用户名: 密码: 验证码:
LTCC基板用MgO-Al_2O_3-SiO_2系微晶玻璃及其流延工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温共烧陶瓷(LTCC)技术是近年来微电子封装技术中发展最迅速的分支,其中关键技术——LTCC基板材料的研究受到广泛关注。国外公司如DuPont、Ferro对材料关键技术采取严格保密措施,以赚取高额利润。LTCC基板中无机材料的研制和对应流延工艺的研究对于实现LTCC技术国产化意义重大。本文首先对LTCC基板材料性能指标和国内外代表性材料体系进行了系统介绍和比较;研制出与国外成熟产品性能相当的MgO-Al_2O_3-SiO_2系微晶玻璃流延生带,掌握其性能影响因素;研究各种氧化物添加物对MgO-Al_2O_3-SiO_2系微晶玻璃性能影响;同时研究元素周期性对微晶玻璃性能的影响规律和探索生带技术在曲面金属/陶瓷复合材料制备方面的应用。
     设计和制备一系列MgO-Al_2O_3-SiO_2系微晶玻璃材料,主要氧化物MgO、Al2O3和SiO2的含量分别符合堇青石(Mg2Al4Si5O18)化学计量比和偏离堇青石化学计量比;研究微晶玻璃析晶特性影响因素,包括微晶玻璃组成、原始玻璃熔融温度、玻璃状态及玻璃粉粒径。利用示差扫描量热法(DSC)分析各玻璃样品,利用微晶玻璃的析晶峰值温度(Tp)和晶体生长速率(k(Tp))分析不同因素的影响。增加MgO-Al_2O_3-SiO_2系微晶玻璃中MgO含量有利于降低Tp,增大k(Tp);而提高玻璃熔融温度会提高Tp,降低k(Tp);经球磨获得的玻璃粉具有比块状玻璃样品低的Tp;粒径较小的玻璃粉具有较低的k(Tp)。
     舍弃析出石英相的非计量比微晶玻璃配方,对性能较好的MgO-Al_2O_3-SiO_2玻璃用不同热处理制度制备微晶玻璃样品。研究热处理制度中四大影响因素(形核温度、形核时间、析晶温度、析晶时间)对微晶玻璃烧结致密度、介电性能、热学性能的影响。提高形核温度能增大微晶玻璃烧结致密度,对微晶玻璃介电性能(1MHz)影响较小,形核温度为750℃时,微晶玻璃具有最大的热膨胀系数(4.93×10-6K-1)和最高软化温度(838℃);形核时间对微晶玻璃烧结致密度和介电常数影响甚微,形核时间为60min时,微晶玻璃具有最大热膨胀系数(4.93×10-6K-1),形核时间为90min时,微晶玻璃具有最高软化点温度(840℃);微晶玻璃热膨胀系数随析晶温度上升而增大,析晶温度为950℃时,微晶玻璃烧结致密度出现最大值(98.85%),并具有最高介电常数(5)和最高软化点温度(838℃);析晶时间对微晶玻璃的烧结致密度影响甚微,随析晶时间延长,微晶玻璃介电常数降低,热膨胀系数增大,析晶时间为60min时具有最高软化温度(838℃)。
     选择三种氧化物P_2O_5、ZrO_2和Yb_2O_3作为MgO-Al_2O_3-SiO_2系微晶玻璃的添加物,通过研究加入这些氧化物的微晶玻璃析晶特性、析出晶相种类和晶粒形貌等判断该氧化物的形核能力。这三种氧化物对微晶玻璃的析晶速率值影响均较小;P2O5能促进玻璃分相,从而促进玻璃中晶相的析出,并能降低MgO-Al_2O_3-SiO_2系微晶玻璃中堇青石相析出温度;ZrO_2和Yb_2O_3对玻璃中晶相的析出稍有抑制作用;在微晶玻璃中添加P2O5和ZrO_2明显降低材料抗弯强度,添加量较多时(6wt% P2O5,4wt% ZrO_2)材料的介电常数和介质损耗急剧增大;Yb_2O_3能增强微晶玻璃抗弯强度,介电性能对Yb_2O_3保持稳定。
     基于同族元素性质的周期变化性,并根据氧化物对玻璃性质的作用原理,选择碱土金属氧化物MgO、CaO、SrO和BaO作原料,制备含相同摩尔量碱土金属离子的RO-Al_2O_3-SiO_2微晶玻璃。研究不同周期碱土金属离子对微晶玻璃析晶特性、烧结温度范围及各项物理性能的影响。实验结果表明,微晶玻璃的晶体生长速率随碱土金属元素周期数增加先减小后增大;950℃热处理1h后微晶玻璃抗弯强度随周期数增加先减小后增大,热处理时间延长至24h后,四种微晶玻璃抗弯强度值趋于相近;随周期数增加微晶玻璃的介电常数增大,热膨胀系数增大;随热处理时间延长,微晶玻璃的介电常数减小,热膨胀系数增大。
     制备MgO-Al_2O_3-SiO_2微晶玻璃流延浆料,研究各种因素,包括玻璃粉体粒径大小、粉体固含量、粘结剂用量、粘结剂/增塑剂含量比值(R)大小和分散剂含量对浆料流变特性的影响。当玻璃粉体粒径D50为2.23μm ,固含量为20~25vol%,粘结剂含量为15.5~19 vol%,R值为0.65,分散剂用量为玻璃粉体质量的2%时可获得最佳流变特性的流延浆料。
     通过流延成型工艺制备MgO-Al_2O_3-SiO_2微晶玻璃生带,研究烧结前后生带性能影响因素,利用拉伸实验测量烧结前生带的强度和韧性,通过测量烧结后生带的密度和收缩率判断其烧结特性。实验结果表明,适当增加生带中粘结剂含量,选择合适的R值,并选用粒径较小的玻璃粉可提高烧结前生带的综合性能;减少粘结剂用量、选择适当的增塑剂含量,并选用粒径较大的玻璃粉则有利于获得烧结特性优良的生带。
     生带是一种有机高分子/陶瓷柔性复合膜,利用其性状及中间体特性可拓展其应用领域。本文在拓展生带技术应用领域做了探索性研究,包括制备曲面金属/微晶玻璃层状复合材料、用超细银粉与玻璃粉的混合物制备电阻生带以在LTCC技术中替代电阻浆料等。
Low temperature co-fired ceramics (LTCC) developed rapidly as a kind of microelectric packaging technology. The substrate materials as the most important part of LTCC technology was broad attentioned. The substrate materials technology was kept as secret by DuPont and Ferro company to earn huge profits. Study of the inorganic materials in LTCC substrate and the corresponding tape-casting technics was seriously significative. In this paper, the properties targets and typical materials were introduced systemattically. The MgO-Al_2O_3-SiO_2 glass-ceramic green tape with properties near to the mature product was prepared. The influence factors to this green tape were mastered. The influence of oxide additives and the periodic properties of elements were studied . And the application fields of green tape were spread such as the preparing of the curve metal/ceramic composite materials.
