用户名: 密码: 验证码:
沼液作为水培生菜营养液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机加剧与全球环境恶化加深,沼气技术作为一种优质廉价的生物质能源,不仅可以缓解当前及今后的能源危机,还能有效的解决污染问题,因此沼气发酵技术已得到社会的普遍关注与重视,并越来越多的被用于生产实践。而沼气发酵技术的大量推广应用制造了大量的发酵残留物,发酵残留物的后处理成为一大问题。
     随着蔬菜生产上化肥、农药的大量使用,蔬菜的风味、口感、营养品质、安全品质等已大不如从前,人们对绿色农产品、有机农产品、无公害农产品的需求量快速增长,生产上对有机肥的需求也快速增长,而沼残在作物栽培上的应用正好可以满足这一需求。本试验的主要目的就是希望在对沼液成分分析的基础上将沼液配制成水培生菜的营养液栽培生菜,一方面可以处理沼气发酵残留物,另一方面节约水培栽培成本。
     本试验通过稀释和向沼液中加入各种营养元素,将其配制成不同的营养液栽培生菜,选用生菜品种为广州市伟兴利种子有限公司生产的全年耐抽薹生菜,并对栽培出的生菜的产量、品质和重金属进行了分析,得出里如下结论:
     1、沼液中的营养成分基本可以满足生菜的生长发育的需要;用不同浓度的沼液栽培生菜,稀释10倍时产量最高;对相对生长速率的分析表明,随着浓度的增大,相对生长速率均先增后减,前两次的测量结果,相对生长速率在A4处达最大值,而后两次的结果在A5处达到最大,说明栽培后期沼液浓度可适当加大。
     2、向沼液中加入Fe可以极显著的增加产量,增幅为75.18%,加入P、K可以显著的增加生菜产量,增幅为39.37%、40.63%;向沼液中加入多种营养元素栽培生菜,加入大量元素或者沼液与标液各一半可以极显著的提高生菜的产量,产量增幅分别为45.45%和88.66%,向沼液中补充各种营养元素使其达到标液的配比可以显著的提高生菜的产量,产量增幅为29.44%,其他处理对生菜的产量没有显著的改善。说明沼液和标液各一半栽培生菜时,产量与标液之间的产量没有显著差异,即用沼液配制的营养液达到了标液的产量水平。向沼液中加入各种化肥栽培生菜,加入尿素可以显著的提高生菜的产量,增幅为19.85%,加入三元复合肥可以极显著的提高生菜的产量,产量增幅为37.92%,加入大宝肥对生菜的产量没有显著的提高。
     3、用沼液配制的营养液各处理硝酸盐的含量均明显较标液低,向沼液中加入尿素、三元复合肥或沼液与标液各一半时会明显提高硝酸盐的含量;向沼液中加入尿素、P、K,或沼液与标液各一半,或补充各种营养元素使其配比达到标液相同水平均可以增加各处理Vc含量;向沼液中加入尿素、K、三元复合肥、大宝肥,或同时加入三种大量元素,或沼液与标液各一半均能提高可溶性蛋白含量;除沼液与标液各一半外,其他各处理可溶性糖含量较标液低,向沼液中加入尿素、P、K、Fe等营养元素均可以提高生菜中可溶性糖的含量。
     4、各处理重金属含量均符合国家蔬菜重金属含量限量标准,用沼液配制的各处理重金属含量均较标液高。
With the energy crisis intensified and the global environment pollution deteriorated, biogas technology, as a cheap biomass energy with high quality, not only can ease the current and future energy crisis, but also can effectively solve some of pollution problem. Therefore methane fermentation technology has been widely concerned and highlighted, and more and more being used in the practice. But he promotion of methane fermentation technology produced large amount of fermentation residues. After-treatment of the remnants of fermentation become a major problem.
     As large amount of fertilizers and pesticides used in vegetable production, some qualities of vegetable such as flavor, taste, nutritional quality, safety, etc.,worsened. The demand for pollution-free agricultural products, green agricultural products and organic products grow rapidly, and so do the demand for organic fertilizer. The biogas residues used in crops cultivation meet this demand.
