用户名: 密码: 验证码:
热气机燃烧室内液氧柴油燃烧特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于水下潜艇用动力,要求振动小、噪声低、排放隐蔽,更重要的是要能在脱离空气的特殊环境下工作。热气机(Stirling engine)不仅能满足这些要求,它还具有效率高、体积小、重量轻、能使用多种能源等优点,因而从它诞生的那天起就引起了研究者的极大兴趣。国内的711研究所在引进国外技术的基础上对热气机的燃烧室进行了一定的改进,这是因为外燃系统的优劣对于热气机的性能影响很大,它不仅影响整机的功率和效率,还影响排放,并直接影响换热管的寿命,对整机性能有决定性影响,因此外燃系统设计是热气机设计中至关重要的一环。由于对燃烧室内物理量的测量极为困难,并且花费巨大,为此,随着计算机技术及现代计算流体力学(CFD)的发展,燃烧室模拟在燃烧室设计和研究中发挥了越来越重要的作用。
     本文利用商业CFD软件——Fluent对热气机燃烧室进行了全面的数值模拟研究,包括冷态和热态两种情况。综述了液滴喷雾特性的实验与理论研究;讲述了计算流体动力学的相关知识;对燃油喷雾混合过程和燃烧室内的燃烧过程进行了完整的模拟,获得了较好的模拟结果。得到了一些规律和结论:当雾化空气压力一定时,随着燃料质量流量的增大,油滴的平均粒径也随之减小,并且变化的趋势趋于平缓,这表明质量流量增大对液滴平均直径的影响逐渐减小;建立了热气机燃烧室内燃烧模型,进行了燃用柴油和燃用氢气的燃烧过程模拟,得到其中主要成份的分布图;通过控制柴油雾化可以达到调整燃烧室内温度分布的目的;燃烧产物(CO2、H2O等三原子分子气体)的分布也对温度分布有很大影响;燃烧室出口位置的选择对燃烧室内温度的分布有很大影响,为保证温度分布均匀需要优化;以氢气为燃料有更高的效率,在燃用氢气时应该采用燃气再循环设计。最后我们可以得到这么一个结论,在Stirling发动机燃烧室内部高温高压的条件下,影响温度分布的主要因素应该是:燃烧室结构情况,燃料的雾化、蒸发,气体的流动(包括燃烧产物的分布)、传热过程。同时也证明了通过此种方式对热气机燃烧室设计模型的可行性。为热气机的设计工作提供了重要参考依据和新思路。
Stirling engines are external combustion engines, which means no combustion takes place inside the engine and there’s no need for intake or exhaust valves. As the result, Stirling engines are smooth-running and exceptionally quiet. As the engine for sub, it should working with some special case, and, most important it should working without air. And Stirling engine meet it.711 Research Institute improves on Stirling engine combustor. The external combustion chamber is very important for the capability of Stirling engine, and also is an important part of the design of Stirling. But measure in combustor is difficult and costly. With the development of computer technology and modern Computational Fluid Dynamic (CFD), numerical simulation of combustor is taking more and more important role on combustor design and research.
     In this thesis, using the professional CFD software——Fluent, studies on methodology of combustion simulation are done. And a numerical simulation is implemented on combustor and key components of external combustion system of Stirling engine. In this thesis, summarize the experiment and theory study on the spray characteristics, introduce the CFD, and establish the spray model and the combustion model, and gain the optimal simulation results: the diameters of fuel droplets are influenced by flow rate and pray pressure; Establish the numerical model of External-Combustion Stirling engine, using the diesel or hydrogen as fuel, controlling the distributing of temperature by controlled the spray; the contours of CO2/H2O are effecting the temperature; the stirling engine with single tail pipe need optimizing its flow field; H2 is more efficiency fuel, but it need using CGR. And at last, we can get that configuration, spray, flow field, convective heat are all have effect for the temperature field of stirling engine, and also prove that this work can be useful for designing Stirling engine.
