用户名: 密码: 验证码:
不同特性燃料条件下柴油机缸内微粒纳观结构、表面官能团及氧化活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料特性、缸内压力、温度等外界条件对柴油机微粒的纳观结构及其表面官能团影响很大,而微粒的纳观结构和表面官能团又会影响微粒在氧化过程中的反应活性。因此,研究柴油机燃烧过程中不同特性燃料缸内微粒纳观结构、表面官能团及氧化活性的变化规律,对进一步了解柴油机微粒的形成历程和减少微粒的排放具有重要的意义。本文基于全气缸取样系统,应用TEM图像处理、EELS、Raman光谱、FT-IR光谱、XPS和TGA等分析检测技术,针对燃料特性不同的正庚烷、正庚烷/甲苯、柴油和F-T柴油所生成的柴油机缸内微粒,开展了燃烧过程中缸内微粒微观结构、表面官能团及氧化活性演变机制的研究,取得的主要研究成果如下:
     1.四种燃料在燃烧过程中均形成了两类结构特性不同的缸内微粒,即由基本碳粒子构成的典型微粒和富含金属和非金属元素的非典型微粒。典型微粒具有分形结构特性,其中正庚烷、20%甲苯/80%正庚烷(体积比)、柴油和F-T柴油的典型微粒分形维数分别介于1.63~1.96、1.48~1.92、1.32~1.84和1.48~1.91之间,且在燃烧过程中均为先减小后增加的变化规律,分形维数的最小值出现在扩散燃烧阶段的初期。燃料中芳香烃和环烷烃组分能够促进分形维数较低的微粒形成。
     2.四种燃料基本碳粒子粒径呈类似高斯分布,峰值介于15~25nm,平均粒径在燃烧过程中呈单峰变化趋势,最大值出现在预混燃烧阶段的中后期。平均层面间距和平均曲率随着燃烧进行总体呈逐渐减小的趋势,仅在预混燃烧阶段末期至扩散燃烧阶段初期出现一个突然的上升;微晶尺寸变化趋势则正相反。燃料中的芳香烃和环烷烃组分能够促进基本碳粒子的成长,使平均粒径、层面间距和曲率增大,微晶尺寸减小。此外,Raman光谱IG/ID及EELS中Iπ*/Iδ*的变化规律与微晶尺寸的变规律基本一致,验证了微粒微观结构特征参数提取结果的准确性。
     3.微粒表面的脂肪族C–H官能团当量浓度随着曲轴转角的增大整体呈逐渐减小的趋势,仅在预混燃烧阶段末期至扩散燃烧阶段初期出现一个突然的上升。C–OH和C=O官能团浓度均呈“双峰”变化趋势,分别在预混燃烧阶段中期和扩散燃烧阶段末期各出现一个峰值。燃料中的芳香烃及环烷烃通过降低微粒的石墨化程度和纳观结构有序性,增大了微粒表面脂肪族C–H和含氧官能团的浓度。
     4.四种燃料生成的缸内微粒氧化所需的表观活化能介于114.57~181.02kJ/mol;燃烧过程中,脂肪族C–H表面官能团是影响微粒的氧化活性主要因素,微观结构和表面含氧官能团则属于相对次要的因素。
Combustion conditions, such as initial fuel composition, in-cylinder pressure andtemperature, play an important role on the nanostructure and surface functionalgroups of diesel particulates. The variations in nanostructure and surface functionalgroups can in turn affect the particulate reactivity toward oxidation. Therefore,detailed invesigations of the diesel in-cylinder particulates generared from differentfuels is necessary for better understanding of the diesel particulates evolutionmechanism and the reduction of particulate pollutions. In this dissertation, a totalcylinder sampling system, fueled with n-heptane, n-heptane/toluene, EuroⅢ lowsulfur diesel fuel and F-T fuel respectively, was employed to obtain in-cylinder sootsamples. The evolution mechanism of nanostructure, surface functional groups andoxidation reactivity of in-cylinder soot was subsequently studied using the analyticalmethod such as digital image processing, electron energy-loss spectroscopy, Ramanspectrum, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy,and thermogravimetric analysis. The major work and achievements of this dissertationare listed as follows:
     1. The in-cylinder particulates generated from the four kinds of fuels all presenttwo sorts of morphology: One is the representative particulate which formed throughagglomeration of small sphere-like primary particles, and the other is amorphousparticulate containing abundant metal and nonmetal elements. The representativeparticles are aggregated in the form of fractal-like geometry. The fractal dimensionsfor the N-heptane, N-heptane blended with20%toluene (v/v), EuroⅢ diesel fuel andF-T fuel particulates are in a range of1.63~1.96、1.48~1.92、1.32~1.84and1.48~1.91respectively. During the combustion process, the fractal dimensions of in-cylinderparticulates first decline at the premixed combustion and early diffusion combustionstages, and then increase at the middle/late diffusion combustion and late combustionstages. The minimum particulate fractal dimension lies within the early diffusioncombustion period. The aromatic and cyclanes compounds in fuels can promote thegeneration of particles with low fractal dimensions.
