehanics, in: Computational Mechanics in UK -5th ACME Annual Conference, 1997.
    [14] J. Bonet and S. Kulasegaram, A simplified approach to enhance the performance of smooth particle hydrodynamics methods. Applied Mathematics and Computation 126:133-155(2002).
    [15] D. L. Book, J. P. Boris and K. Hain, Flux-corrected transport, 2.Generalizations of the method, J. Comput. Phys., 18(1975),248.
    [16] J. P. Boris and D. L. Book, Flux-corrected transport, 1. SHASTA, A fluid transport algorithm that works, J. Comput. Phys., 11(1973),38.
    [17] J. P. Boris and D. L. Book, Flux-corrected transport algorithm of fluids, J. Comput. Phys, 20(1976), 397.
    [18] 贝新源,岳宗五,“三维SPH程序及其在斜高速碰撞问题的应用”,计算物理,Vol.14,No.2:155-166(1997)。
    [19] R. Capuzzo-Dolcerta and R. D. Lisio, A criterion for the choice of the interpolation kernel in smoothed particle hydrodynamics. Applied Numericl Mathematics, 34: 363-371(2000).
    [20] J. K. Chen, J. E. Beraun, C. J. Jib, An improvement for tensile instability in smoothed particle hydrodynamics. Comput. Mech. 23: 279-287(1999).
    [21] J. K. Chen, J. E. Beraun and C. J. Jih, Completeness of corrective smoothed particle method for tinear elastodynamics. Computational Mechanics, 24:273-285(1999).
    [22] J. K. Chen, J. E. Beraun, T. C. Carney, A corrective smoothed particle method for boundary value problems in heat conduction. Int. J. Num. Meth. Eng. 46: 231-252(1999).
    [23] J. K. Chen and D. F. Medina, The effects of projectiles shape on laminated composite perforation. Composites Science and Technology 58: 1629-1639(1998).
    [24] J. K. Chen and J. E. Beraun, A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput. Methods Appl. Mech. Engng., 190: 225-239(2000).
    [25] J. K. Chert, F. A. Allahdadi and T. C. Carney, High-velocity impact of graphite/epoxy composite laminates. Compos. Sci. technol.,57: 1369-1379(1997)
    [26] J. K. Chen,D. F. Medina and F. A. Allahdadi, Dynamic damage of composite plates to high intensity loadings. Dynamic Response and Behavior of Composites, Vol. 46, ed C. T. Sun. ASME, pp.17-28(1995).
    [27] J. K. Chen, J. E. Beraun and C. J. Jib, A corrective smoothed particle method for transient elastoplastic dynamics. Computational Mechanics, 27: 177-187(2001).
    [28] R. Courant, K. O. Friedrichs and H. Lewy, Mathematishe Annalen, Vol. 100, 1928.
    [29] C. A. Duarte and J. T. Oden, An h-p adaptive method using clouds. Comput. Meth. Appl. Mech. Eng. 139: 237-262(1996).
    [30] C. A. Duarte and J. T. Oden. Hp clouds-a meshless method to solve boundary-value problems. Technical Report 95-05. Texes Institute for Computational and Applied Mathematics. University of Texas at. Austin. 1995.
    [31] C. T. Dyka and R. P. Ingel, An approach for tension instability in smoothed particle hydro-dynamics(SPH). Comput. Struct. 57: 573-580(1995).
    [32] C. T. Dyka, P. W. Randies and R. P. Ingel, Stress points for tension instability in SPH. International Journal for Numerical Methods in Engineering,40:2325-2341(1997).
    [33] H. D. Espinosa, S. Dwivedi, P. D. Zavattieri and G. Yuan, A numerical investigation of penetration in multilayered material/structure systems. Int. J. Solids Structures, Vol.35, No.22, pp.2975-3001(1998).
    [34] D. A. Fulk and D. W. Quinn, An analysis of 1-D smoothed particle hydrodynamics kernels. J. Comput. Phys. 126:165-180(1996).
    [35] R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astr. Soc. 181, 375-389(1977).
    [36] R. A. Gingold and J. J. Monahan, Kernel estimates as a bais for general particle methods in hydrodynamics. J. Comput. Phys. 46:429-453(1982).
    [37] D. E. Grady and M. E. Kipp, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17: 147-157(1980).
    [38] J. P. Gray, J. J. Monaghan and R. P. Swift, SPH elastic dynamics. Comput. Methods Appl. Mech. Engng., 190:6641-6662(2001).