引文
1 G.沃克.热气机.英.机械工业出版社,1978:5~35
    2钱国柱,周增新,严善庆.热气机原理与设计.国防工业出版社,1987
    3沈建平,金东寒,顾根香. Stirling发动机燃烧及换热分析[J].热能动力工程,1998. 13(1):6~10
    4吴国凡,潘卫明,汪海贵,朱辰元.热气机加热器及回热器中流量分配的分析及数值模拟.柴油机,第27卷(2005)第3期
    5沈建平,顾根香.stirling发动机燃烧及换热分析.中船重工711所.热能与动力工程. 13卷(2004)73期
    6金东寒,吴惠忠,薛飞.热气机技术的发展现状和在中国的市场化前景.中国内燃机学会第六届学术年会, 2002
    7顾根香,金东寒.热气机动态特性的研究.内燃机学报, 2000 (3)第18卷:305~307
    8 G. Walker. Stirling Cycle Machines. Clavandon Press-Oxford,1973
    9 P. J. O'Rourke, F. V. Bracco. Modeling of drop interactions in thick sprays and comparisons with experiments. Proc. I. Mech. E, 1980, Vol.9: 101~116
    10 W. E. Anderson.液体火箭发动机燃烧不稳定性.北京:科学出版社. 2001
    11 K. J. DeJuhasz. Dispersion of sprays in solid-injection oil engines. Trans. ASME, 1933, Vol.53: 65~67
    12 K. W. Lee, R. C. Spencer. Photo micrographic studies of fuel sprays. NACA Report , 1993: 454~456
    13 R. P. Grant, S. Middleman. Newtonian jet stability. AIChE Journal, 1996 Vol.12(4): 669~678
    14张志国, D. Gedeon.一维热气机的数值模型.华中科技大学学报(自然科学版), 2006(3):71~74
    15 R. E. Phinney. The breakup of a turbulent jet in a gaseous atmosphere. Journal of Fluid Mechanics, 1973 (Vol.60):689~701
    16 W. Bergwerk. Flow pattern in diesel nozzle spray holes. NACA Report, 1959 Vol.173:655~674
    17眺征,陈康民. CFD通用软件综述上海理工大学学报, 2002 (Vol. 24)
    18 A. Harten. High resolution scheme for hyperbolic system of conservation law [J]. NACA Report, 1983(49):357~393
    19 S. R. Chakranvarthuy. The split-coefficient matrix method for hyperbolic system of gas dynamics equations. AIAA Paper[C], 1980:80~268
    20 P. L. Roe. Parameter vector and different schemes [J]. NACA Report, 1981 (43):357~372
    21 R. Ni, H.A. Multiple. Grid scheme for solving the Euler equation [J]. NACA Report, 1982 (20):I565~I567
    22 H. C. Yee. Construction of explicit and implicit symmetric TVD scheme and their applications [J]. J Comp Phys, 1987 (68):151~179.
    23 H. C. Yee. Construction of explicit and implicit symmetric TVD scheme and their applications [J]. J Comp Phys, 2004 (68):151~179.
    24 J.P. Van, Doormal, CxRaithby. Enhancement of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer, 2004 (7):147~163
    25 R.L. Issa. Solution of the implicitly discredited fluid flow equations by operator-splitting. Compute Phy., 1986 (6):40~65
    26 DANIELECJ, LORENZOCF. Computer Program for a Four-Cylinder-Stirling-Engine Controls Simulation [R]. NASA TM, 1982:772~774
    27 B. Bonnier. Low signature closed cycle diesel AIP system for submarine.Hamburg Congress Centre·Get.Many.UDT97, 2004
    28 A.Hammersehmidt. PEM Fuel Cells-an attractive energy source for air independent propulsion systems : status and future trends . Wembley Conference Center·London·UK .,1998
    29钱达人.热气机发电装置的前景.北京.《21世纪中国电力可持续发展研讨会》上的报告, 2001
    30 J. Williams, C. Knowlen, A. T. Mattick, A. Hertzberg. Frost-Free Cryogenic Heat Exchanger for Energy Storage Application.NACA Report, 1997:AIAA97~3168
    31 C. Knowlen, A. T. Mattick, A. Hertzberg, A. P. Bruckner. Ultraslow Emission Liquid Nitrogen Automobile. NASA Report, 1999:2901~2932.
    32 C. MittyPlummer, A. Cars Ordonez, F. Richard Reidy. Liquid nitrogen as a non-polluting vehicle fuel [J]. Society of Automotive Engineers,1999(1):17~25.
    33 C. A. Ordonez. Closed Braytoncycle Cryogenic Heat Engine[J] . Energy Conversion & management, 2004(41):331~341.
    34 FLUENT Inc. Fluent User’s Guide. Fluent Inc.,2003
    35 FLUENT Inc. CAMBIT Modeling Guide. Fluent Inc., 2003
    36 C. A. Ordonez,M. C., R. F. Reidy, Plummer Cryogenic Heat Engines for Powering Zero Emission Vehicles [EB/OL]. IMECE2001:256~260.
    37 C. Knowlen, J. Williams, A. T. Mattick, H. Deparis, A .Hertzberg. Quasi-Isothermal Expansion Engines for Liquid Nitrogen Automotive Propulsion. NASA Report, 1997
    38刘南希等.中高温热泵工质及实验台研究.工程热物理学报, 2001.31(3):12~15
    39沈建平,金东寒,顾根香. stirling发动机燃烧及换热分析.中船总第七一一研究所.热能动力工程, 1998.1
    40熊云,李晓东,许世海.油品应用及管理.中国石化出版社, 2004
    41何学良,李疏松.内燃机燃烧学.机械工业出版社, 1990
    42蒋德明.内燃机燃烧与排放学.西安交通大学出版社, 2001
    43王建志.舰用大容量旋流气液同轴式喷油器雾化特性的研究, 2004
    44 Henrik, Niels, T. R. Jens. 40kw stirling engine for solid fuel. Energy Engineering, 1996:130~1306
    45 Bancha Kongtragool, Somchai Wongwise. Performance of a twin power piston low temperature differential Stirling engine powered by a solar simulator. Energy,2007:23~26
    46 G.. Jeffrey, Schreiber. Summary of Stirling Converter Testing at NASA Glenn Research Center, NASA Report 2006 (10)
    47 Akio Nishyama, Hidetoshi Shimojima, Akira Ishkawa, Yoshinori Itaya. Fuel and emissions properties of Stirling engine operated with wood powder. Fuel, 2007:156~170
    48张鲲鹏.基于燃气再循环的高压燃烧技术研究.哈尔滨工程大学工学博士学位论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700