     2. The size distributions of primary particles generated from these four fuels aresimilar to Gauss distribution with the peak value of particle diameter in the range of15~25nm. During the combustion process, the mean diameter of primary particlesshows a unimodal distribution with the maximum value locating at the middle/late premixed combustion stage. Meanwhile, the mean fringe separation distance andtortuosity of in-cylinder soot generally decrease, except for a sudden rise between thelate premixed combustion stage and early diffusive combustion stage. In contrast, themean fringe length shows an increasing trend. The aromatic and cyclanes compoundsin fuels can promote the growth of primary particles and bring about an increase inmean particle diameter, fringe separation distance and tortuosity, and a derease inmean fringe length of soot partitulats. Additionally, the ratio of IG/IDin Ramanexperiment and Iπ*/Iδ*in EELS experiment follows a similar trend to that of thefringe length through the combustion history, verifying that the results of the imageprocessing are reasonable.
     3. The relative content of the aliphatic C–H groups on the in-cylinder soot surface,which was evaluated by the normalized peak height ratio (IC-H/IC=C), generallydecreases during the combustion process, except for a sudden rise between the latepremixed and early diffusive combustion stages. Meanwhile, the concentrations ofboth C–OH and C=O groups present bimodal distributions over the combustionhistory, with the two peaks locating at the middle premixed and late diffusioncombustion stages respectively. Both aromatic and cycloparaffinic hydrocarbons infuels affect the soot nanostructure and degree of graphitization, which has asignificant impact on the relative content of surface aliphatic C–H groups.
     4. Under the applied engine operating conditions where these four fuels wereused, the apparent activation energies for soot oxidation are in a range of114.57~181.02kJ/mol at various crank angles. Aliphatic C–H groups on the soot surfaceserve as a more important factor governing the soot oxidation reactivity whencompared to the soot nanostructure and oxygenated SFGs.
引文
[1] Bond T.C., Streets D.G., Yarber K.F. et al, A technology-based globalinventory of black and organic carbon emissions from combustion, Journal ofGeophysical Research,2004,109: D14203
    [2] Park K., Kittelson D.B., Zachariah M.R. et al, Measurement of inherent materialdensity of nanoparticle agglomerates, Journal of Nanoparticle Research,2004,6:267~272
    [3] Bérubé K.A., Jones T.P., Williamson B.J., et al. Physicochemicalcharacterization of diesel exhaust particles: Factors for assessing biologicalactivity. Atmospheric Environment,1999,33:1599-1614
    [4] Ehara K., Hagwood C. and Coakley K.J., Novel method to classify aerosolparticles according to their mass-to-charge ratio aerosol particle mass analyser. J.Aerosol Sci,1996,27(2):217~234
    [5] Ballester F., Tenias J.M., Perez-hoyos S., Air pollution and emergency hospitaladmissions for cardiovascular diseases in Valencia, Spain. Journal ofepidemiology and community health,2001,55(1):57~65
    [6] Bell M.L., Samet J.M., Dominici F., Time-series studies of particulate matter.Annual review of public health,2004,25:247~280
    [7] Ostro B., Broadwin R., Green S., et al, Fine particulate air pollution andmortality in nine California counties: Results from CALFINE. Environ HealthPerspect,2006,114(1):29~33
    [8] Miller K.A., Siscovick D.S., Sheppard L., et al, Long-term exposure to airpollution and incidence of cardiovascular events in women. The New Englandjournal of medicine,2007,356(5):447~458
    [9] Roberts S., Martin M.A., Methods for bias reduction in time-series studies ofparticulate matter air pollution and mortality. Journal of Toxicology andEnvironmental Health, Part A,2007,70(8):665~675
    [10] World Health Organization, Healthy risk of particulate matter from long rangetransboundary air pollution (preliminary assessment). EUR/ICP/EHBI04-01-02Unedited, World Health Organization,1999
    [11]陈添,华蕾,金蕾等,北京市大气PM10源解析研究,中国环境监测,2006,22(6):59~63
    [12]刘巽俊,内燃机的排放与控制,北京:机械工业出版社,2003
    [13] Xu Dongqun and Zhang Wenli, Monitoring of pollution of air fine particles(PM2.5) and study on their genetic toxicity, Biomedical and Environmental,2004,17:452~458
    [14] Horvath H., Size segregated light absorption coefficient of the atmosphericaerosol, Atmospheric Environment,1995,29(8):875~883