     The main purpose of this test is to made biogas slurry into the nutrient solution for hydroponics of lettuce, through diluting and adding some elements. The lettuce variety we chooce for the test is bolting tolerant lettuce produced by Guangzhou Hennessy Seed Co., Ltd. We analysed the yield, quality and heavy metal content of the lettuce, and reached the following conclusions:
     1. The nutrients contained in the biogas slurry can meet the basic needs of the growth and developments of lettuce; cultivating lettuce with different concentration of biogas slurry, the one diluted 10 times can get the highest output; the relative growth rate analysis showed that as the increase of concentration, the relative growth rate increasd first and then reduced. We can get the biggest relative growth rate at A4 in the first two measureme, and at A5 in the latter two. It reveals that the concentration of the biogas slurry can be higher appropriately later.
     2. Adding Fe into biogas slurry can increase the output very significantly, and the increasing rate is 75.18%; adding K, P can increase the output significantly, and the rates are 45.45%, 88.66%; adding the large number of elements or joining biogas slurry and the standard nutrient solution at the ratio of 1 to 1 can significantly increase the output of lettuce, and the rate is 45.45% and 88.66%; adding various of nutrients to make it reach the standard proportion can increase the yield significantly, and the rate is 29.44%; other treatment can not improve the output significantly. It reveals that joinging half of biogas slurry and half of the standard nutrent solution, the output has no significant difference with the one that of the standard nutrient solution. That is the output of the nutrient made of boigas slurry can reach the level of the standard nutrient solution. Adding a variety of chemical fertilizer to biogas slurry, adding urea can significantly increase the output of lettuce, and the increasing rate is 19.85%; adding ternary compound fertilizer can improve the output significantly, and the rate is 37.92%; adding fertilizer Dabao can not improve the output significantly.
     3. Nitrate content of every treatment made of biogas slurry is obviously lower than standard nutrition; adding urea, ternary compound fertilizer, or joining biogas slurry and standard nutrient solution can increase the nitrate content obviously; adding urea, P, K, or joining slurry and the standard nutrient solution, or adding various of nutrients to make it reach the standard proportion can increase Vc content; adding urea, K, ternary compound fertilizer, Dabao fertilizer or adding three large number elements, or joining biogas slurry and standard nutrition at 1:1 can all increase soluble protein content; except for joining biogas slurry and standard nutrient solution, soluble protein contents of the other treatments are all lower than standard nutrient solution, adding urea, P, K and Fe can increase the soluble protein contents.