     Series of MgO-Al_2O_3-SiO_2 glass-ceramics were designed and prepared. The contents of MgO, Al2O3 and SiO2 corresponded to the stoichiometric cordierite (Mg2Al4Si5O18) or not. The influence factors in crystallization kinetics of glass-ceramics includ the components, the melting temperatures of glass, the state of glass and the granularity of glass powder. The peak temperatures Tp and the crystallization rate constant k(Tp) of glass were used to analyze the influence by way of differential scanning calorimetry (DSC). Increasing the content of MgO can decrease the Tp and increase the k(Tp) of MgO-Al_2O_3-SiO_2 glass-ceramics. The rising of melting temperature can increase the Tp and decrease the k(Tp). The ground glass powder has lower peak temperatures than massive glass. And the finer glass powder has lower peak temperatures.
     The stoichiometric MgO-Al_2O_3-SiO_2 glass which had better properties was chosen to be heat-treated with different treat system. The main influence factors of heat treatment includ nucleating temperature, nucleating time, crystallizing temperature and crystallizing time. Such factors could influence the sintering properties, the dielectric properties and the coefficient of thermal expansion (CTE) of glass-ceramics. Increasing the nucleating temperature can raise the relative density of MgO-Al_2O_3-SiO_2 glass-ceramics. The influence of the nucleating temperature on the dielectric constant of glass-ceramics is not obvious. The highest CTE as 4.93×10-6K-1 and the highest softening point of glass as 838℃appear when the nucleating temperature is 750℃. The nucleating time has little influence to the relative density and dielectric constant of glass-ceramics. The highest CTE as 4.93×10-6K-1 appears when the nucleating time was 60 minutes. And the highest softening point as 840℃appears when the nucleating time is 90 minutes. The CTE of glass-ceramics increases with the inceasing of the crystallizing temperature. When the crystallizing temperature was 950℃, the maximal relative density as 98.85%, the maximal dielectric constant as 5 and the highest softening point as 838℃appears. The influence of crystallizing time to relative density of glass-ceramics is not obvious. The dielectric constant decreases and the CTE increase with the prolongation of crystallizing time. The highest softening point of glass as 838℃appears when the crystallizing time is 60 minutes.
     Three kinds of oxides, which are P2O5, ZrO_2 and Yb_2O_3, were chosen to be addtives of MgO-Al_2O_3-SiO_2 glass-ceramics. The nucleating ability of such oxides were determined by studing the crystallization kinetics, the kind and shape of crystal of the glass-ceramics with such oxides. The influence of such oxides to the crystallization kinetics of glass-ceramics is not obvious. P2O5 can promote the phase separation of glass and farther can promote the crystallization. The temperature of cordierite separating decreases with the adding of P2O5. ZrO_2 and Yb_2O_3 can restrain the separation of crystal. The adding of P2O5 and ZrO_2 can decrease the flexural strength of MgO-Al_2O_3-SiO_2 glass-ceramics. When the quantity is big enough (6wt% P2O5 and 4wt% ZrO_2) the dielectric constant and the loss tangent of glass-ceramics increase rapidly. Yb_2O_3 can enhance the flexural strength of glass-ceramics. At the same time the dielectric properties keep stable with the adding of Yb_2O_3. The CTE of glass-ceramics is influenced little by these oxides.
     The same mole of MgO, CaO, SrO and BaO were chosen to prepare RO-Al_2O_3-SiO_2 glass-ceramics for the periodic properties of such oxides. The influence of the periodic properties on glass-ceramics was studied by analyzing the crystallization kinetics, the sintering temperature range and the physical properties of such glass-ceramics. As the periodicity of alkaline earth ion R2+ increases, the peak temperatures of glass decrease, the sintering temperature ranges reduce, the flexural strengthes decrease firstly, and then increase.At the same time, the dielectric constants increase, and the CTE increases too. The prolongation of crystallization time makes the values of flexural strengthes centralized. The dielectric constants decrease and the CTE increases with the prolongation of crystallization time.
     The MgO-Al_2O_3-SiO_2 glass-ceramics tape casting slurry was prepared. The factors such as the size of glass powder, the content of glass powder, the content of binder, the ratio of binder to plasticizer (R) and the content of dispersing agent which would influence the rheology of slurry were studied. The results announce that if such conditions could be satisfied as the D50 of glass powder is 2.23μm, the volume content of glass powder is between 20% and 25%, the volume content of binder is between 15.5% and 19%, the R is 0.65 and the dispersing agent is 2wt% of glass powder, the slurry with best rheological properties can be gained.
     The MgO-Al_2O_3-SiO_2 glass-ceramics green tape was prepared by tape casting technics. The influence factors to properties of green tape were studied. The strength and flexibility of unfired green tape were measured by standard tensile strength test. The relative density and shrinkage of fired green tape were measured to estimate the sintering properties of green tape. The benefit factors to properties of unfired green tape include the increasing of the content of binder, a proper R value and the fine glass powder. And the benefit factors to sintering properties include the decreasing of the content of binder, a proper R and the coarse glass powder.
     As a kind of transitional technics, the development of green tape technics was influenced by the application field. Some work which can expand the application field is attempted in this paper. This work includes the preparing of curve surface metal/glass-ceramics composites and the Ag/glass resistance green tape that can substitute the resistance paste in LTCC technics.