    [15] Horvath H., Atmospheric light absorption-A review, Atmospheric Environment.Part A. General Topics,1993,27(3):293~317
    [16] Sisler J. F., Malm W. C., The relative importance of soluble aerosols to spatialand seasonal trends of impaired visibility in the united sates, AtmosphericEnvironment,1994,28(5):851~862
    [17] Sloane C., White W., Visibility: An evolving issue, Environmental Science&Technology,1986,20(8):760~766
    [18] Horvath H., Trier A., A study of the aerosol of Santiago de Chile-1. LightExtinction Coefficients, Atmospheric Environment Part A. General Topics,1993,27(3):371~384
    [19]J acobson M. Z., Strong radiative heating due to the mixing state of black carbonin atmospheric aerosols, Nature,2001,409(6821):695~697
    [20] Andreae M.O., and Merlet P., Emission of trace gases and aerosols frombiomass burning, Global Biogeochem Cycles,15:955~966
    [21] Kittelson D.B., Engines and nanoparticles: A review, Journal of AerosolScience,1993,29(5-6):575~588
    [22]童澄教,内燃机排放与净化,上海:上海交通大学出版社,1996.12~75
    [23] Seinfeld J. H.,空气污染:物理和化学基础,北京:科学出版社,1986.126~128
    [24]刘忠长,何平,车用直喷柴油机排气微粒的排放规律,内燃机学报,1997,15(4):430~434
    [25] Lee K.O., Cole R., Sekar R., Choi M.Y., Zhu J., Kang J., Bae C., Detailedcharacterization of morphology and dimensions of diesel particulates viathermophoretic sampling, SAE Paper2001-01-3572,2001
    [26]董素荣,现代柴油机全气缸取样系统开发及缸内微粒理化特性研究:[博士学位论文],天津;天津大学,2007
    [27] Bérubé K.A., Jones T.P., Williamson B.J., et al, Physicochemicalcharacterization of diesel exhaust particles: factors for assessing biologicalactivity, Atmospheric Environment,1999,33:1599~1614
    [28]宋崇林,王玉秋,范国梁等,柴油机排气颗粒中有机组分的分离方法及微量金属的测定,天津大学学报,2000,33(6),707~710
    [29] Frenklach M., Reaction mechanism of soot formation in flames, Phys. Chem.Chem. Phys.2002,4(11):2028~2037
    [30] Frenklach M., Clary D.W., Yuan T., Gard-iner Jr. W.C., Stein S.E., Mechanismof soot formation in acetylene-oxygen mixtures, Combust. Sci. Technol.1986,50(1-3):79~115
    [31] Frenklach M., Clary D.W., Gardiner Jr. W.C., Stein S.E., Detailed kineticmodeling of soot formation in shock-tube pyrolysis of acetylene, Proc. Combust.Inst.1985,20(1):887~901
    [32] Frenklach M., Warnatz J.W., Detailed modeling of PAH profiles in a sootinglow-pressure acetylene flame, Combust. Sci. Tech-nol.1987,51(4-6):265~283
    [33] Frenklach M., Wang H., Detailed modeling of soot particle nucleation andgrowth, Proc. Combust. Inst.1991,23(1):1559~1566
    [34] Frenklach M., Wang H., in: H. Bockhorn (Ed.), Soot formation in combustion:mechanisms and models of soot formation, Springer Series in Chemical Physics,vol.59, Springer-Verlag, Berlin,1994, pp.162~190.
    [35]陈生齐,柴油机燃烧过程中多环芳香烃生成机理的多维数值研究:[硕士学位论文],天津;天津大学,2008
    [36]宋景景,柴油机燃烧过程中多环芳香烃生成机理的研究:[硕士学位论文],天津;天津大学,2007
    [37] Richter H., Howard J.B., Formation of polycyclic aromatic hydrocarbons andtheir growth to soot--A review of chemical reaction pathways, Progress inEnergy and Combustion Science,2000,26(4-6):565~608
    [38] Ciajolo A., D'Anna A., Barbella R., et al., The effect of temperature on sootinception in premixed ethylene flames, Symposium (International) onCombustion,1996,26(2):2327~2333
    [39] Homann H.K., Fullerenes and soot formation--new pathways to large particlesin flames, Angew, Chem. Int. Ed.1998,37(18):2435~2451
    [40] Miller J.H., The kinetics of polynuclear aromatic hydrocarbon agglomeration inflames, Proc. Combust. Inst.,1991,23(1):91~98
    [41] Herdman J.D., Miller J.H., Intermolecular potential calculations for polynucleararomatic hydrocarbon clusters, J. Phys. Chem. A,2008,112(28):6249~6256
    [42] Richter H., Benish T.G., Mazyar O.A., Green W.H., Howard J.B., Formation ofpolycyclic aromatic hydrocarbons and their radicals in a nearly sootingpremixed benzene flame, Proc. Combust. Inst.,2000,28(2):2609~2617
    [43] Ciajolo A., Tregrossi A., Barbella R., et al., The relation betweenultraviolet-excited fluorescence spectroscopy and aromatic species formed inrich laminar ethylene flames, Combustion and Flame,2001,125(4):1225~1229
    [44] Allouis A., Apicella B., Barbella R., Beretta F., Ciajolo A., Tregrossi A.,Monitoring of fuel consumption and aromatics formation in a kerosene sprayflame as characterized by fluorescence spectroscopy, Chemosphere,2003,51(10):1097~1102
    [45] Violi A., Kubota A., Truong T.N., Pitz W.J., Westbrook C.K., Sarofim A.F., Afully integrated kinetic Mmonte Carlo molecular dynamics approach for thesimulation of soot precursor growth, Proc. Combust. Inst.,2002,29(2):2343~2349
