用户名: 密码: 验证码:
热管式吸附床在船舶吸附式制冷中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境与能源问题是当今世界发展面临的两大问题,随着国内外对环境保护呼声的日益高涨,发展节能和环保的新技术成为学术界研究的新热点。吸附式制冷是一种环境友好型制冷方式,可以有效地利用太阳能和工业余热等低品位能源,并且具有不污染环境的优势,因而受到了学术界的广泛重视。
     船舶排气温度一般在400℃以上,尾气中蕴含着大量的余热,约占燃油燃烧总能量的30%以上,而船舶空调和冷库又需要大量的制冷量,因此通过吸附式制冷来回收这部分余热具有重大的社会经济意义。然而吸附床传热性能差,系统效率低,限制了吸附式制冷的应用和发展。本文用高效传热元件热管来强化吸附床传热,提高其传热性能和系统制冷效率。
     本文根据实船SITC—YOKOHAMA运行参数计算出该船尾气流量和尾气中可利用的余热,据此计算出吸附床的尺寸大小和吸附工质对的质量,并设计出一种新型吸附床。该吸附床用热管强化床内传热,使其具有较高的传热性能。本文还根据吸附床的尺寸及设计制冷量计算出与之相匹配的冷凝器、蒸发器、储液器、管路等吸附式制冷系统其他部件的尺寸大小。
     本文模拟分析了自行设计的新型吸附床的传热性能和温度场分布情况,得出了吸附床内温度分布随时间变化规律。模拟结果表明,吸附床内大部分区域温度较高,分布较均匀,温度梯度较小,温度基本能满足解析要求。
     本文还模拟比较了各种参数对吸附床传热性能的影响,结果表明,吸附剂的导热系数、比热容、密度对传热都有一定影响,导热系数影响最大;圆形吸附床传热性能优于方形吸附床,椭圆热管优于圆形热管;减小热管直径,增加热管数量,能提高吸附床传热性能;热管上加装翅片能大大提高吸附床传热性能。
     本文研究了物性参数、操作参数和结构参数对吸附床传热性能的影响,为吸附床优化设计提供了理论依据,同时也为吸附式制冷实用化打下了基础。
Issues of environment and energy are two main problem areas presently confronting the world.As society progresses and economies develop,saving energy and protecting the environment have become issues of international significance.Adsorption refrigeration system is a kind of environmentally friendly refrigeration system,which can be driven directly by low grade energy such as solar energy and industrial waste heat,and it poses no danger to the environment,so adsorption refrigeration technology has received more and more attention in recent years.
     The exhaust gas temperature of ship is commonly more than 400℃,which contains quantity of heat,occupying more than thirty percent of the fuel energy. However,the ship needs more refrigeration.The application of adsorption refrigeration to recovery of engine exhaust heat is also attractive and significant to the international social economy.Currently the heat transfer performance of the adsorbent bed is very bad and the adsorption refrigerating system efficiency very low and this restricts the application of adsorption refrigerating.This paper presents a method using heat pipes to enhance the heat transfer performance of the adsorbent bed,and to improve the adsorption refrigerating system efficiency.
     This paper has calculated the flux and energy of diesel exhaust gas according to the parameter of ship SITC—YOKOHAMA,and also calculated the dimension of the adsorbent bed and the mass of work pairs.It then presents a design for a new kind of heat pipe adsorbent bed.Furthermore,the paper also calculates the size of other parts of the adsorption refrigerating system such as condenser、evaporator、pipeline.
     The heat transfer performance and temperature field of the heat pipe adsorbent bed were simulated and analyzed according to the principle of temperature distribution varying with time.The simulation results indicated that the temperature of most area in the adsorbent bed was very high and distributed uniformly,the temperature gradients was very little,the adsorbent bed met the disadsorption temperature.
     This study also simulated and compared many parameters that affect the heat transfer performance of the adsorbent bed.The results indicated that the coefficient of heat conductivity,the density and the specific heat of the adsorbent have important effect on the temperature of the adsorbent bed;the performance of heat transfer of cylindrical adsorbent bed is better than rectangular,and the ellipse heat pipe is better than rotundity pipe;minimising the diameter of heat pipe and increase the number of heat pipe can improve the heat transfer performance of the adsorbent bed;the wing piece on heat pipe can also enhance the heat transfer performance of the adsorbent bed.
     The thesis investigated parameters that affect the heat transfer performance of the adsorbent bed,which supplied the theoretical analyses to the optimal design of the adsorbent bed and also has made base for application of solid adsorption refrigeration.
引文
[1]卢允庄,王如竹,姜周曙.固体吸附式制冷技术及其研究讲展.能源技术,2001,22(3):91-95.
    [2]王如竹等.吸附式制冷.北京:机械工业出版社,2002.
    [3]王雪章,杨鸥鹏,杨建等.船用吸附式空调制冷系统可行性设计.大连海事大学学报,2006,32(3):11-14.