引文
[1] 杨邦朝,张经国. 多芯片组件(MCM)技术及其应用[M]. 成都:电子科技大学出版社, 2001
    [2] H. Dannheim, A. Roosen. Effect of metallization on the lifetime prediction of mechanically stressed low-temperature co-fired ceramics multilayers[J]. J. Am. Ceram. Soc., 2005, 88(8): 2188-2194
    [3] A. Y. Borisevich, P. K. Davies. Effect of V2O5 doping on the sintering and dielectric properties of M-phase Li1+x-yNb1-x-3yTix+4yO3 ceramics[J]. J. Am. Ceram. Soc., 2004, 87(6): 1047-1052
    [4] 李桂云. 低温共烧陶瓷系统及其应用[J]. 世界产品与技术, 2002, 23(6): 20-24
    [5] Y. C. Lin, J. H. Jean. Constrained sintering of silver circuit paste[J]. J. Am. Ceram. Soc., 2004, 87(2): 187-191
    [6] R. Z. Zuo, E. Aulbach, J. R?del. Shrinkage-free sintering of low-temperature cofired ceramics by loading dilatometry[J]. J. Am. Ceram. Soc., 2004, 87(3): 526-528
    [7] T. Hu, H. Jantunen, A. Deleniv. Electric-field-controlled permittivity ferroelectric composition for microwave LTCC modules[J]. J. Am. Ceram. Soc., 2004, 87(4): 578-583
    [8] Y. J. Choi, J. H. Park, W. J. Ko. Co-firing and shrinkage matching in low- and middle- permittivity dielectric compositions for a low-temperature co-fired ceramics system[J]. J. Am. Ceram. Soc., 2006, 89(2): 562-567
    [9] J. H. Jean, C. R. Chang, S. C. Lin. Method of making a semiconductor diode from laminated ceramic tape[P]. US Patent, 6008535. 1999-12-28
    [10] 王传声, 叶天培, 王正义. LTCC 技术在移动通信领域的应用[J]. 世界产品与技术, 2002, 23(1): 19-23
    [11] J. Mazierska, M. V. Jacob, A. Harring. Measurements of loss tangent and relative permittivity of LTCC ceramics at varying temperatures and frequencies[J]. J. Eur. Ceram. Soc., 2003, 23(14): 2611-2615
    [12] S. H. Yoon, D. W. Kim, S. Y. Cho. Phase analysis and microwave dielectric properties of LTCC TiO2 with glass system[J]. J. Eur. Ceram. Soc., 2003, 23(14): 2549-2552
    [13] C. C. Cheng, T. E. Hsieh, I. N. Lin. Microwave dielectric properties of glass-ceramic composites for low temperature co-firable ceramics[J], J. Eur. Ceram. Soc., 2003, 23(14): 2553-2558
    [14] S. Branckevsky. Method of making an embedded green multi-layer ceramic chipcapacitor in a low-temperature co-fired ceramic (LTCC) substrate[P]. US Patent, 6470545. 2002-10-29
    [15] J. W. Burdon, R. F. Huang, D. Wilcox. Method for fabricating a multilayered structure and the structures formed by the method[P]. US Patent, 6592696. 2003-7-15
    [16] A. H. Kumar, B. J. Thaler, A. N. Prabhu. Method for the reduction of lateral shrinkage in multilayer circuit boards on a substrate[P]. US Patent, 5876536. 1999-3-2
    [17] E. S. Tormey, A. N. Prabhu, P. Palinasamy. Multilayer ceramic circuit boards with embedded resistors[P]. US Patent, 6399230. 2002-6-4
    [18] A. N. Prabhu, E. S. Tormey. Thick ceramic on metal multilayer circuit board[P]. US Patent, 5866240. 1999-2-2
    [19] M. G. M. U. Ismail, H. Arai. Sol-gel synthesis of B2O3-doped anorthite and its characterization[J]. J. Ceram. Soc. Japn., 1992, 100(12): 1385-1389
    [20] M. R. G. Rubio, P. E. Vallejos, L. S. Laguna. Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST)[J]. Sens. Actuators, A, 2001, 89 (3): 222-241
    [21] 第一汽车制造厂, 长春汽车材料研究所. 机械工程材料手册有色金属材料[M]. 北京: 机械工业出版社, 1991
    [22] 田民波. 电子封装工程[M]. 北京: 清华大学出版社, 2003
    [23] K. Sumi, Y. Kobayashi, E. Kato. Low-temperature fabrication of cordierite ceramics from kaolinite and magnesium hydroxide mixtures with boron oxide additions[J]. J. Am. Ceram. Soc., 1999, 82(3): 783-785
    [24] Z. Strnad. Glass-ceramics Materials[M]. The Netherland: Elsevier Science Publication Company, 1986
    [25] K. A. Peterson, K. D. Patel, C. K. Ho. Novel microsystem applications with new techniques in low-temperature co-fired ceramics[J]. Int. J. Appl. Ceram. Technol., 2005, 2(5): 345-363
    [26] C. H. Newborn, J. M. English, D. J. Coe. LTCC fabrication for a leaf spring vertical actuator[J]. Int. J. Appl. Ceram. Technol., 2006, 3(1): 61-67
    [27] H. Birol, T. Maeder, C. Jacq. Fabrication of low-temperature co-fired ceramics micro-fluidic devices using sacrificial carbon layers[J]. Int. J. Appl. Ceram. Technol., 2005, 2(5): 364-373
    [28] L. J. Golonka, T. Zawada, J. Radojewski. LTCC microfluidic system[J]. Int. J. Appl. Ceram. Technol., 2006, 3(2): 150-156