    [46] Violi A., Sarofim A.F., Voth G.A., Kinetic Monte Carlo molecular dynamicsapproach to model soot inception, Combust. Sci. Tech-nol.2004,176(5-6):991~1005
    [47] Zhao B., Yang Z., Johnstion M.V., et al., Measurement and numericalsimulation of soot particle size distribution functions in a laminar premixedethylene-oxygen-argon flame, Combustion and Flame,2003,133(1-2):173~188
    [48] Zhao B., Yang Z., Wang J., Johnstion M.V., Wang H., Analysis of sootnanoparticles in a laminar premixed ethylene flame by scanning mobilityparticle sizer, Aerosol Sci. Technol.,2003,37(8):611~620
    [49] Vander Wal R.L., Tomasek A.J., Street K., Hull D.R., Thompson W.K., Carbonnanostructure examined by lattice fringe analysis of high-resolutiontransmission electron microscopy images, Appl. Spectrosc.,2004,58(2):230~237
    [50] Vander Wal R.L., Yezerets A., Currier N.W., Kim D.H., HRTEM study ofdiesel soot collected from diesel particulate filters, Carbon,2007,45(1):70~77
    [51] Dames D., Sirjean B., Wang H., Weakly bound carbon-carbon bonds inacenaphthene derivatives and hexaphenylethane, J. Phys. Chem.,2010,114(2):1161~1164
    [52] Balthasar M., Frenklach M., Monte-Carlo simulation of soot particlecoagulation and aggregation: the effect of a realistic size distribution, Proc.Combust. Inst.2005,30(1):1467~1475
    [53] Wang H., Formation of nascent soot and other condensed-phase materials inflames, Proc. Combust. Inst.2011,33(1):41~67
    [54] Bakenhus M., Reitz R., Two-color combustion visualization of single and splitinjections in a single-cylinder heavy-duty D. I. diesel engine using anendoscope-based imaging system, SAE Paper,1999-01-1112,1999
    [55]赵奎翰,魏建勤,息树和等,直喷式柴油机燃烧室形状对碳粒形成过程影响的实验研究,内燃机学报,1996,14(3):286~294
    [56]王飞,薛飞,马增益,等,运用彩色CCD双色信息测量燃烧火焰的温度场,发电设备,1998,(6):2~5
    [57] Matsui T., Kamimoto T., Matsuoka S., Formation and oxidation processes ofsoot particulate in a D.I. diesel engine-an experimental study via the two–colormethod, SAE Paper,82046
    [58] Suck G., Jakobs J., Nicklitzsch S., et a1., NO laser-induced fluorescenceimaging in the combustion chamber of a spray-guided direct-injection gasolineengine, SAE Paper,2004-01-1918,2004
    [59] Verbiezen K., Klein-Douwel R.J.H., Van Vliet A.P., Quantitative laser-inducedfluorescence measurements of nitric oxide in a heavy-duty diesel engine, Proc.Combust. Inst.,2007,31(1):765~773
    [60] Collin R., Nygren J., Richter M., et a1., Simultaneous OH-andformaldehyde-LIF measurements in an HCCI Engine, SAE Paper,2003-01-3218,2003
    [61]汪洋,苏万华,史绍熙,用激光诱导荧光法(LIF)研究燃油喷雾的撞壁混合过程(1)——测试原理、平面撞壁,燃烧科学与技术,1996,2(4):329~348
    [62]孙田,苏万华,郭红松,等,应用激光诱导荧光法研究超高压喷雾气液相浓度场分布特性,内燃机学报,2007,25(2):97~104
    [63] Sato T., Shirabe N., Anezaki Y., et al., Spatial distribution of droplet diameterof wall-impinging-spray for direct injection gasoline engines, SAE Paper,2003-01-0063,2003
    [64]赵奎翰,魏建勤,息树和等.小缸径直喷式柴油机喷雾、燃烧和碳粒生成过程试验研究,内燃机学报,1997,15(2):151~158
    [65] Stone C.R., Lim E.P., Ewart P., et al., Temperature and heat flux measurementsin a spark ignition engine, SAE Paper,2000-01-1214,2000
    [66] Grandin B., Denbratt I., Bood J., et al., The effect of knock on the heat transferin an SI engine: thermal boundary layer investigation using CARS temperaturemeasurements and heat flux measurements, SAE Paper,2000-01-2831,2000
    [67]刘仪,刘巽俊,柴油机全气缸取样技术存在的几个问题,内燃机学报,1995,13(3):237~243
    [68]刘仪,藏仲冬,白翎等,直喷式柴油机缸内气体全量取样技术开发及其在缸内微粒形成过程研究中的应用,内燃机学报,1995,13(1):71~76
    [69]刘仪,柴油机全气缸取样系统开发及缸内微粒形成过程研究:[博士论文],长春;吉林工业大学,1989
    [70]刘仪,季雨,郭英男等,柴油机全气缸取样系统及其缸内微粒形成过程研究中的应用,内燃机学报,1990,8(2):125~130
    [71]成存玉,柴油机全气缸取样系统的开发:[硕士学位论文],天津;天津大学,2005
    [72]裴毅强,董素荣,宋崇林等,基于电控燃油喷射技术的柴油机全气缸取样系统的设计与开发,燃烧科学与技术,2006,12(2):115~120
    [73]董素荣,现代柴油机全气缸取样系统开发及缸内微粒理化特性研究:[博士学位论文],天津;天津大学,2007
    [74]魏国东,杨铁皂,董素荣等,现代柴油机燃烧过程中微粒质量的变化规律,燃烧科学与技术,2007,13(4):360~364
    [75]裴毅强,董素荣,宋崇林,现代柴油机排气微粒生成历程及理化特性,天津大学学报,2006,39(B06):47~50
    [76]董素荣,宋崇林,张国彬等,柴油机缸内微粒粒数粒径分布规律的研究,内燃机学报,2008,26(1):24~28
    [77]董素荣,宋崇林,范国梁等,柴油机燃烧过程中多环芳香烃形成历程的研究,工程热物理学报,2008,29(3):515~518
    [78]张炜,宋崇林,王林等,柴油机燃烧过程中微粒微观结构的变化规律,内燃机学报,2010,28(3):221~227
    [79]赵佳佳,碰撞式取样系统开发及在柴油机燃烧分析中的应用:[博士论文],长春;吉林大学,2007
    [80]赵佳佳,刘忠长,韩永强,碰撞式全气缸取样机构及其初步应用,车用发动机,2007,6:43~46
    [81]赵佳佳,韩永强,基于碰撞机理的全气缸取样机构设计,汽车技术,2007,8:45~49
    [82]王磊,正庚烷燃烧过程中柴油机缸内微粒微观形貌及结构的研究:[硕士学位论文],天津;天津大学,2011
    [83] Kittelson D.B., Pipho M.J., Ambs J.L., et al., Particle concentrations in a dieselcylinder: comparison of theory and experiment, SAE Paper,861569,1986
    [84] Kittelson D.B., Pipho M.J., Ambs J.L., et al., In-cylinder measurements of sootproduction in a direct-injection diesel engine, SAE Paper,880344,1988
