用户名: 密码: 验证码:
工程机械电液混合驱动冷却系统液压驱动装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前工程机械冷却系统风扇主要是采用了曲轴前端皮带轮的定传动比驱动,且同一冷却风扇同时担负着发动机的散热任务和液力变矩器液压油的散热任务,散热强度极大。这种驱动方式使工程机械发动机起动转矩大、预热时间长、低速大负荷时冷却不足、高速中小负荷时冷却能力过剩,从而造成发动机冷却不合理、风扇耗能较大,降低了发动机的动力输出效率,而且风扇安装位置受限,工作噪声大。
     针对此问题,设计了电液混合驱动冷却系统,将原冷却系统分成发动机冷却系统和液压油冷却系统两个相对独立的部分,两部分冷却系统通过同一单片机进行智能控制。发动机冷却系统风扇采用了液压驱动方式实现了转速的无级调节,由单片机根据水温信号控制溢流阀的溢流量来控制风扇转速;液压油冷却系统风扇采用了电机驱动,由单片机根据液压油的温度信号控制电机的起停来控制风扇转速。两种风扇分别根据不同的冷却要求,独立工作。
     本文对电液混合驱动冷却系统的工作原理作了详细论述,并在以往试验的基础上对发动机冷却系统液压驱动装置的热力学参数和主要液压元件参数作了重新选择;拟定匹配的发动机是额定功率为45 kW的R4105T型柴油机,以此为样机对发动机冷却系统的风扇和散热器、液压驱动装置的各元件和各管件及电磁比例溢流阀进行了重新选型,并完成了冷却风扇与散热器及系统的匹配设计;鉴于试验条件的限制设计了电动水泵,由单片机根据冷却液的温度信号控制伺服电动机的启停来控制发动机冷却系统的水循环,改善了以往试验中冷却水泵未实现水循环的弊端;根据对电液比例控制回路的理论分析,确定了电液比例调压回路的循环形式-无级调压回路;最后,在CLG816小型装载机上对改装前后的发动机冷却系统进行了发动机水温、预热时间及油耗的对比试验。
     电液混合驱动冷却方式使散热器和冷却风扇离开发动机而灵活布置,减小了风扇安装的径向间隙,提高了容积效率。试验表明:该电液混合驱动冷却系统能够解决工程机械发动机过热问题,同时还具有预热迅速、节省燃油、降低噪声、体积小、功率大等优点,符合现代发动机冷却系统的发展趋势,将之推广运用到工程机械中,将会获得良好的社会效益和经济效益。
At present, the fan of the construction machinery cooling system mainly uses the traditional crankshaft fixed transmission ratio driving, at the same time, it bears heat engine dissipation task and hydraulic oil dissipation task of transmission system, hydraulic lifting and steering system, so its heat dissipation strength is heavy. This driving method makes engine starting torque larger, preheating time longer, cooling deficient at low speed with heavy loading and cooling excessive at high speed with light loading. Therefore, it will cause the engine cooling unreasonable, the consumption of fan energy larger, decrease the dynamic output of engine, meanwhile, the installation position of the fan is limited and the working noises become larger.
     In order to solve this problem, we design a new electro-hydraulic mixed driving cooling control system, which divides the original cooling system into two independent parts, the engine cooling system and the hydraulic oil cooling system. They are controlled by the same SCM. In engine cooling system, the fan has been designed into hydraulic driving way and realized stepless regulation. According to control current of the proportion valve, the system can adjust the peripheral discharge of proportion valve to control speed of the fan, while hydraulic oil cooling system uses electromotor to drive hydraulic oil cooling fan. Both the engine cooling system and the hydraulic oil cooling system work independently based on their cooling requirements.
     The principles of this new cooling system are discussed in detail in the paper, and the thermodynamic parameters and the main hydraulic element parameters in hydraulic driving system of engine cooling system are reselected. Each element and pipe fitting in hydraulic system, each heat dissipation element and the Electromagnetic Proportion Overflow Valve are selected renewably by taking the R4105T-diesel engine whose rated power is 45kw for prototype, and the matching design between fan and radiator is also completed. In order to control water cycle, the electric pump is designed. The water is not cycled in previous experiments, but is controlled by the SCM which is based on the coolant temperature, and the loop of the electrohydraulic proportion voltage regulation- stepless voltage regulation has also been determined. At last, we complete the contrastive experiments in preheating time and fuel consumption at the CLG816- miniature loader.