    [29] T. Rabe, W. A. Schiller. Zero shrinkage of LTCC by self-constrained sintering[J]. Int. J. Appl. Ceram. Technol., 2005, 2(5): 374-382
    [30] J. H. Jang. Microstructural effects on microwave properties of low-temperaturecofired ceramic striplines: experiments and modeling[J]. J. Am. Ceram. Soc., 2004, 87(8): 1466-1470
    [31] W. K. Jones, Y. Q. Liu, M. C. Gao. Micro heat pipes in low temperature cofire ceramic (LTCC) substrates[J]. IEEE Trans. Pack. Technol., 2003, 26(1): 110-115
    [32] F. Lautzenhiser, E. Amaya. Self-constrained LTCC tape[J]. Am. Ceram. Soc. Bull., 2002, 81(10): 27-32
    [33] M. Udovic, M. Valant, D. Suvorov. Phase formation and dielectric characterization of the Bi2O3-TeO2 system prepared in an oxygen atmosphere[J]. J. Am. Ceram. Soc., 2004, 87(4): 591-597
    [34] K. Tagami, T. Kubo, C. Makihara. Glass ceramics functional substrate development[C]. 1997 International Conference on Multichip Modules, 363-370
    [35] H Rawson. Glass and its history of service[J]. IEEE Proc., 1988, 135(6): 325-345
    [36] 西北轻工业学院. 玻璃工艺学[M]. 北京: 轻工业出版社, 1983
    [37] H M 巴夫鲁什夫, A K 茹拉夫列夫. 易熔玻璃[M]. 北京: 中国建筑工业出版社, 1975
    [38] R. R. Tummala, Ceramic and Glass-Ceramic Packaging in the 1990s[J], J. Am. Ceram. Soc., 1991, 74 (5): 895-908
    [39] 李言荣, 恽正中. 电子材料导论[M]. 北京: 清华大学出版社, 2001
    [40] 吕文中, 汪小红. 电子材料物理[M]. 北京: 电子工业出版社, 2002
    [41] Y. Imanaka. Multilayered Low Temperature Cofired Ceramics (LTCC) Technology[M]. Berlin: Springer, 2005
    [42] P. W. 麦克米伦. 王仞千译. 微晶玻璃[M]. 北京: 中国建筑工业出版社, 1988
    [43] G. Partridge. An overview of glass ceramics. Part Ⅰ. Development and principal bulk applications[J]. Glass. Technol., 1994, 35(3): 116-127
    [44] D. Dyer, D. Gross. The generations of Corning[M]. Oxford: Oxford Univerity Press, 2001
    [45] 杨辉, 张启龙, 王家邦. 微波介质陶瓷及器件研究进展[J]. 硅酸盐学报, 2003, 31(10): 965-980
    [46] C. S. Chen, C. C. Chou, W. J. Shih. Microwave dielectric properties of glass-ceramic composites for low temperature co-firable ceramics[J]. Mater. Chem. Phys., 2003, 79(2): 129-134
    [47] D. C. Clupper, L. L. Hench. Crystallization kinetics of tape cast bioactive glass 45S5[J]. J. Non-Cryst. Solids, 2003, 318(1): 43-48
    [48] 关振铎, 张中太, 焦金生. 无机材料物理性能[M]. 北京: 清华大学出版社, 1992
    [49] L. J. Wang, C. G. Meng, C. H. Liu. Glass-ceramic protective coating for titaniumalloys[J]. J. Am. Ceram. Soc., 2002, 85(11): 2867-2869
    [50] 杨娟, 堵永国, 郑晓慧. 金属/微晶玻璃复合基板的研制. 功能材料, 2004(增刊): 1061-1063
    [51] 杨娟, 堵永国, 张传禹. 金属/BAS 微晶玻璃复合基板的制备与性能研究. 电子元件与材料, 2005, 24(7): 44-46.
    [52] H. Jantunen, R. Rautioaho, A. Uusim?ki. Preparing low-loss low-temperature cofired ceramic material without glass addition[J]. J. Am. Ceram. Soc., 2000, 83(11): 2855-2857
    [53] J. H. Jean, C. R. Chang. Interfacial reaction kinetics between silver and ceramic-filled glass substrate[J]. J. Am. Ceram. Soc., 2004, 87(7): 1287-1293
    [54] Y. G. Wang, G. N. Zhang, J. S. Ma. Research of LTCC/Cu, Ag multilayer substrate in microelectromic packaging[J]. Mater. Sci. Eng., B, 2002, 94(1): 48-53
    [55] Z. Q. Zeng, P. Hing. Preparation and thermal expansion behavior of glass coating for electronic applications[J]. Mater. Chem. Phys., 2002, 75(1): 260-264
    [56] 钦征骑. 新型陶瓷材料手册[M]. 南京: 江苏科学技术出版社, 1996
    [57] 金志浩, 高积强, 乔冠军. 工程陶瓷材料[M]. 西安: 西安交通大学出版社, 2001
    [58] 张擎雪, 李文兰, 庄汉锐. AlN/玻璃复合材料的低温烧结和性能[J]. 材料研究学报, 2003, 17(1): 79-82
    [59] 李勇, 汪荣昌, 戎瑞芬. 低温共烧氮化铝复合材料基板的银金属化研究[J]. 功能材料, 2003, 34(3): 338-341, 348
    [60] Q. X. Zhang, X. J. Luo, W. L. Li. Tape casting of AlN/glass composites for LTCC substrate[J]. J. Mater. Sci., 2003, 38(8): 1781-1785
    [61] P. C. Donohue. Borate glass based ceramic tape[P]. US Patent, 6147019. 2000-11-14
    [62] M. A. Schiavon, C. Gervais, F. Babonneau. Crystallization behavior of novel silicon boron oxycarbide glassed[J]. J. Am. Ceram. Soc., 2004, 87(2): 203-208
    [63] C. R. Chang, J. H. Jean. Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofired CaO-B2O3-SiO2 glass-ceramics[J]. J. Am. Ceram. Soc., 1999, 82(7): 1725-1732
    [64] J. H. Jean, C. R. Chang, C. D. Lei. Sintering of a crystallizable CaO-B2O3-SiO2 glass with silver[J]. J. Am. Ceram. Soc., 2004, 87(7): 1244-1249