    [39] W. H. Gust, High impact deformation of metal cylinders at elevated temperatures, J. Appl. Phys., Vol. 53, No. 5, (3566-3575)1982.
    [40] C. J. Hayhurst and R. A. Clegg, Cylindericlly symmetric SPH simulations of hypervelocity impacts on thin plates. Int. J. Impact Engng. Vol.20, pp.337-348(1997).
    [41] L. Hernquist and N. Katz, Ap. J. Suppl. 70:419(1989).
    [42] G. R. Johnson and T. J. Holmquist, Evaluation of cylinder-impact test data for constitutive model constants. J.Appl. Phy. Vol.64, No. 8:3901-3910.
    [43] G. R. Johnson, E. H. Petersen and R. A. Stryk, Incorportation of an SPH option in the EPIC code for a wide range of high velocity impact computations. Int. J. Impact Engng 14, 385-394(1993).
    [44] G. R. Johnson, Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nucl. Engng Design 150, 265-274(1994).
    [45] G. R. Johnson and S. R. Beissel, Normalized smoothed functions for SPH impact computations. Int. J. Numer. Meth. Eng.39: 2725-2741(1996).
    [46] G. R. Johnson, Stryk, R. A. Beissel, S. R., SPH for High velocity impact computations. Comput. Mech. Appl. Mech. Eng. 139: 347-373(1996).
    [47] G. R. Johnson. Artificial viscosity effects for SPH impact computations. Int. J. Impact Engng.. Vol.18, No.5, pp.477-488(1996).
    [48] G. R. Johnson, S. R. Beissel and R. A. Stryk, A generalized particle algorithm for high velocity impact computations. Computational Mechanics. 25:245-256(2000).
    [49] S. R. Beissel and G. R. Johnson. A three-dimensional abrasion algorithm for projectile mass loss during penetration. Int. J. of Impact Engng., Vol.27, pp.771-789(2002).
    [50] S. R. Beissel and G. R. Johnson, An abrasion algorithm for projectile mass loss during penetration. Int. J. of Impact Engng., Vol.24, pp.103-106(2000).
    [51] G. R. Johnson, High velocity Calculation in three dimensions. J. of Appl. Mech., Vol.99, pp.95-100(1997).
    [52] E. N. Folson, Projectile penetration into Concrete with an inline hole. Report UCRL-53786, 1987.
    [53] E. J. Kansa, Multiquadrics - a scattered data approximation scheme with application to computational fluid dynamics:I. surface approximation and partial derivative estimates. Comput. Math. Applic. 19:127-145(1990).
    [54] O. Kum, W. G. Hoover and H. A. Posch, Viscous conducting flows with smooth-particle applied mechanics. Phys. Rev. E 52: 4899-4908(1995).
    [55] P. Lancaster and K. Salkauskas, Surfaces generateed by moving least-squares methods, Math. Comput. 37(1981)141-158.
    [56] J. Zukas, Survey of Computer for Impact Simulation, in: J.Zukas, edit, High Velocity Impact Dynamics, Wiley(1990), pp:593-714.
    [57] W. Herrmann. Nonlinear Transient Response of Solids. Shock and Vilration Computer programs Reviews and Summaries, Edited by Walter and B.Pilkey,151-172(1975).
    [58] L. E. Schwer and J. Day. Computational techniques for penetration of concrete and steel targets by ollique impact of deformable projectiles. Nuclear Engng and Design,125:215-238(1991).
    [59] W. W. johnson and C. E. Anderson, History and application of Hydrocodes in Hypervelocity Impact. Int. J.Impact Engrg.5(1987), pp:423-439.
    [60] M. Lee and Y. H. Yoo, Analysis of ceramic/metal armour systems. Int. J. Impact Engng., 25:819-829(2001).
    [61] L. D. Libersky and A. G. Petschek. Smoothed particle hydrodynamics with strength of materials. Advances in the Free Lagrange Method, Lecture Notes in Physics 395, pp. 248-257(1990).
    [62] L. D. Libersky, A. G. Petschek. High strain lagrangian hydrodynamics: a three-dimensional sph code for dynamic material response. J. Comput. Phys. 109:67-75(1993).
    [63] W. K. Liu. J. A(?), S. Jun and T. Belytschko. Repreducing kernel particle methods for elast(?) and plastic problems. In: Benson BJ, Asaro RA(eds.) Advanced Computational Methods for Material Modeling, Vol. AMD 180 and PVP 268, ASME, New York, pp.l75-190(1993).