    [85] Pipho M.J., Kittelson D.B., Luo L., et al., Injection timing and bowlconfiguration effect on in-cylinder particle mass. SAE Paper,921469,1992
    [86] Matsui T., Kamimoto T., Matsuoka S., Formation and Oxidation Processes ofSoot Particulate in a D.I. Diesel Engine-An Experimental Study via the Two–color Method, SAE Paper,82046,1982
    [87] Du C.J., andKittelson D.B., Total Cylinder Sampling from a Diesel Engine: PartIII-Particle Measurements, SAE Paper,830243,1983
    [88] Luo Lang, Ph.D, In-cylinder particulate size distribution measurements in adirect-injection diesel engine, University of Minnesota,1991
    [89]张文美,现代柴油机燃烧过程中微粒及多环芳香烃变化规律的研究:[硕士论文],天津;天津大学,2007
    [90]张炜,柴油机缸内微粒的微观结构、表面官能团及氧化特性的研究:[博士论文],天津;天津大学,2010
    [91] Lee K.O., Zhu J., Sizes, graphitic structures and fractal geometry of Light-dutydiesel engine particulates, SAE Paper,2003-01-3169,2003
    [92] Zhu J., Lee K.O., Yozgatligil A., et al., Effects of engine operating conditionson morphology, microstructure, and fractal geometry of light-duty diesel engineparticulates, International Symposium on Combustion,2005,30(2):2781~2789
    [93] Vander Wal R.L., Tomasek A.J, Soot oxidation: dependence upon initialnanostructure, Combustion and flame,2003,34(1),1~9
    [94] Song J., Alam M., Boehman A.L., et al., Examination of the oxidation behaviorof biodiesel soot, Combustion and flame,2006,146(4):589~604
    [95]张东明,柴油机燃烧过程中颗粒物表面官能团变化规律的研究:[硕士论文],天津;天津大学,2009
    [96] Hurt R.H., Crawford G.P., et al., Equilibrium nanostructure of primary sootparticles, Proc. Combust. Inst.,2000,28(2):2539~2546
    [97] Stasio S.D., Electron microscopy evidence of aggregation under three differentsize scales for soot nanoparticles in flame, Carbon,2001,39(1):109~118
    [98] Lahaye J., Prado G., Morphology and internal structure of soot and carbonblacks, Particulate Carbon Formation during Combustion,1981:33~55
    [99] Ishiguro T., Takatori Y., and Akihama K., Microstructure of diesel sootparticles probed by electron microscopy: First observation of inner core andouter shell, Combustion and Flame,1997,108(1):231~234
    [100] Vander Wal R.L. and Tomasek A.J., Soot nanostructure: dependence uponsynthesis conditions, Combustion and flame,2004,136(1-2):129~140
    [101] Vander Wal R.L., Soot Nanostructure: Definition, Quantification andImplications. Sae Paper,2005-01-0964,2005
    [102] Vander Wal R.L. and Mueller C.J., Initial Investigation of Effects of FuelOxygenation on Nanostructure of Soot from a Direct-Injection Diesel Engine,Energy Fuels,2006,20(6):2364~2369
    [103] Vander Wal R.L., Bryg V.M., and Hays M.D., Fingerprinting soot (towardssource identification): Physical structure and chemical composition, AerosolScience,2010,41(1):108~117
    [104] Yehliu K., Vander Wal R.L., Boehman A.L., Development of an HRTEMimage analysis method to quantify carbon nanostructure, Combustion and flame,2011,158(9):1837~1851
    [105] Yehliu K., Vander Wal R.L., Boehman A.L., A comparison of sootnanostructure obtained using two high resolution transmission electronmicroscopy image analysis algorithms, Carbon,2011,49(13):4256~4268
    [106] Tuinstra F., Koenig J.L.. Raman spectrum of graphite, Journal of ChemicalPhysics,1970,53(3):1126~1130
    [107] Schwan J., Ulrich S., Batori V., et al., Raman spectroscopy on amorphouscarbon films, Journal of applied physics,1996,80(1):440~447
    [108] Knight D.S., White W.B., Characterization of diamond films by Ramanspectroscopy, Journal of Materials Research,1989,4(2):385~393
    [109] Lee G.W., Jurng J., Hwang J., Formation of Ni-catalyzed multiwalled carbonnanotubes and nanofibers on a substrate using an ethylene inverse diffusionflame, Combustion and flame,2004,139(1):167~175
    [110] Braun T., Rausch H., Mink J., Raman spectroscopy of the effect of reactorneutron irradiation on the structure of polycrystalline C60, Carbon,2005,43(4):870~873
    [111] Fang H.L., Lance M.J., Influence of Soot Surface Changes on DPFRegeneration, SAE Paper,2004-01-3043,2004
    [112] Smith D.M., Chughtai A.R., Surface structure and reactivity of black carbon,Colloids and Surfaces A: Physicochemical and Engineering Aspects,1995,105(1):47~77
    [113] Alfè M., Apicella B., Rouzaud J-N., Tregrossi A., Ciajolo A., The effect oftemperature on soot properties in premixed methane flames, Combustion andflame,2010,157(10):1959~1965
    [114] Alfè M., Apicella B., Rouzaud J-N., Tregrossi A., Ciajolo A., Structure-propertyrelationship in nanostructures of young and mature soot in premixed flames,Proc. Combust. Inst.,2009,32(1):697~704