    [65] http://www.ferro.com
    [66] 陈国华. 机械力化学作用对 CaO-B2O3-SiO2 系陶瓷微观结构及相组成和相变规律的影响[J]. 硅酸盐学报, 2003, 31(10): 994-997, 1002
    [67] 王少洪, 周和平,乔梁. CaO-B2O3-SiO2 系微晶玻璃的低温烧结机理[J]. 硅酸盐通报, 2002, 21 (3): 3-6
    [68] 孙慧萍, 张启龙, 杨辉. ZnO 和 Na2O 对 CaO-B2O3-SiO2介电陶瓷结构与性能的影响[J]. 陶瓷学报, 2004, 25(1): 60-63
    [69] 蔡伟, 江涛, 谭小球. 低温烧结低介硅灰石瓷料的研制[J]. 电子元件与材料, 2002, 21(2): 16-18
    [70] A. A. Shapiro, M. L. Mecartney, H. P. Lee. A comparison of microstrip models to low temperature co-fired ceramic-silver microstrip measurements[J]. Microelectron. J., 2002, 33(5): 443-447
    [71] A. J. Blodgett, D. R. Barbour. Thermal conduction module — A high performance multilayer ceramic package[J]. IBM J. Res. Develop., 1982, 26(1): 30-36
    [72] R. R. Tummala, B. T. Clark, H. Bhatia. Overview of IBM ceramic packaging technology[A]. 43rd Electronic Components and Technology Conference[C]. Orlando, USA, 1993. 1-7
    [73] A. H. Kumar, S. Knikerbocker, R. R. Tummala. Sinterable glass-ceramics for high-performance substraes[A]. 42nd Electronic Components and Technology Conference[C]. San Diego, USA, 1992. 678-681
    [74] A. H. Kumar, P. W. Mcmillan, R. R. Tummala. Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper[P]. US Patent, 4301324. 1981-11-17
    [75] 岳振星, 周济, 张洪国. 低温可烧结堇青石微晶玻璃[J]. 高技术通讯, 2000, 10(7): 96-97
    [76] 韩文爵. 低温烧成微晶玻璃基板的研制和应用[J]. 玻璃与搪瓷, 1996, 24(3): 1-5
    [77] W. Y. Li, B. S. Mitchell. Nucleation and crystallization in calcium aluminate glasses[J]. J. Non-Cryst. Solids, 1999, 255(2): 199-207
    [78] C. L. Lo, J. G. Duh. Low-temperature sintering and microwave dielectric properties of anorthite-based glass-ceramics[J]. J. Am. Ceram. Soc., 2002, 85(9): 2230-2235
    [79] R. A. Gudla. Anorthite ceramic dielectrics[J]. Am. Ceram. Soc. Bull., 1971, 50(6): 555-557
    [80] J. M. Kim, H. S. Kim. Temperature-time-mechanical properties of glass-ceramics produced from coal fly ash[J]. J. Am. Ceram. Soc., 2005, 88(5): 1227-1232
    [81] W. E. Lee, M. Chen, P. F. James. Crystallization of celsian (BaO-Al2O3-SiO2) glass[J]. J. Am. Ceram. Soc., 1995, 78(8): 2180-2186
    [82] S. M. Allameh, K. H. Sandhage. Synthesis of celsian (BaAl2Si2O8) from solid Ba-Al-Al2O3-SiO2 precursors: Ⅰ, XRD and SEM/EDX analyses of phase evolution[J].J. Am. Ceram. Soc., 1997, 80(12): 3109-3126
    [83] 顾建成. BAS 粉体的合成及 SiC 片晶/BAS 复合材料的研究[D]. 博士学位论文, 哈尔滨工业大学, 2000
    [84] 张传禹. 基于 0Cr18Ni9 不锈钢基板的介质浆料研制[D]. 硕士学位论文, 国防科技大学, 2004
    [85] N. P. Bansal. Celsian formation in fiber-reinfored barium aluminosilicate glass-ceramic matrix composites[J]. Mater. Sci. Eng., A, 2003, 342(1-2): 23-27
    [86] F. Yu, N. Nagarajan, Y. Fang. Microstructural control of a 70% silicon nitride-30% barium aluminum silicate self-reinforced composite[J]. J. Am. Ceram. Soc., 2001, 84(1): 13-22
    [87] V. Lansmann, M. Jansen. Application of the glass-ceramic process for the fabrication of whisker reinforced celsian-composites[J]. J. Mater. Sci., 2001, 36(6): 1531-1538
    [88] T. Okamura, N. Hiramatsu. Non-radiative dielectric waveguide and millimeter wave transmitting/receiving apparatus[P]. US Patent, 6882253. 2005-4-19
    [89] H. Shao, K. M. Liang, F. Peng. Crystallization kinetics of MgO-Al2O3-SiO2 glass-ceramics[J]. Ceram. Int., 2004, 30(6): 927-930
    [90] Z. M. Shi. Sintering additives to eliminate interphases in cordierite ceramics[J]. J. Am. Ceram. Soc., 2005, 88(5): 1297-1301
    [91] 刘健, 程继健. 溶胶-凝胶法制备堇青石陶瓷[J]. 华东化工学院学报, 1992, 18(Suppl): 28-32
    [92] A. Miyake. Effects of ionic size in the tetrahedral and octahedral sites on the thermal expansion of low-temperature cordierite[J]. J. Am. Ceram. Soc., 2005, 88(2): 362-366
    [93] R. N. Master, L. W. Herron, R. R. Tummala. Cosintering process for glass-ceramic/copper multilayer ceramic substrate[J]. IEEE Trans. Hybri. Manuf. Technol., 1991, 14(4):780-783
    [94] Y. S. Cho, D. T. Hoelzer, W. A. Schulze. Cordierite-based dielectric thick film on an oxidezed copper layer: Microstructural evidence of copper diffusion[J]. J. Am. Ceram. Soc., 1999, 82(7): 1949-1952
    [95] N. Kamehara, K. Kurihara, K. Niwa. Method for producing multilayered glass-ceramic structure with copper-based conductors therein[P]. US Patent, 4504339. 1985-3-12