    [64] W. K. Liu and S. Li, Moving least-square reproducing kernel method. Comput. Methods Appl. Mech. Engng. 139:159-193(1996).
    [65] W. K. Liu, C. Oberste-Brandenburg, Reproducing kernel and Wavelet particle mehtods. In:Cuscumano et al.(ed.) Aerospace Structures: Nonlinear Dynamics and System Response, AD33, ASME, New York, pp. 39-56(1993).
    [66] W. K. Liu, S. Jun an Y. F. Zhang, Reproducing Kernel Particle Methods. Int. J. Nume. Methods Fluids 20;1081-1106(1995).
    [67] W. K. Liu, An introduction to wavelet Reproducing Kernel Particle Methods. USACM Bull. 8(1):3-16(1995).
    [68] W. K. Liu and Y. J. Chen, Wavelet and multiple scale Reproducing Kernel Methods. Int. J. Numer. Methods Fluids 21:901-932(1995).
    [69] W. K. Liu, Y. Chen and C. T. Chang, Advances in multiple scale Kernel Particle Methods. Comput. Mech. 18(2):73-111(1996).
    [70] L. B. Lucy, A numerical approach to the testing of the fission hypothesis. Astronomical Journal, Vol.82, No.12: 1013-1024(1977).
    [71] D. A. Mandell and C. A. Wingate, Prediction of material strength and fracture of glass using the SPHINX smoothed particle hydrodynamics code, LANL report LA-12830, Los Alamos National Lab., Los Alamos, NM87545,1994.
    [72] D. A. Mandell, C. A. Wingate and L. A. Schwalbe, Computational brittle fracture using smooth particle hydrodynamics. 14th U.S. Army Symposium on Solid Mechanics, 1996.
    [73] D. A. Mandell, C. A. Wingate and L. A. Schwalbe, Simulation of a ceramic impact experiment using the sphinx smooth particle hydrodynamics code. 16th International Symposium on Ballistics, San Francisco, CA, 1996.
    [74] C. Maveyraud, J. P. Vila and D. Sornette, Numerical modeling of the behaviour of high pressure vessel under hypervelocity impact. Mec. Ind. 2:57-62(2001).
    [75] D. F. Medina and J. K. Chen, Three-dimensional simulations of impact induced damage in composite structures using the parallelized SPH mehtod. Composites Part A, 31:853-860(2000).
    [76] J. J. Monaghan, Why particle methods work. SIAM Stat. Comput.3(4),422(1992).
    [77] J. J. Monaghan and R. A. Gingold. Shock simulation by the particle method sph. J. Comput. Phys. 52(2), 374-389(1983).
    [78] J. J. Monaghan, Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys.. 30:54(?)
    574(1992).
    [79] J. J. Monaghan, SPH and riemann solvers. J. Comput. Phys. 136:298-307(1997).
    [80] J. J. Monaghan, Implicit SPH drag and dust gas dynamics. J. Comput. Phys. 138: 801-820(1997).
    [81] J. P. Morris, A study of the stability properties of SPH. Applied Mathematics reports and preprints, 94/22.
    [82] J. P. Morris, An overview of the method of smoothed particle hydrodynamics, report, 1995.
    [83] J. P. Morris and J. J. Monaghan, A switch to reduce SPH viscosity, J. Comput. Phys. 136: 41-50(1997).
    [84] J. P. Morris, P. J. Fox and Y. Zhu, Modeling low Reynods number incompressible flows using SPH. J. Comput. Phys. 136: 214-226(1997).
    [85] B. Nayroles, G. Touzot and P. Villon. Generalzing the finite element method: diffuse approximation and diffuse elements, Comput. Mech. 10(1992)307-318.
    [86] E. Onate, S. Idelson, T. Fischer and Zienkiewicz, A finite point method for analysis of fluid flow problems. 9th Int. Conf. on Finite Elements in Fluids, Venezia, Italy(1995).
    [87] A. N. Parshikov, S. A. Medin and I. I. Loukashenko, Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities. Int. J. Impact Engng. 24: 779-796(2000).
    [88] A. G. Petschek and L. D. Libersky, Cylindrical Smoothed Particle Hydrodynamics. J. Comput. Phys. 109: 76-83(1993).
    [89] S. Plimpt0n, S. Attaway and B. Hendrckson, Parallel transient dynamics simulations: Algorithms for contact detection and smoothed particle hydrodynamics. J. Parallel Distributed Comput. 50: 104-122(1998).