    [115] Braun A., Shah N., Huggins F.E., et al., X-ray scattering and spectroscopystudies on diesel soot from oxygenated fuel under various engine loadconditions, Carbon,2005,43(12):2588~2599
    [116] Cain J.P., Gassman P.L., Wang H., Laskin A., Micro-FTIR study of sootchemical composition—evidence of aliphatic hydrocarbons on nascent sootsurfaces, Physical Chemistry Chemical Physics,2010,12(20):5206~5218
    [117] Cain J.P., Camacho J., Phares D.J., Wang H., Laskin A., Evidence of aliphaticsin nascent soot particles in premixed ethylene flames, Proc. Combust. Inst.,2011,33(1):533~540
    [118] ktem B., Tolocka M.P., Zhao B., Wang H., et al., Chemical species associatedwith the early stage of soot growth in a laminar premixedethylene-oxygen-argon flame, Combustion and flame,2005,142(4):364~373
    [119] Wang H., Du D.X., Sung C.J., Law C.J., Experiments and numerical simulationon soot formation in opposed-jet ethylene diffusion flames, Symp.(Int.)Combustion,1996,26(2):2359~2368
    [120] Ishiguro T., Suzuki N., Fujitani Y., Morimoto H., Microstructural changes ofdiesel soot during oxidation, Combustion and flame,1991,85(1-2):1~6
    [121] Vander Wal R.L., Bryg V.M., and Hays M.D., XPS Analysis of CombustionAerosols for Chemical Composition, Surface Chemistry, and Carbon ChemicalState, Analytical Chemistry,2011,83(6):1924~1930
    [122] Santamaría A., Mondragón F., Molina A., Marsh N.D., Eddings E.G., SarofimA.F., FT-IR and1H NMR characterization of the products of an ethyleneinverse diffusion flame, Combustion and flame,2006,146(1-2):52~62
    [123] Santamaría A., Mondragón F., Qui ónez W., Eddings E.G., Sarofim A.F.,Average structural analysis of the extractable material of young soot gathered inan ethylene inverse diffusion flame, Fuel,2007,86(12-13):1908~1917
    [124] Santamaría A., Yang n., Eddings E.G., Mondrag ó n F., Chemical andmorphological characterization of soot and soot precursors generated in aninverse diffusion flame with aromatic and aliphatic fuels, Combustion and flame,2010,157(1):33~42
    [125] Neeft J.P.A., Nijhuis T.X., Smakman E., et al., Kinetics of the oxidation ofdiesel soot, Fuel,1997,76(12):1129~1136
    [126] Al-Qurashi K., Boehman A.L., Impact of exhaust gas recirculation (EGR) onthe oxidative reactivity of diesel engine soot, Combustion and flame,2008,155(4):675~695
    [127] Al-Qurashi K., Lueking A.D., Boehman A.L., The deconvolution of the thermal,dilution, and chemical effects of exhaust gas recirculation (EGR) on thereactivity of engine and flame soot, Combustion and flame,2011,158(9):1696~1704
    [128] Müller J.O., Su D.S., Jentoft R.E., Kr hnert J., Schl gl R., Morphologycontrolled reactivity of carbonaceous materials towards oxidation, CatalysisToday,2005,102-103:259~265
    [129] Müller J.O., Su D.S., Jentoft R.E., Wild U., Schl gl R., Diesel engine exhaustemission: Oxidative behavior and microstructure of black smoke soot particulate,Environ. Sci. Technol.,2006,40(4):1231~1236
    [130] Su D.S., Jentoft R.E., Müller J.O., Rothe D., et al, Microstructure and oxidationbehaviour of Euro IV diesel engine soot: a comparative study with syntheticmodel soot substances, Catalysis Today,2004,90(1-2):127~132
    [131] Stratakis G.A., Stamatelos A.M., Thermogravimetric analysis of soot emitted bya modern diesel engine run on catalyst-doped fuel, Combustion and flame,2003,132(1-2):157~169
    [132] Stanmore B., Brilhac J.F., Gilot P., The oxidation of soot: a review ofexperiments, mechanisms and models, Carbon,2001,39(15):2247~2268
    [133] Williams S., Surface intermediates, mechanism, and reactivity of soot oxidation:
    [Doctor Degree Thesis], Toronto, University of Toronto,2008
    [134] Marsh H., Kuo K., Kinetics and catalysis of carbon gasification, Introduction toCarbon Science:107~152, Butterworths, London,1989
    [135] Smith W.R., Polley M.H., The oxidation of graphitized carbon black, Journal ofElectrochemistry,1956,60(5):689~691
    [136] Rosner D.E., Allendorf H.D., Comparative studies of the attack of pyrolytic andisotropic graphite by atomic and molecular oxygen at high temperatures, AIAAJournal,1968,6(4):650~654
    [137] Dresselhaus M.S., Dresselhaus G., Eklund P.C., Science of fullerenes andcarbon nanostructures, San Diego: Academic Press,1996.35~47
    [138] Levy M., Wong P., The oxidation of pyrolytic graphite at temperatures of1400°-1800°F and at air velocities of25-100cm/sec, J. Electrochem. Soc.,1964,111(9):1088~1091