     4. The heavy metal content of every treatment are in line with national standards limit, the heavy metal content of every treatment made of biogas slurry is high than that of the standard nutrient solution.
引文
1.艾绍英等.氮素营养条件对菜心吸收矿质养分的影响及其与硝酸盐累积的关系.农业环境科学学报,2003,22(5):578-581
    2.毕崇存,王文,王洁.用沼液喂育肥猪的效果观察.中国沼气,2003,21(1):42
    3.柴晓芹.无土栽培及其发展趋势.甘肃农业科技,1999,1:4-5
    4.陈光明,刘一鸣.世界上开发成功垃圾沼气汽车燃料.能源与环保,2002年7月:24
    5.陈润泽,周生春.无土无公害蔬菜栽培试验总结.南京农专学报.1995,(3):11-14
    6.陈新.推广沼液浸种提高粮食产量.中国沼气,1999,(17):17-19
    7.董德林.沼液分层次利用效果的初步研究.中国沼气,1996,14(2):34-37
    8.段增强,周健民,曹志洪.设施栽培中营养液全自动控制系统的研制.设施农业相关技术,1996:65-68
    9.高云超.我国农村户用型沼气的发展历程及现状分析.广东农业科学.2006年第11期:22
    10.郭红卫.营养与食品安全.上海:复旦大学出版社,2005
    11.郭廷杰.日本的燃料电池发电即将实用化.节能,2003年第3期:52
    12.黄科,吴秋云.无土栽培的现状与展望.福建农业科技,2001,2:14
    13.蒋素娟,胡碧玉,李海燕.沼气新农村的重要能源.中国统计,2007:58
    14.蒋卫杰.我国无土栽培的现状与展望.农村实用工程技术,1997,7:2
    15.金家志,绍风君.沼液在农业上的综合利用.资源节约和综合利用,1991,(2):36-38
    16.李合生,陈翠莲,洪玉枝.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    17.李明树.以农业专家系统为突破口积极推进智能化农业信息技术的示范工程.计算机与农业,2000,(5):1
    18.李式军,高丽红.我国无土栽培研究新技术新成果及发展动向.长江蔬菜,1997,(5):1-5
    19.李涛,万广华,蒋庆功.施肥对蔬菜中硝酸盐含量的影响.土壤肥料,2004,(4):20-21
    20.李铁.北方农村能源生态模式中利用沼气为肥料对番茄产量、品质及植株生理活性指标的研究.[硕士学位论文].沈阳农业大学,2000
    21.李宣恒.无土栽培技术研究的历史、现状与进展.农业系统科学与综合研究,1999,15(4):313-314
    22.李幼霞.沼气系统在持续发展中的作用与地位.环境导报,1994,6:29-31
    23.李正华,厌氧发酵液的抗病防虫机理及其应用技术研究.[硕士学位论文].郑州:河南农业大学,2002
    24.陆卫亚.厌氧发酵技术在垃圾处理方面的应用.城市环境与城市生态,第15卷6期,2002:55-57
    25.罗炳林,覃遵镜,田凤文.沼气综合利用的模式设计与经济效益.中国西部科技,2004,7:72
    26.马文元,郭玉兰.对沼气发酵残留物中活性物质的讨论.中国沼气,1997,11(2):50-51
    27.倪玉芹.防止无公害蔬菜施肥污染的措施.农业环境与发展.2004(3):25
    28.邱凌,杨保平,张正茂.沼液浸种对早地小麦苗期发育的影响.中国沼气,1999-17(1):42-44
    29.全国农业技术推广服务中心编著,中国有机肥料资源,北京:中国农业出版社,1999
    30.上官周平.农业专家系统及其应用.农业现代化研究,1994,15(5):298-301
    31.史雅娟,杨林书.沼气发酵残留物对减少叶菜硝酸盐积累的研究.中国生态农业学报,2002,10(4):58-61
    32.苏海泉.WYK-1型无土栽培营养液自动控制箱.农村实用工程技术,2001,(3)
    33.孙广辉.沼液灌溉对蔬菜产量和品质以及土壤质量的研究.[浙江大学硕士学位论文].杭州:浙江大学图书馆,2006.
    34.孙玉文,郭高.无土栽培的发展及其在现代化农业中的应用.安徽农业科技,2000,(6):30-33
    35.孙竹波,汪东.我国蔬菜无土栽培研究应用进展及发展前景.北方园艺.,2000,(2):11-12
    36.王继军,黄士忠.沼液对农药的增效作用.农业环境保护,1998,17(4):19-20
    37.王宁堂.沼液浸种的技术要点及注意事项.河北农业科技,2002,6:8
    38.王世脊,刘晖.农业专家系统与模拟模型.计算机农业应用,1991,(2):1-7
    39.王志春.信息技术在农业上的应用.农业与技术.2000,20(5):1-3
    40.魏文铎.工程化高效农业.沈阳:辽宁科学技术出版社,1992,12:172-173
    41.翁伯奇,黄勤楼,应朝阳.闽北山区“稻-菜-猪-沼”复合生态系统能流分析.福建农业学报,2001,16(1):61-64
    42.吴爱珍,陈宜,钱能策.沼液防治棉花枯萎病技术的研究.中国沼气,1993,11(2):39-41
    43.吴凡.沼液喂猪效益高.现代农业,2001,(6):16-17