    [90] H. A. Posch, W. G. Hoover and O. Kum, Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics. Phys. Rev. E 52: 1711-1719(1995).
    [91] S. Qian and J. Weiss, Wavelet and the numerical solution of partial differential equations. J. Comput. Phys. 106: 155-175(1993).
    [92] P. W. Randles and L. D. Libersky, Smoothed Particle Hydrodynamics: some recent improvements and application. Comput. Methods Appl. Mech. Engng. 139: 375-408(1996).
    [93] P. W. Randles and L. D. Libersky, Normalized SPH with stress points. International Journal for Numerical Methods in Engineering, 48: 1445-1462(2000).
    [94] P. W. Randles, T. C. arney and L. D. Libersky, Calculation of oblique impact and fracture of tungsten cubes using smoothes particle hydrodynamics. Int. J. Impact Engng. 17: 661-672(1995).
    [95] D. Sulsky and J. U. Blackbi(?). A numerical method for suspension flow. J. Comput. Phys. 96: 339-368(1991).
    [96] J. W. Swegle, S. W. Attaway, M. W. Heinstein, F. J. Mello and D. L. Hicks, An analysis of smoothed particle hydrodynamics, SAND93-2513, Sandia National Laboratories, Albuquerque, NM, March 1994.
    [97] J. W. Swegle, D. L. Hicks and S. W. Attaway. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116: 123-134(1995).
    [98] H. T. Takeda, S. M. Miyama and M. Sekiya, Numerical simulation of viscous flow by smoothed particle hydrodynamics. Progr. Theoret. Phys. 92: 939-960(1994)
    [99] G. I. Taylor, Proc. R. Soc. A 194, 89(1948).
    [100] R. Vignjevic and J. Campbell, A penalty approach for contact in smoothed particle hydrodynamics. Int. J. Impact Engng. 23: 945-956(1999).
    [101] R. Vignjevic, J. Campbell and L. Libersky, A treatment of zero-energy modes in the smoothed particle hydrodynamics method. Comput. Methods Appl. Engng. 184: 67-85(2000).
    [102] Y. Wen, D. L. Hicks and J. W. Swegle, Stabilizing SPH with conservative smoothing, Sandia National Laboratory, Report No. SAND94-1932-UC-705, Albuquerque, NM, 1994.
    [103] M. L. Wilkins and M. W. Guinan, Impact of cylinders on a rigid boundary, J. Appl. Phys., Vol. 44, No. 3, (1200-1206)1973.
    [104] C. A. Wingate and R. Stellingwerf, SPHINX users manual, Laur 93-2476, Los Alamos National Lab.. Los Alamos. NM87545. 1994.
    [105] 王礼立,《应力波基础》。
    [106] 刘小萍等,“穿甲机理的数值研究”,力学学报,No.3,318-327(1990)。
    [107] Song Sun-cheng and Duan Zhu-Ping, Iterative method using consistent mass matrix in axisymmetrial Finite Element analysis of hypervelocity impact. Int. J. Impact Engng., Vol. 21, 817-825(1998).
    [108] 王肖钧,肖绍平,胡秀章,“通量修正输运法在动态有限差分和有限元中的应用”,爆炸与冲击,Vol.18,No.3:198-202(1998)。
    [109] 王肖钧,张刚明,刘文韬,周钟,“弹塑性波计算中的光滑粒子法”,爆炸与冲击,Vol.22,No.2,97-103,2002。
    [110] 许沭华,王肖钧等,“预扭转钨合金杆弹侵彻钢靶的数值模拟”,爆炸与冲击,Vol.22,210-215,2002。
    [111] 肖绍平,“有限元和有限差分法计算脉冲载荷产生的结构响应的对比研究”,中国科学技术大学硕士学位论文,1997.12。
    [112] 胡秀章等,“一种弹塑性弹丸侵彻厚靶的滑移面处理”,结构与介质相互作用理论及其应用,1993。
    [113] G. Yagawa, Some remarks on free mesh method: a kind of meshless finite point method. Int. Conf. on Computational Engineering Science, Hawaii, USA(1995).
    [114] S. T. Zalesak, Fully multidiensional flux corrected transport algorithms for fluids, J. Comput. Phys., 31: 335(1979).
    [115] T. Zhu and S. N. Atluri, A local boundary integral equation(LBIE) method in computational mechanics, and a meshless discretization approach. Comput. Mech. 21: 223-235(1998).
    [116] 张锁春,“光滑质点流体动力学(SPH)方法(综述)”,计算物理,Vol.13,No.4:385-397(1996)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700