    [4]董景明,黄党和,谷杰然等.吸附式制冷在船舶空调中应用的可行性研究.船舶工程,2008,30(1):19-22.
    [5]周洪峰,张兴彪,王雪章等.船舶余热固体吸附式制冷可行性分析和模拟试验系统设计.节能技术,2007,25(3):238-240.
    [6]冯毅,谭盈科.吸附式制冷在利用低温能源方面的研究.节能,1990,(2):40-42.
    [7]Motoyuki Suzuki.Application of adsorption cooling systems to automobiles.Heat Recovery Systems&CHP,1993,13(4):335-340.
    [8]章立标,张诗针.吸附式船舶制冷系统.制冷,1995(1):79-82.
    [9]游全根,王如竹.固体吸附式制冷在余热回收中的应用.新能源,1998,20(1):7-12.
    [10]F.Meunier.Solid sorption:an alternative to CFCs[C].Proceedings of the Symposium:Solid Sorption Refrigeration,Paris,France,1992,56-64.
    [11]E.F.Passos,J.F.Escobedo,F.Meunier.Simulation of an intermittent adsorptive solar cooling system[J].Solar Engery,1980,42(2):103-111.
    [12]M.Pons,D.Laurent,F.Menuier.Experimental temperature fronts for adsorptive refrigeration:comparison with model[C].Proceedings of 19th International Congress Refrigeraton,1995,Iva:496-502.
    [13]G.Cacciola,G.Restuccia.Progress on adsorption heat pumps[J].Heat Recovery Systems&CHP,1994,14(2):409-420.
    [14]G.Cacciola,G.Cammarata,A.Fichera,et aI.Advances on innovative heat exchangers in adsorption heat pumps[C].Proceedings of Symposium:Solid Refrigeration,Paris,1992:221-226.
    [15]R.E.Critoph.Performance limitations of adsorption cycles for solar cooling[J].Solar Engery,1988,41(1):21-31.
    [16]R.E.Critoph.Forced convection enhancement of adsorption cycles[J].Heat Recovery Systems&CHP,1994,14(4):343-350.
    [17]S.V.Shelton.Residential space conditioning with solid sorption technology[C].Proceedings of the Symposium:Solid Sorption Refrigeration,Paris,France,1992:67-76.
    [18]S.V.Shelton,W.J.Wepfer,D.J.Miles.Square wave analysis of the solid-vapor adsorption heat pump[J].Heat Recovery Systems&CHP,1989,9(3):233-247.
    [19]L.L.Vasililiev,N.V.Guiko,V.M.Rhaustov.Solid adsorption refrigerators with active carbon-acetone and carbon-ethanol pairs[C].Proceedings of the Symposium:Solid Sorption Refrigeration,Paris,France,1992:109-11.
    [20]滕毅,王如竹.固体吸附式制冷技术的概况及进展.上海交通大学学报,1998,32(4):109-113.
    [21]崔群,陶刚等.固体吸附制冷工质对的性能研究.化工时刊,2001,(10):26-30.
    [22]崔群,陈海军,姚虎卿.太阳能吸附制冷用复合吸附剂制备及其吸附机理探讨.太阳能学报,2004,25(2):182-187.
    [23]Tchernev D I.Solar energy application of natural zeolite.Natural Zeolites,Occurrences,properties and use.London:Pergamon,1978,479-484.
    [24]严爱珍等.沸石分子筛吸附式制冷.制冷学报,1983,(1):32-37.
    [25]Pons.M,et al.Design of an experimental solar-powered,solid-adsorption ice maker.ASME Joutmsl of Solar Energy Engineering,1986,108:332-337.
    [26]冯毅等.试验用吸附式制冷机的研究及分析.制冷,1990,(1):1-4.
    [27]Worm S L,et al.Experimental measurement of heat transfer phenomena in a solid adsorbent.ASHRAE Trans,1993,99(2):372-381.
    [28]Sukoda A,Suzuki M.Fundamental study on solar-powered adsorption cooling system.Journal of Chemical Engineering of Japan,1984,17(1):52-57.
    [29]Saha B B,et al.Computational analysis of an advanced adsorption refrigeration cycle.Energy-The International Jounal,1995,20(10):983-994.
    [30]N.Mei,H.J.Li.Studies of the performance and thermodynamic mechanism of an engine exhaust-powered solid adsorption refrigerator.Journal of ocean university of Oingdao,1996,26(2):212-222.
    [30]S.O.Enibe,O.C.Iloeje.COSSOR-a transient simulation program for a solid absorption solar refrigerator,Renewable Energy,2000,19:413-434.
    [32]金余.吸附式制冷系统传热传质过程能效的研究:(硕士论文).大连:大连理工大学,2006.
    [33]Meunier.F.Solid sorption heat powered cycles for cooling and heat pumping applications.Appl led Thermal Engineering,1998,18(9-10):715-729.
    [34]R.Z.Wang.Performance improvement of adsorption heat pump by heat and mass recovery operation.International Journal of Refrigeration.2001,24(7):602-611.