     The cooling fan and radiator can be disposed separately and flexibly in this system. When the cooling fans and pumps are installed coaxially, they can reduce the radial clearance of the fan installation and improve the volumetric efficiency. The experiment shows that the new electro-hydraulic mixed driving intelligent cooling control system can solve the problem of engine overheating in the engineering machinery, and also has the advantage of preheating quickly, saving fuel land decreasing noise with small size and strong power. So the new system corresponds to the development trend of the modern engine cooling system. When it is popularized and applied in the engineering machinery, we will get well social and economic benefit.
引文
陈伯时主编.电力拖动自动控制系统[M],机械工业出版社, 1992, 5
    陈培陵主编.汽车发动机原理[M].大连海事大学出版社, 1998, 4: 249
    陈颖.散热器的选择[J].建筑工人, 2005, 3
    成大先主编.机械设计手册[M].机械工业出版社, 2004
    程利军.利勃海尔静液压驱动冷却系统简介[J].工程机械与维修, 2004, 7
    大村清治等.一种电控液驱风扇冷却系统的开发[J].自动车技术会论文集, 1992, 2: 15-23
    戴繁荣.内燃机车冷却装置[M].北京:中国铁道出版社, 1993
    高焕文主编.农业机械化生产学[M].中国农业出版社, 2002, 7
    高久好,何绍华,徐刚.液压驱动冷却风扇的转速控制系统研究[J].中国工程机械学报, 2006, 3
    耿晓哲,刘越琪.汽车发动机散热器计算机程序优化设计方法的研究[J]. 内燃机, 1997, 2
    郭新民,邢娟等.汽车发动机自控电动冷却风扇的发展与研究[J].内燃机工程, 1999, 3: 12-15
    韩树,蔡锋,骆清国,张更云.军用履带车辆柴油机冷却系统研究与发展综述[J].内燃机, 2007, 10: 5-7
    何焕山主编.工厂电气控制设备[M].高等教育出版社, 1992, 4: 26
    胡燕平,彭佑多,吴根茂.液阻网络系统学[M].北京:机械下业出版社, 2003
    姜继海等主编.液压与气压传动[M].高等教育出版社, 2002, 1
    景军清,徐新跃,朱艳平等.工程车辆液压驱动风扇冷却系统[J].工程机械, 2004, 9
    康华光主编.电子技术基础(模拟部分)[M].北京高等教育出版社, 2000
    亢文祥,徐磊,王兆华.内燃机车散热器散热面积与冷却风扇功率的匹配[J].内燃机车, 2003, 5
    匡襄编.液力传动[M].北京:机械工业出版社, 1982
    雷天觉主编.新编液压工程手册(上册)[M].北京理工大学出版社, 1998, 12
    李发海,朱东起主编.模拟直流电动机[M].电机学科学出版社, 1996
    李均荣.浅谈钢管液压试验机中液压、增压控制回路[J].冶金丛刊, 2004, 1
    李克明等编.农业机械化适用技术[M].机械工业出版社, 2000, 1:38
    李诗久.工程流体力学[M].北京:机械工业出版社, 1989
    李斯特.工程热力学[M].北京:化学工业出版社, 1990
    李小波.采用新型电液比例集成阀的液压电梯速度控制系统的研究[D]. 浙江大学, 2002
    李兴林,王成焘,曹茂来,阮建国.汽车水泵轴连轴承密封性能试验分析[J].轴承, 2000, 6
    李芝主.液压传动[M].机械工业出版社, 2002, 1
    刘严俊.液压与电压传动[M].机械工业出版社, 2003, 1
    刘永进,郭新民.筑路机械冷却系统现状及发展趋势[J].建设机械技术与管理, 2005, 2.