    44.吴巨昌.沼液的饲用药用价值.科学养鱼,1995,(3):12-15
    45.许易琦.沼气的生态经济效益。云南林业调查规划设计,1998,23(2):7-12
    46.杨菲菲.农村沼气建设综合利用的经济效益调查.贵州农业科学,2004,32(4):61-42
    47.杨京平,王兆赛.作物生长模拟模型及其应用.应用生态学报,1999,10(4):501-505
    48.杨威.ASP3.0网络开发技术.北京:人民邮电出版社,2000.10
    49.于海滨.畜禽养殖业沼气发电前景广阔.农业工程学报,第22卷增刊1,2006:58-60
    50.余东波,胡向军,谢建.沼气发酵残留物对蔬菜硝酸盐含量的影响.云南师范大学学报(自然科学版),2005(1):11-13
    51.余东波.沼气发酵液综合利用拉术示范研究.[硕士学位论文].云南:云南农业大学,2006
    52.袁丙富,汪力龙.沼液浸种增产原因及浸种方法.农村能源,1999,(1):20-21
    53.袁发林,刘家林.沼肥水稻早床育秧及生产试验.中国沼气,2000,18(1):35-36
    54.曾国揆,谢建,尹芳.沼气发电技术及沼气燃料电池在我国的应用状况与前景.可再生能源,2005年1月,第119期:38-40
    55.张吉生,陶铮.863智能化农业信息技术应用.宁夏科技,2001,(2):15-18
    56.张无敌,宋洪川,丁琪.沼气残留物防治农作物病虫害的效果分析.农业现代化研究,2001,22(3):167-170
    57.张无敌.沼气发酵残留物利用基础.昆明:云南科技出版社,2002:30-32
    58.张无故,孙世中,谢建.厌氧消化液用作花卉有机肥的开发研究-厌氧消化残留物活性物质评述.农村能源,1999,(4):14-16
    59.张晓辉.沼肥在防治农作物病虫害方面的应用.农村能源,1994,6:23-24
    60.张岳.沼气及其发酵物在生态农业中的在综合应用.农业环境保护,1998,17(2):94-95
    61.赵春江,杨刚.农业专家系统现状与未来.计算机与农业,1992,(2):1-7
    62.周孟津.沼气生产利用技术.北京:中国农业大学出版社,1999
    63.朱斌成等.沼液浸种对增强水稻秧苗抗冷害机理的研究.中国沼气,1997,15(1):17-20
    64.朱凤林,刘景春.农业专家系统的应用与发展.厦门科技,1998,(5):35
    65.朱惠芬等.沼气肥的养分性质、特点及质量的影响因子.中国沼气,1984(1):16-19
    66.马文元,郭玉兰.对沼气发酵残留物中生物活性物质的探讨.中国沼气,1993,11(2):50-51
    67.Cooper AJ.Crop production with nutrient film technique.1973,79:1041-1048
    68.E.Porpatham,A.Ramesh,B.Nagalingam,Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine;International Journal of Hydrogen Energy 32(2007) 2057-2065.
    69.Eiamann F.Effect of free phosphine on anaerobic digestion.Water Research,1997,31(11):2771-2774
    70.Jiang W.et al.Development Of Soilless Culture In Mainland China.Transactions of the CSAE.2001,17(1):10-15
    71.Peter W.Anaerobic waste digestion in Germany-Status and recent developments.Biosdegradation,2000,11(6):415-421
    72.Phan M.D.,Kanit W.,Study on biogas premixed charge diesel dual fuelled engine;Energy Conversion and Management 48(2007)2286-2308.
    73.Singh K.,Jatinder H.,Sooch P.,Comparative study of economics of different models of family size biogas plants for state of Punjab,India.Energy Conservation and Management,2004,45(10):1329-1341
    74.Wang Q.Secure Frist Report on Study of Adding Biomass Slurry in The Pigs Feed.China.Biogas,1990,(12):36
    75.Weiland P..Anaerobic waste digesting in Germany-status and recent development.Biodegredation,2000,(11):415-421
    76.Y.Lafay,B.Taupin,G.Martins,G.Cabot,B.Renou,A.Boukhalfa,Experimental study of biogas combustion using a gas turbine configuration;Exp Fluids(2007)43:395-410
    77. Zhang P., Jia G., Wang G. Contribution to emission reduction of CO2 and SO2 by household biogas construction in rural China. Renewable and Sustainable Energy Reviews 11(2007)1903-1912

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700