    [139] Walker P.L., Taylor R.L., Ranish J.M., An updata on the carbon-oxygenreaction, Carbon,1991,29(3):411~421
    [140] Yang P.L., Gorthel P.J., Mechanism of catalyzed graphite oxidation bymonolayer channeling and monolayer edge recession, Journal of Catalysis,1989,119(1):201~214
    [141] Yang P.L., Duan R.Z., Kinetics and mechanisms of gas-carbon reactions:conformation of each pit, hydrogen inhibition and anisotropy in reactivity,Carbon,1985,23(3):325~331
    [142] Fiqueiredo J.L., Freitas M.M.A., Orfao J.J.M, Pereira M.F.R, Modification ofthe surface chemistry of activated carbons, Carbon,1999,37(9):1379~1389
    [143] Biniak S., Szymanski G., Siedlewdki J., Swiatkowski A., The characterizationof activated carbons with oxygen and nitrogen surface groups, Carbon,1997,35(12):1799~1810
    [144] Lorentzou S., Pagkoura C., Zygogianni A., Kastrinaki G., KonstandopoulosA.G., Catalytic Nano-structured Materials for Next Generation DieselParticulate Filters, SAE Paper,2008-01-0417,2008
    [145] Donnet J.B., The chemical reactivity of carbons, Carbon,1963,6(2):161~176
    [146] Bansal R.C., Donnet J.P., In Carbon Black: Science and Technology,2ed.,Editor, Donnet J.P., Marcel Dekker: New York,1993, p175
    [147] Fanning P.E., Vannice M.A., A DRIFTS study of the formation of surfacegroups on carbon by oxidation, Carbon,1993,31(5):721~731
    [148] Zawadski J., In Chemistry and Physics of Carbon, Editor, Thrower P.A., MarcelDekker: New York,1989, p147
    [149] Grothe H., Muckenhuber H., The heterogeneous reaction between soot and NO2at elevated temperature, Carbon,2006,44(3):546~559
    [150] Muckenhuber H., Grothe H., A DRIFTS study of the heterogeneous reaction ofNO2with carbonaceous materials, Carbon,2007,45(2):321~329
    [151] Donkerbroek A.J., van Vliet A.P., Somer L.M.T., et al., Time-andspace-resolved quantitative LIF measurements of formaldehyde in a heavy-dutydiesel engine, Combustion and flame,2010,157(1):155~166
    [152]陈群,李骏,CA498车用柴油机EGR的试验研究,内燃机学报,2001,19(6):557~561
    [153] Greeves G., Wang C., Origins of Diesel Particulate Mass Emission, SAEtechnical paper,1981,810260
    [154] Alkidas A. C., Relationships between Smoke Measurements and ParticulateMeasurements, PA: SAE,1984
    [155]郭振鹏,柴油机全气缸取样系统改进及微粒生成历程的初步研究:[硕士学位论文],天津;天津大学,2006
    [156] Sadezky A., Muckenhuber H., Grothe H., Niessner R., P schl U., Ramanspectra of soot and related carbonaceous materials: Spectral analysis andstructural information, Carbon,2005,43(8):1731~1742
    [157] McCreery R. L., Magnitude of Raman scattering. In Raman Spectroscopy forChemical Analysis, Winefordner J. D., ed. John Wiley&Sons: New York,2000,Vol.157,15~35
    [158] Ivleva N. P., Niessner R., Panne U., Characterization and discrimination ofpollen by Raman microscopy, Anal. Bioanal. Chem.,2005,381(1):261~267
    [159] Rosen N., Novakov T., Raman scattering and characterization of atmosphericaerosol particles, Nature,1977,266:708~710
    [160]韩秀山,我国润滑油添加剂发展现状,化工中间体,2002,20:19~22
    [161] Brasil A.M., Farias T.L. and Carvalho M.G., A Recipe for ImageCharacterization of Fractal-like Aggregates, J. Aerosol Sci.,1999,30(10):1379~1389
    [162]蔡智鸣,张俊勇,杨科峰,程喆,色谱-质谱测定市售0号柴油成分,同济大学学报,2002,30(1):124~126
    [163] D'anna A., Ciajolo A., Alfè M., Apicella B., Tregrossi A., Effect of fuel/airratio and aromaticity on the molecular weight distribution of soot in premixedn-heptane flames, Proc. Combust. Inst.,2009,32(1):803~810
    [164] Astarita M., Corcione F.E., Vaglieco B.M., Fuel composition effects onparticulate formation in a divided chamber diesel system, Experimental Thermaland Fluid Science,2000,21(1-3):142~149
    [165] Neer A. and Koylu U.O., Effect of operating conditions on the size, morphology,and concentration of submicrometer particulates emitted from a diesel engine,Combustion and flame,2006,146(1-2):142~154
    [166] Tree D.R. and Svensson K., Soot processes in compression ignition engines,Progress in Energy and Combustion Science,2007,33(3):272~309
    [167] Luo L., Pipho M.J., Ambs J.L. and Kittelson D.B., Particle growth andoxidation in a direct-injection diesel engine, SAE Paper,890580,1989
    [168] Rouzaud J.N., Clinard C., Chevallier F., Thery A., Béguin F., High resolutiontransmission electron microscopy image analysis of disordered carbons used forelectrochemical storage of energy, New Carbon Based Materials forElectrochemical Energy Storage Systems,2006,229:411~424
    [169] Goel A., Hebgen P., Vander Sande J.B., et al., Combustion synthesis offullerenes and fullerenic nanostructures, Carbon,2002,40(2):177~182