    刘友梅主编.韶山3型电力机车[M].中国铁道出版社, 1990
    刘越琪,耿晓哲,潘秀明等.风扇在汽车发动机冷却系中的匹配与优选方法[J].设计研究, 1997, 4
    卢广峰,郭新民,孙运柱.汽车发动机冷却系统的发展现状[J].农机化研究, 2002, 2: 129-134
    罗布尔等.机动车辆驱动电动机的冷却装置[J].中国吉利文件, 1987, 6:17
    马源,马彪.车辆冷却风扇调速技术的现状和发展[J].车辆与动力技术, 2003, 2
    麦世基编译.可逆转的发动机冷却风扇[J].工程机械, 2003, 6
    权龙林,廷圻,史维祥.比例溢流阀复合控制压力流量原理及实现[J].机械工程学报, 1995, 1
    日本机械学会编.机械设计手册[M]中册.北京:机械工业出版社, 1984
    宋鸿尧,丁忠尧等.液压阀设计与计算[M].机械工业出版社, 1979, 12
    孙军,桂长林.水冷内燃机风扇的优化设计[J].内燃机工程, 2003, 5
    谭建勋,沈瑜铭,齐放等.工程机械热管理系统试验台的开发[J].工程机械, 2005, 1
    唐露新,王桂棠,吴黎明,李定华.高性能电液比例阀电脑控制器的研制[J].工业工程, 1995, 3
    万福君,张铁柱,张洪信.发动机冷却风扇温控液力驱动系统. 1999, 2 [西德]H·梅梯格.高速内燃机设计[M].北京:机械工业出版社, 1981
    王春荣等.液压传动[M].吉林科学技术出版社, 1994: 230
    王书义,王宪成,段初华.柴油机冷却水流动的试验研究[J].车用发动机, 1994, 3
    王问雄.汽车发动机冷却系冷却风量的估算[J].汽车科技, 2005, 6
    魏宸官,赵文辉.电磁温控液体粘性传动风扇离合器的发展[J].中国机械工程, 2000, 10: 1183~1186
    吴根茂,邱敏秀,王庆丰等主编.实用电液比例技术[M].杭州:浙江大学出版社, 1993
    吴海荣,郭新民,孙运柱.筑路机械液压驱动风扇冷却系统[J]. 2005, 3: 149-154
    吴海荣,郭新民.筑路机械冷却装置液压驱动系统的设计[D].山东农业大学, 2004, 7
    夏加宽,王成元,李皞东等.高精度数控机床用直线电机端部效应分析及神经网络补偿技术研究[J].中国电机工程学报, 2003, 23(8): 100-104
    向建华,张卫正等.坦克冷却系统的整体优化匹配研究[J].车辆与动力技术, 2003, 4.
    肖成水,李健,张建武.发动机冷却系统的建模与仿真[J].计算机仿真, 2003, 20, 9: 253-259
    胥新栋,乔俊卫.内燃叉车冷却系统性能的改善[J].工程机械, 2004, 8: 17-18
    徐磊.内燃机车冷却系统优化设训及匹配研究[D].中南大学硕士学位论文. 2002
    许维达主编,中国内燃机学会组编.柴油机动力装置匹配[M].北京:机械工业出版社, 2000
    许益民编.电液比例控制系统分析与设计[M].机械工业出版社, 2005, 9
    许镇宇,邱宣怀.机械零件[M].高等教育出版社, 1987
    薛祖德主编.液压传动[M].中央广播电视大学出版社, 1994, 9
    严永华.工程机械用柴油机冷却系统匹配技术研究[J].柴油机设计与制造, 2004, 3
    杨连生.内燃机设计[M].北京:中国农业机械出版社, 1981, 10
    姚仲鹏,王新国编.车辆冷却传热[M].北京理工大学出版社, 2001, 6
    尹静,孙燕,郭新民.发动机冷却系统驱动方式的现状及发展方向[J].山东内燃机, 2003, 4: 25-131
    徐灏主编.机械设计手册第二版第五卷(流体传动与控制)[M].机械工业出版社, 2003, 1
    余志生主编.汽车理论[M].机械工业出版社, 2000, 10
    张金柱.现代发动机冷却系统的发展趋势[J].山东内燃机, 2005, 3: 6-8
    翟丽,郭新民.汽车发动机冷却系统的智能控制[J].汽车电器, 2001, 1:14-25
    张均亨等.高机动性运载车辆动力系统[M].北京:中国科学技术出版社, 2000
    张磊,张榕林编.实用液压技术300题[M].机械工业出版社, 1984
    张利平编.液压控制系统及设计[M].化学工业出版社, 2006, 03
    张铁柱,张洪信.内燃机冷却风扇驱动系统[J].青岛大学学报, 2002, 2: 16-19
    张铁柱,张洪信.内燃机冷却风扇温度控制液压驱动系统技术研究[J].内燃机学报, 2002, 3
    张友汉主编.工业电子学[M].高等教育出版社, 1993, 7: 197-200
    张钊,张扬军等.发动机电控冷却系统性能仿真研究[J].汽车工程, 2005, 3
    赵希梅,郭庆鼎.基于模糊小脑模型神经网络的直线伺服跟踪控制[J].沈阳工业大学学报, 2005, 27(6): 637- 640
    中国机械学会编,新版机械设计手册第4版.机械工业出版社, 1988, 11
    钟绍俊,黄镇海,黄艳岩.汽车发动机冷却水泵性能测试系统设计[J].中国计量学院学报, 2006, 3
    周军.丰田电控液力马达冷却风扇系统的检查[J].汽车诊所, 2001, 2
    周良墉.浮式电动水泵[J].南方农机, 1999, 5
    周漠仁主编.流体力学泵与风机[M].中国建筑工业出版社, 1981
    朱建军,郑国璋.汽油机冷却系统的改进[J].内燃机工程, 2003,3: 128-134 左健民.液压与气压传动[M].机械工业出版社, 2004, 2
    Ap Ns, Maire A, Porot P, Menegrazzi P, Souidi F, Devehat C, Godeau D, Oliver P, Vinot JB, Vincens. New Components Development for New Engine Cooling System[J]. 543/047/99
    Bora Eryilmaz, Bruce Wilson. Unified Modeling and Analys of a Propotional Valve [J]. Journal of the Franklin Institute 2006, 343, (1): 48-68