    [96] L. W. Herron, R. N. Master, R. R. Tummala. Method of making multilayered glass-ceramics structures having an internal distribution of copper-based conductors[P]. US Patent, 4234367. 1980-11-18
    [97] S. Mei, J. Yang, J. M. F. Ferreira. Colloidal processing of cordierite-based glass-ceramics[J]. Int. J. Inorg. Mater., 2001, 3(8): 1249-1252
    [98] Z. X. Yue, L. T. Li, J. Zhou. Preparation and electromagnetic properties of ferrite-cordierite composites[J]. Mater. Lett., 2000, 44(5): 279-283
    [99] M. T. Malachevsky, J. E. Fiscina, D. A. Esparza. Preparation of synthetic cordierite by solid-state reaction via bismuth oxide flux[J]. J. Am. Ceram. Soc., 2001, 84(7): 1575-1577
    [100] 陈国华, 刘心宇. Bi2O3 对堇青石陶瓷的相组成、微观结构和性能的影响[J]. 硅酸盐学报, 2003, 31(9): 888-891
    [101] 陈益坤, 罗澜, 陈玮. MgO-Al2O3-SiO2-TiO2-CeO2微晶玻璃的相转变[J]. 硅酸盐学报, 2003, 31(7): 707-710, 720
    [102] 赵永红, 李光新, 马新沛. MgO-Al2O3-SiO2 系高强度微晶玻璃的晶化行为与力学性能[J]. 硅酸盐学报, 2003, 31(4): 413-416
    [103] S P Hwang, J M Wu. Effect of composition on microstructural development in MgO-Al2O3-SiO2 glass-ceramics[J]. J. Am. Ceram. Soc., 2001, 84(5): 1108-1112
    [104] 张冰, 曹传宝, 项顼. 硅溶胶高分子网络凝胶法合成堇青石粉[J]. 硅酸盐学报, 2003, 31(12): 1188-1191
    [105] 王少洪, 周和平, 陈克新. 高频片式电感用堇青石陶瓷材料的低温烧结和性能[J]. 稀有金属材料与工程, 2005, 34(2): 325-328
    [106] S. Mei, J. Yang, J. M. F. Ferreira. Sol-gel derived P2O5-doped cordierite powders: characterization and phase transformation [J]. Mater. Res. Bull., 2001, 36(5): 799-810
    [107] J. M. Wu, S. P. Hwang. Effects of (B2O3, P2O5) additives on microstructural development and phase-transformation kinetics of stoichiometric cordierite glasses[J]. J. Am. Ceram. Soc., 2000, 83(5): 1259-1265
    [108] 徐庆, 刘晓芳, 张枫. ZnO 对 MgO-Al2O3-SiO2 体系的结构和红外辐射性能的影响[J]. 硅酸盐学报, 2003, 31(6): 529-532, 537
    [109] 王乃刚, 罗谰, 陈玮. MgO-Al2O3-SiO2-TiO2-CeO2 系统微晶玻璃的析晶过程与微波介电性能[J]. 无机材料学报, 2003, 18(3): 547-552
    [110] 迟玉山, 沈菊云, 陈学贤. 硬盘基板用微晶玻璃的析晶过程研究[J]. 无机材料学报, 2001, 16(5): 791-796
    [111] C. H. Chao, H. Y. Lu. Crystallization of Na2O-doped colloidal gel-derived silica[J]. Mater. Sci. Eng., A, 2000, 282(1): 123-130
    [112] J. Fu. Effects of M3+ ions on the conductivity of glasses and glass-ceramics in the system Li2O-M2O3-GeO2-P2O5 (M=Al, Ga, Y, Dy, Gd, and La)[J]. J. Am. Ceram. Soc., 2000, 83(4): 1004-1006
    [113] C. P. Ross. Innovative glassmelting technologies[J]. Am. Ceram. Soc. Bull., 2004, 83(1): 18-20
    [114] W. A. Poolos. Mathematical modeling of glass melting systems[J]. Am. Ceram. Soc. Bull., 2004, 83(1): 22-26
    [115] Y. S. Cho, D. T. Hoelzer, W. A. Schulze. Crystallization and microstructural evolution of cordierite-based thick film dielectrics[J]. Acta mater., 1998, 46(18): 6421-6430
    [116] S. Mei, J. Yang, J. M. F. Ferreira. The densification and morphology of cordierite-based glass-ceramics[J]. Mater. Lett., 2001, 47(4): 205-211
    [117] E. Manor, R. Z. Shneck. Crystallization of 60SiO2-20MgO-10Al2O3-10BaO glass ceramics[J]. J. Am. Ceram. Soc., 2005, 88(8): 2249-2254
    [118] B. A. Vázquez, á. Caballero, P. Pena. Quaternary system Al2O3 -CaO-MgO- SiO2: Ⅱ Study of the crystallization volume of MgAl2O4[J]. J. Am. Ceram. Soc., 2005, 88(7): 1949-1957
    [119] M. Mirsaneh, I. M. Reaney, P. F. James. Effect of CaF2 and CaO substituted for MgO on the phase evolution and mechanical properties of K-fluorrichterite glass ceramics[J]. J. Am. Ceram. Soc., 2006, 89(2): 587-595
    [120] S. Kurama, G. Cigdemir, H. Mandal. Sr2+-Mg2+-doped SiAlON ceramics[J]. J. Am. Ceram. Soc., 2006, 89(2): 714-716
    [121] N. M. Khalil. Heat resistance and thermomechanical behaviour of ultralow and zero cement castables[J]. Br. Ceram. Trans., 2004, 103(1); 37-41
    [122] F. J. Torres, J. Alarcón. Microstructural evolution in fast-heated cordierite-based glass-ceramic glazes for ceramic tile[J]. J. Am. Ceram. Soc., 2004, 87(7): 1227-1232
    [123] F. J. Torres, J. Alarcón. Effect of additives on the crystallization of cordierite-based glass-ceramics as glazes for floor tiles[J]. J. Eur. Ceram. Soc., 2003, 23(6): 817-826
    [124] 史培阳, 姜茂发, 刘承军. CaO-MgO-Al2O3-SiO2 系微晶玻璃晶化和性能[J]. 东北大学学报(自然科学版), 2004, 25(12): 1169-1172