    [170] Palotás A.B., Rainey L.C., Feldermann C.J., Sarofim A.F., et al., Sootmorphology: an application of image analysis in high-resolution transmissionelectron microscopy, Microscopy research and technique,1996,33(3):266~278
    [171]张志立,Rik Brydson,Aidan Westwood,,et al.,类玻璃碳材料的EELS分析,稀有金属材料与工程,2007,36(2):757~759
    [172]鲁占灵,张兵临,姚宁,杨仕娥,樊志琴,非晶碳膜中sp2和sp3相的检测方法,材料导报,2006,20(6):98~101
    [173] Berger S.D., McKenzie D.R. and Martin P.Z., EELS analysis of vacuumarc-deposited diamond-like films, Philosophical Magazine Letters,1988,57(6):285~290
    [174] Bruley J., Williams D.B., Cuomo J.J. and Pappas D.P., Quantitative near-edgestructure analysis of diamond-like carbon in the electron microscope using atwo-window method, Journal of Microscopy,1995,180(1):22~32
    [175] J ger C., Henning Th., Schl gl R., Spillecke O., Spectral properties of carbonblack, Journal of Non-Crystalline Solids,1999,258(1-3):161~179
    [176] Braun A., Huggins F.E., Shah N. et al, Advantages of soft X-ray absorptionover TEM-EELS for solid carbon studies--a comparative study on diesel sootwith EELS and NEXAFS, Carbon,2005,43(1):117~124
    [177] Braun A., Kubatova A., Wirick S. and Mun S.B., Radiation damage from EELSand NEXAFS in diesel soot and diesel soot extracts, Journal of ElectronSpectroscopy and Related Phenomena,2009,170(1-3):42~48
    [178] Daniels H., Brydson R., Rand B., Brown A., Investigating carbonization andgraphitization using electron energy loss spectroscopy (EELS) in thetransmission electron microscope (TEM), Philosophical Magazine,2007,87(27):4073~4092
    [179] Vander Wal R.L., Soot precursor carbonization: Visualization using LIF and LIIand comparison using bright and dark field TEM, Combustion and flame,1998,112(4):607~616
    [180] Emmerich F.G., Evolution with heat treatment of crystallinity in carbons,Carbon,1995,33(12):1709~1715
    [181]张华伟,柴油机燃烧过程中多环芳香烃测量及演变规律的实验研究:[博士论文],天津;天津大学,2011
    [182] Oberlin A., Chemistry and Physics of Carbon, Marcel Dekker Inc., New York,1989
    [183] Li Z., Song C., Song J., Lv G., Dong S., Zhao Z., Evolution of the nanostructure,fractal dimension and size of in-cylinder soot during diesel combustion process,Combustion and flame,2011,158(8):1624~1630
    [184] Blanquart G., Pepiot-Desjardins P., et al., Chemical mechanism for hightemperature combustion of engine relevant fuels with emphasis on sootprecursors, Combustion and flame,2009,156(3):588~607
    [185] Yang B., Li Y., et al., An experimental study of the premixedbenzene/oxygen/argon flame with tunable synchrotron photoionization, Proc.Combust. Inst.,2009,31(1):555~563
    [186] Li Y., Tian Z., et al., An experimental study of the rich premixed ethylbenzeneflame at low pressure, Proc. Combust. Inst.,2009,32(1):647~655
    [187] Li Y., Zhang L., et al., Experimental study of a fuel-rich premixed toluene flameat low pressure, Energy&fuels,2009,23(3):1473~1485
    [188]李玉阳,芳烃燃料低压预混火焰的实验和动力学模型研究:[博士论文],合肥;中国科学技术大学,2010
    [189] Howard J.B., Carbon addition and oxidation reactions in heterogeneouscombustion and soot formation, Symposium (International) on Combustion,1991,23(1):1107~1127
    [190] McKinnon J. T., Meyer E., et al., Infrared analysis of flame-generated PAHsamples,1996, Combustion and flame,1996,105(1-2):161~166
    [191]奥钦,雅费,对称性、轨道和光谱(徐广智译),北京:科学技术出版社,1980,58~59
    [192]王军,化学结构,北京:科学出版社,2008,246~248
    [193]常鹰飞,孙丽莉,唐树伟,王荣顺,小富勒烯研究进展,分子科学学报,2008,24(3):149~157
    [194] Kizgut S. and Yilmaz S., Characterization and non-isothermal decompositionkinetics of some Turkish bituminous coals by thermal analysis, Fuel ProcessingTechnology,2004,85(2-3):103~111
    [195]许越,化学反应动力学,北京,化学工业出版社,2005,61~66
    [196] Friedman H. L., New methods for evaluating kinetic parameters from thermalanalysis data, Journal of Polymer Science Part B: Polymer Letters,1969,7(1):41~46
    [197] Schüth F., Sing K.S.W. and Weitkamp J., Handbook of Porous Solids, Germany:Weinheim,2002,1863~1900
    [198] Seong H.J.and Boehman A.L., Impact of intake oxygen enrichment on oxidativereactivity and properties of diesel soot, Energy Fuels,2011,25(2):602~616
    [199] Song J., Wang J. and Boehman A.L., The role of fuel-borne catalyst in dieselparticulate oxidation behavior, Combustion and flame,2006,146(1-2):73~84
    [200] Castoldi L., Matarrese R., Lietti L., et al., Intrinsic reactivity of alkaline andalkaline-earth metal oxide catalysts for oxidation of soot, Appl. Cat. B,2009,90(1-2):278~285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700