    [35]李香荣.固化活性炭一甲醇工质对的吸附性能实验研究:(硕士学位论文).上海:上海交通大学,2003.
    [36]J.J.Guilleminot,F.Menuier.Heat and mass transfer in a nonisotheimal fixed bed solid adsorbent reactor:a uniform pressure-non-uniform temperature.Int.J.Heat Zrans.1987,30:1595-1606.
    [37]余舜辉,陈砺.固体吸附式制冷系统中吸附床内的传热传质过程分析和强化.制冷,2001年第2期,43-47.
    [38]K.Speidel,H.P.Kleinemeier.Solar cooling processes using chemical reaction.Sci.Tech.Froid,1992:308-313.
    [39]J.Guilleminot,et al.Heat transfer intensification in fixed bed adsorbers.Heat Recovery System &CHP,1993,13(4):297-300.
    [40]汪立军.吸附式热泵中吸附剂传热传质的强化及机理的研究[D].广州:华南理工大学,1997.
    [41]韩宝琦等.烧结型分子筛吸附制冷的循环数值模拟及性能研究期刊.西安交通大学学报,1993,27(3).
    [42]常士楠,林贵平,文东升.吸附式制冷系统传热传质过程的数值模拟.太阳能学报,1999,20(3):335-339.
    [43]M.Pons,F.Poyelle.Adsorptive machines with advanced cycles for heat pumping or cooling applications.International Journal of Refrineration,1999,vol 22,27-37.
    [44]R.E.Critoph.Forced convection adsorption cycle with packed bed heat reneneration International Journal of Refrineration,1999,vol 22,38-46.
    [45]王如竹等.一种有潜力的吸附式制冷工作对—话性炭纤维一甲醇.太阳能学报,1997,18(2):222-227.
    [46]Vasiliev L L,Antux A A,Kulakov A G,et al.Heat pipe cooled and heated sorption refrinerator.19~(th)International Congress of Refrineration,1995,Proceeding,Vol.Ⅲ,200-208.
    [47]V.A.BABENKO.Heat and mass transfer intensification in solid sorption systems.Enhanced heat Transfer,1998,vol.5,111-125.
    [48]杨锋,袁修干,林贵平等.利用热管强化吸附床内的传热传质.太阳能学报,2002,23(5):670-673.
    [49]王文,齐晓霞,王如竹.热管型吸附器的性能模拟及优化分析.太阳能学报,2005年第6期,737-742.
    [50]庄骏,张红.热管技术及其工程应用.北京:化学工业出版社,2000.
    [51]刘娣.分离型热管特性分析及其热回收空调器的应用研究:(硕士学位论文).长沙:湖南大学,2005.
    [52]Vasiliev L L,Kanonchik L E,Antuh A A.Waste heat driven solid sorption coolers containing heat pipes for thermo control[J].Adsorption 1995,1(4):303-312.
    [53]陈海飞.热管技术与其在太阳能热水器中的应用:(硕士学位论文).合肥:合肥工业大学,2003.
    [54]李亭寒,华诚生等.热管设计与应用.北京:化学工业出版社,1987.
    [55]徐伟,何燕,陈思嘉,黄伦达.热管技术在余热回收应用中的发展.石油和化工节能,2007年第5期.
    [56]邱钟明.固体吸附式制冷系统中吸附床的设计模拟及传热研究:(硕士学位论文).广州:华南理工大学,2003.
    [57]青春耀.固体吸附式轿车制冷(空调)模拟试验研究:(硕士学位论文).郑州:河南农业大学,2005.
    [58]王鲁峰,李辉,万小利等.模拟多种发动机尾气热源的吸附制冷试验台研究.能源工程,2004(3):5-7.
    [59]陈沛霖,岳孝芳,秦慧敏等.空调与制冷技术手册.上海:同济大学出版社,1990.
    [60]《制冷工程设计手册》编写组.制冷工程手册.北京:中国建筑工业出版社,1985.
    [61]王雪章.船舶空调吸附式制冷系统设计及传热机理研究:(硕士学位论文).大连:大连海事大学,2008.
    [62]张洪信.有限元基础理论与ANSYS应用.北京:机械工业出版社,2006.
    [63]Zhang L Z,Wang L.Performance estimation of an adsorption cooling system for automobile waste heat recovery[J].Applied Thermal Engineering,1997,17(2):1127-1139.
    [64]徐震.发动机排气余热吸附制冷系统单元的数学模型及实验分析:(硕士学位论文).青岛:中国海洋大学,2003.
    [65]Guo Zengyuan,Zhou Senquan,Li Zhixin.Theoretical analysis and experimental confirmation of the uniformity principle of temperature difference field in heat exchanger[J].International Journal of Heat and Mass transfer,2002,45:2119-2127.
    [66]过增元,黄素逸等著.场协同原理与强化传热新技术.北京:中国电力出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700