    [125] H. Shao, K. M. Liang, F. Zhou. Characterization of cordierite-based glass-ceramics produced from fly ash[J]. J. Non-Cryst. Solids, 2004, 337(2): 157-160
    [126] M. Ferraris, M. Salvo, F. Smeacetto. Cordierite-mullite coating for SiCf/SiC composites[J]. J. Eur. Ceram. Soc., 2002, 22(13): 2343-2347
    [127] T. J. Perham, L. C. De Jonghe, W. Moberlychan. Joining of silicon carbide with a cordierite glass-ceramic[J]. J. Am. Ceram. Soc., 1999, 82(2): 297-305
    [128] C. Reich, R. Brückner. Effect of preparation parameters on the properties of unidirectional SiC-fiber-reinforced MAS and BMAS glass-ceramics[J]. Compos. Sci.Technol., 1997, 57(5): 533-541
    [129] R. E. Mistler. Tape casting: The basic process for meeting the needs of the electronics industry[J]. Ceram. Bull., 1990, 69(6): 1022-1026
    [130] E. P. Hyatt. Making thin, flat ceramics—a review[J]. Ceram. Bull., 1986, 65(4):637-638
    [131] G. N. Howatt. Method of producing high dielectric high insulation ceramic plates[P]. U. S. Pat. 2,582,993, 1952
    [132] 刘福田, 李兆前, 黄传真, 张涛. Mo-(Fe-B)-Fe 混合粉末流延成型薄层坯体技术研究 [J]. 陶瓷学报, 2003, 24(2): 71-77
    [133] 陈殿营, 张宝林, 庄汉锐, 李文兰. 氮化硅流延膜的制备[J]. 硅酸盐通报, 2003, 22(6): 71-74
    [134] 秦承伟, 张永恒. 流延成型法制备三氧化二铝陶瓷膜基体(Ⅰ)浆体的制备和流延成型[J]. 青岛科技大学学报, 2004, 25(4): 335-338
    [135] S. Mei, J. Yang, J. M. F. Ferreira. The fabrication and characterization of low-k cordierite-based glass-ceramics by aqueous tape casting[J]. J. Eur. Ceram. Soc., 2004, 24(2): 295-300
    [136] X. J. Luo, B. L. Zhang, W. L. Li. Effects of organic additives and glass on the properties of AlN/glass tape-casting slurries and green tapes[J]. J. Mater. Sci., 2004, 39(13): 4387-4389
    [137] C. W. Cho, J. G. Yeo, Y. G. Jung. Green microstructure and mechanical properties of BaTiO3-poly (vinyl butyral) tape-cast bodies[J]. J. Mater. Sci. Lett., 2003, 22(22): 1639-1641
    [138] Y. P. Zeng, D. L. Jiang. Fabrication and Properties of Tape-Cast Laminated and Functionally Gradient Alumina-Titanium Carbide Materials[J]. J. Am. Ceram. Soc., 2000, 83(12): 2999-3003
    [139] A. Roosen. New lamination technique to join ceramic green tape for the manufacturing of multilayer devices[J]. J. Eur. Ceram. Soc., 2001, 21(10): 1993-1996
    [140] R. E. Mistler. Tape casting: past, present, potential[J]. Am. Ceram. Soc. Bull., 1998, 77(10): 82-86
    [141] A. I. Y. Tok, F. Y. C. Boey, K. A. Khor. Tape casting of high dielectric ceramic composite substrates for microelectronics application[J]. J. Mater. Process. Technol., 1999, 89-90: 508-512
    [142] 韩振宇, 马莒生, 徐忠华. 低温共烧陶瓷基板制备技术研究进展[J]. 电子元件与材料, 2000, 19(6): 31-33
    [143] X. J. Luo, B. L. Zhang, W. L. Li. Comparison of Aqueous and Non-Aqueous Tape Casting of Aluminum Nitride Substrates[J]. J. Am. Ceram. Soc., 2005, 88(2):497-499
    [144] 许昕睿. 微电子封装用 AlN 基材料金属化的研究[D]. 博士学位论文, 中国科学院上海硅酸盐研究所, 2003
    [145] 李冬云, 季冠军, 金志浩. 流延法制备陶瓷薄片的研究进展[J]. 硅酸盐通报, 2004, 23(2): 44-47
    [146] C. W. Cho, Y. S. Cho, J. G. Yeo. The role of 2-methyl-2, 4-pentanediol modifer and its interaction with poly (vinyl butyral) binder in BaTiO3 and Li2O-B2O3-BaO-SiO2 glass suspensions[J]. Colloids Surf., A: Physicochem. Eng. Aspects, 2003, 224(1): 83-91
    [147] D. Rocak, M. Kosec, A. Degen. Ceramic suspension optimization using factorial design of experiments[J]. J. Eur. Ceram. Soc., 2002, 22(4): 391-395
    [148] L. A. Salam, R. D. Matthews, H. Robertson. Optimisation of thermoelectric green tape characteristics made by the tape casting method[J]. Mater. Chem. Phys., 2000, 62(3): 263-272
    [149] 曹峻, 张擎雪, 庄汉锐. 流延法制备 AlN 陶瓷基板的研究[J]. 无机材料学报, 2001, 16(2): 269-276
    [150] S. Mei, J. Yang, R. Monteiro. Synthesis, characterization, and processing of cordierite-glass particles modified by coating with an alumina precursor[J]. J. Am. Ceram. Soc., 2002, 85(1): 155-160
    [151] 马春雷, 谢志鹏, 黄勇, 向军辉. 添加剂在水基凝胶流延成型中的作用[J]. 材料科学与工艺, 2004, 12(2): 113-116
    [152] 崔学民. 乳胶体系水基流延工艺及其叠层制备陶瓷材料的研究[D]. 博士学位论文, 中国建筑材料科学研究院, 2003
    [153] B. Krishnan, R. Natarajan. Dispersion and tape casting of silicon carbide through aqueous route[J]. J. Mater. Sci., 2005, 40(20): 5511-5516
    [154] X. J. Luo, X. R. Xu, W. L. Li. Effects of organic additives on viscosity of aqueous tape-casting aluminum nitride slurries[J]. J. Mater. Sci. Lett., 2003, 22(8): 589-590