    BOSCH公司.电液比例技术与电液闭环比例技术的理论与应用. HP/VEK2-USY013/3汉.上海:博世上海代表处, 1997
    BUCHER. Safty for Hydraulics“Cindy”Leak-Free Load Control Valves,Manifold Mounting Design[J]. Reference: 300-P-9050013-E02/03, 04: BUCHER, 2002
    Cipollone R, Villante C. A Dynamical Engine Model Oriented to Cooling System Design[M]. Transport Means 2004 International Conference, October 28, 2004: 140-144
    Couetouse H, Gentile. Cooling System Control in Automotive Engines[M]. SAE 19920788
    Coulter John P. Hydraulic Cooling Control System of Agricultural Diesel Engine-employs Summed Output of Several Temperature Sensors to Operate Regulator and Priority Valve for Cooling Fan Hydraulic Motor[R]. WPI ACC,97-365081/1997/34
    Dasgupta K, Watton J. Dynamic Analysis of Propotional Solenoid Controlled Piloted Relief Valve by Bond Graph [J]. Simulation Modellling Practice and Theory, 2005, 13(1): 21-38
    Elmer K F, Gentle C R. A Parsim Onious Moder for the Propotional Control Valve [J]. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2001, 215(C11): 1357-1363
    Frank G. Tenkel. Computer Simutation of Automotive Cooling Systems. SAE 740087
    Guthikonda V. Microprocessors and Micro Computer System[J]. Van Nostrand Reinhold Company, 1982,12: 18-22
    Kim, Jin-Kuk, Smith, Robin. Cooling Water System Design[J]. Chemical Engineering Science Vol. 56, Issue 12, June, 2001: 3641-3658
    Kirby S. Chapman, John H. Johnson, Chang E. The Use of the Vehicle Engine Cooling System Simutation as A Cooling System Diesel Tool[J]. SAE880600 Kroger D.G. Radiator Characterization and Optimization[R]. SAE, I-nc. 1985
    Leif E, Hovin. Logging and Agricutural Installation Recommendations Cooling Systems[J]. SAE880488
    Mahmoud K G, Loibner E. Simulation-based Vehicle Thermal Management System-Concept and Methodology[C]. SAE PAPER 2003-01-0276
    Maiti R, Saba R, Watton J. The Static and Dynamic Characte Ristics of a Pressure Relief Valve with a Prorotional Solenoid-controlled Pilot Stage[J]. Proceeding of the Institution of Mechanical Engineers, PartΙ, Journal of Systems and Control Engineering, 2002, 216(12): 143-156
    Moekel Mark D. Computational Fluid Dynamics (CFD) Analysis of a Six Cylinder Diesel Engine Cooling System with Experimental Correlations[J]. SAE Paper 941081
    Panos Tamamidis, Kasi Sethupathi, Role of CFD in Heavy Machinery Development[J]. SAE paper 972718
    REXROTH.液压传动教程第一册(RC00301)[M].第三版.香港:力士乐(中国)有限公司, 1987
    Roger Clemente. Electric Fan Assembly for Over-the-roadtrucks[P].美国专利: US4875521, 1981, 10
    Wolfgang P, Weinhold. Engine Ventilation an Automotive Vehicle[P].美国专利, 1993,12(4): 23~28
    Zhou, Weimin, Harima, Kenji, Kondou, Satoshi. Improvement of Horizontally Opposed Engine Cooling System [J]. JSAE Review Vol.17, Issue 4, October, 1996, 446-451

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700