    [155] S. Ramanathan, K. P. Krishnakumar, P. K. DE. Powder dispersion and aqueous tape casting of YSZ-NiO composite[J]. J. Mater. Sci., 2004, 39(10): 3339-3344
    [156] J. X. Zhang, D. L. Jiang, S. H. Tan. Aqueous processing of titanium carbide green sheets[J]. J. Am. Ceram. Soc., 2001, 84(11): 2537-2541
    [157] X. J. Luo, B. L. Zhang, W. L. Li. High thermal conductivity aluminum nitride substrates prepared by aqueous tape casting[J]. J. Am. Ceram. Soc., 2006, 89(3): 836-841
    [158] C. J. Martinez, J. A. Lewis. Rheological, structural, and stress evolution of aqueous Al2O3: Latex tape-cast layers[J]. J. Am. Ceram. Soc., 2002, 85(10): 2409-2416
    [159] J. E. Smay, J. A. Lewis. Structural and property evolution of aqueous-based leadzirconate titanate tape-cast layers[J]. J. Am. Ceram. Soc., 2001, 84(11): 2495-2500
    [160] 来俊华. 流延法制备 95Al2O3 瓷基板的研究[D]. 硕士学位论文, 南京工业大学, 2003
    [161] J. H. Feng, F. Dogan. Effects of solvent mixtures on dispersion of lanthanum-modified lead zirconate titanate tape casting slurries[J]. J. Am. Ceram. Soc., 2000, 83(7): 1681-1686
    [162] S. Mei, J. Yang, X. Xu. Aqueous tape casting processing of low dielectric constant cordierite-based glass-ceramics——selection of binder[J]. J. Eur. Ceram. Soc., 2004, 24(1): 1-5
    [163] Y. H Zhang, J. Binner. Tape casting aqueous alumina suspensions containing a latex binder[J]. J. Mater. Sci., 2002, 37(9): 1831-1837
    [164] J. H. Jean, H. R. Wang. Organic distributions in dried alumina green tape[J]. J. Am. Ceram. Soc., 2001, 84(2): 267-272
    [165] D. H. Kim, K. Y. Lim, U. Paik. Effects of chemical structure and molecular weight of plasticizer on physical properties of green tape in BaTiO3/PVB system[J]. J. Eur. Ceram. Soc., 2004, 24(5): 733-738
    [166] 王燕民, 李新衡. 湿法超细研磨中无机材料浆体的流变性研究[J]. 硅酸盐学报, 2006, 34(5): 585-592
    [167] S. Mei, J. Yang, J. M. F. Ferreira. Comparison of dispersants performance in slip casting of cordierite-based glass-ceramics[J]. Ceram. Int., 2003, 29(7): 785-791
    [168] Y. S. Lee, T. Y. Tseng. Influence of processing parameters on the microstructure and electrical properties of multilayer-chip ZnO varistors[J]. J. Mater. Sci.: Materials in electronics, 1995, 6(1): 90-96
    [169] D. Coimbra, R. Greenwood, K. Kendall. Video-controlled tensile testing of alumina fibres and rods manufactured by colloidal processing[J]. J. Mater. Sci., 2000, 35(13): 3347-3357
    [170] 刘福田, 李兆前, 黄传真. Mo-(Fe-B)-Fe 混合粉末流延成型薄层坯体的干燥机理分析[J]. 陶瓷学报, 2002, 23(4): 211-216
    [171] E. Streicher, T. Chartier. Study of cracking and microstructural evolution during drying of tape-cast aluminium nitride sheets[J]. J. Mater. Sci., 1991, 26(66): 1659-1665
    [172] 阳开新. 聚乙烯醇(PVA)的特性及其在铁氧体生产中的应用[J]. 磁性材料及器件, 2002, 33(4): 40-43
    [173] 马新沛, 李光新, 沈莲. 可切削微晶玻璃的热处理与微观结构[J]. 金属热处理, 2001, 26(12): 5-7
    [174] 国家建筑材料工业局建筑材料科学研究院测试技术研究所. GB6569-86 工程陶瓷弯曲强度试验方法[S]. 北京: 中国标准出版社, 1987
    [175] 桂林电器科学研究所. GB1409-78 固体电工绝缘材料在工频、音频、高频下相对介电系数和介质损耗角正切试验方法[S]. 北京: 中国标准出版社, 1979
    [176] 梁开明, 程慷果, 段仁官. 玻璃非等温析晶动力学的研究[J]. 清华大学学报, 1998, 38(6): 96-100
    [177] 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001
    [178] 周健儿, 李家科, 江伟辉. 金属基涂层的制备、应用及发展[J]. 陶瓷学报, 2004, 25(3): 179-185
    [179] 王启宏. 材料流变学[M]. 北京: 中国建筑工业出版社, 1985
    [180] L. E. 尼尔生. 丁佳鼎译. 高分子和复合材料的力学性能[M]. 北京: 轻工业出版社, 1981
    [181] Y. Imanaka. Multilayered Low Temperature Cofired Ceramics (LTCC) Technology[M]. Boston: Springer, 2005
    [182] http://www.DuPont.com
    [183] 全国家用电器标准化技术委员会. GB4706.1-98 家用和类似用途电器的安全通用要求[S]. 北京: 中国标准出版社, 1999
    [184] 周敏. 高膨胀系数 LZAS 系玻璃陶瓷的制备及热性能研究[D],硕士学位论文, 西安工业学院, 2002
    [185] H. Boche, M. Wiczanowski. Stability-optimal transmission policy for the multiple antenna multiple access channel in the geometric view [J]. Signal Process., 2006, 86(8): 1815-1833
    [186] P. K. Hersey, W. L. Melvin, J. H. McClellan. Clutter-limited detection performance of multi-channel conformal arrays[J]. Signal Process., 2004, 84(9): 1481-1500
    [187] 齐共金, 张长瑞, 胡海峰. 陶瓷基复合材料天线罩制备工艺进展[J]. 硅酸盐学报, 2005, 33(5): 632-638
    [188] 堵永国, 张为军, 宁文军. 基于不锈钢基板的大功率厚膜电路用电阻浆料及其制备工艺[P]. 2002-12-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700