用户名: 密码: 验证码:
车辆多相关振动噪声源及其路径识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆的振动与噪声是衡量其使用舒适性的重要方面,同时也是运行机构状态检测的重要指标。试验测试一般在车辆行驶或运动过程中进行,传感器受到不同激励源的影响,测试信号并不能完全反映所对应位置的源信息,它受到测试系统或环境噪声的影响和不同源对该位置干涉影响,从而造成测量信号之间彼此的相关性。基于直接测量得到的信号进行响应贡献度的分析,会夸大或缩小真实源的贡献。针对多相关激励背景下的振动故障诊断、源和路径识别问题,本文研究的主要内容归纳如下:
     (1)探讨了经验模式分解方法(EMD),改善了其虚假分量和模式混叠的分解缺陷,以其作为车辆测试信号的前期去噪和特征提取手段。将相干分析应用于判定分解中的虚假分量,以避免虚假分量和微弱信号的误判;其次研究了信号各频率能量比例对EMD分解时虚假分量的影响,提出了抑制低频分量或加入高频分量幅值以减小虚假分量引入的分解误差;基于白噪声的EMD分解特性,提出了有色噪声频段累加方法以改善EMD分解的模式混叠(MH-EMD),同时仿真分析了其优越性,最后将改进的EMD系统方法应用于转子模拟试验台声学信号和排气系统振动信号的特征提取,验证了新方法的可行性。
     (2)联合集合经验模式分解(MH-EMD)和最小均方算法(LMS)发展了一种自适应特征提取方法。以自适应均方算法为对象,研究了其固定步长、固定阶数、变步长(VS)和变阶数(VT)的算法性能,提出了在迭代过程中以比较阶数和步长变化时的最小均方误差期望为收敛方向,发展了一种联合变步长变阶数最小均方算法(VSVT-LMS)的去噪方法;结合对原信号的MH-EMD分解,使各模式分量窄带化,进而通过VSVT-LMS对每个IMF分量进行去噪,避免LMS算法对宽频信号的不稳定性,同时也避免了EMD分解的不唯一性和去噪中阈值的选择问题。最后通过对仿真和实际车辆振动信号去噪,验证了方法在工程上的可行性。
     (3)针对车辆振动噪声具有相关特征的测试信号,发展和完善了多种多相关分离方法。对于瞬态混合模型,探讨了一般盲源分离方法,提出了基于幅值密度比较的盲信号分离方法,在针对频率信号量较少时,可以识别单频和共频信号;改进了联合近似对角化方法,提出了均衡化的分段联合近似对角化和最优距离矩阵的联合近似对角化方法,改进方法精度高于经典方法;基于高阶累积量,取其高阶切片,结合近似对角化和联合分段对角矩阵,提出可以应用于传感器数量少于源数的分离方法,该方法较经典方法具有更好的稳定性和更高的分离精度;针对具有同频信号或相关性较大的源信号,改善小波包子带的盲分离,可以解决具有统计相关源混合观测信号的分离,以简支梁振动试验验证了方法的有效性。针对具有卷积特性的混合模型,比较了时域和频域的卷积盲分离算法,提出了一种基于互信息向量独立判断的频域算法,在算法迭代过程中,非线性函数考虑全频段的分离矩阵,避免了频域解卷积的“扰动不确定性”。基于建立的车架系统动力学模型,探讨了瞬态模型和卷积模型的应用范围,并验证了提出的新方法。
     (4)从理论上建立和推导了适合多子系统多输入单输出模型,建立了以比较真实和计算传递函数作为判断输入干涉方向的依据,基于理论和试验推导了加速度/力传递函数与加速度/加速度传递函数的关系;搭建了车辆局部结构的车架系统,基于相干分析进行了单向干涉模型的验证;针对某商用车的振动异常问题,测试分析了其传递路径中的激励和响应振动特征,基于双向干涉的平均方法,识别了激励源、路径的影响和贡献,从而验证了模型和方法的可行性,该方法有效提高了异常振动中的识别率和精度;对具有同样相关特征的某农用车辆噪声源进行了识别,结合一般传递路径分析方法,识别声源矛盾,并解决了该机械的噪声问题。
     综上所述,本文较系统地研究了车辆振动噪声中具有多相关特征的信号特征,并就其分离和识别问题进行研究,提出信号自适应特征提取方法、不同模型的盲分离算法,对不同干涉模型的路径进行了识别,进而实车验证了方法的可行性。研究结果不但有益于提高车辆故障诊断识别精度,而且在理论和方法上有益于车辆振动噪声设计以及后期优化等方面的研究。
The vibration and noise of vehicle is a most important Evaluation index of comfort and also isvery important to monitor the running state of mechanism. Generally, the testing of vehicle iscarried out in the movement process, so a testing signal may not directly reflect the sourceinformation of the corresponding position when sensor is affected by different excitation source. Itis influenced by the environment noise, test systems or interference effects of different sources tothe position, resulting in correlation between measurement signals. To analyze signal responsecontribution rate, the real source contribution rate is exaggerated or reduced. For vibration faultdiagnosis, source and path identification under multi-correlation background, the main contents ofthis paper are summarized as follows:
     (1) The main characteristics of Empirical mode decomposition (EMD) was discussed in thispaper. The false component and mode mixing in decompositing process was improved, which wasapplied to do denoising and extract feature of vehicle testing signal. The method of using thecoherence analysis to avoid the misjudgment of weak signal and false component was proposed.From the perspective of analyzing frequency-energy of signal components, the influence of falsecomponent generating in EMD decomposition was researched and the new regularity thatincreasing high frequency component or reducing low frequency component can reduce the ratio offalse component was discovered. By studying the EMD decomposing characteristics of white noise,the method of multiple stacking colored noise to improve mode mixing of the EMD was proposed(MH-EMD, EMD with mutil-high frequecy), which simulation effect is obviously improvedcompared to the classic Ensemble Empirical Mode Decomposition (EEMD). The system methodwith improved EMD was applied to extract signal features from rotating machinery and exhaustsystem, the new method was verified to be feasible and effective.
     (2) A new adapted denoising method was proposed in paper, as is the joint of ensembleempirical mode decomposition (MH-EMD) and least mean square algorithm (LMS). The algorithmperformance of the LMS with fixed step and fixed filter order, variable step and variable order werestudied, it was proposed that convergence direction of algorithm with both order and step changingin iterative process is up to the expectation of least mean square error, a kind of jointing order andstep LMS (VSVT-LMS) was developed, and Using MH-EMD, the original signal was decomposed,so that every mode component would be narrowband, and then denoising by VSVT-LMS. The instability of the LMS for wideband signals, but also the EMD threshold selection problem isavoided effectively. Simulation and vehicle signal were analyzed and it shows that the new methodhas a good adaptive characteristics and accuracy, and the feasibility of the method was verified inengineering.
     (3) For coupled or related characteristics of testing signal on vehicles, some separationmethods were proposed. First, the classical methods of blind source separation were discussed.Based on the comparison of the amplitude density, a blind signal separation method was proposedto the transient mixed model. If the frequency of the signal is less, the method can be used toeffectively identify the single frequency and common frequency signal. The joint approximatediagonalization method is improved, the segments joint approximate diagonalization withequalization and optimal distance matrix joint approximate diagonalization method were proposed,the improved methods can achieve higher precision. Then, using the high order section of higherorder cumulants, and combining with the approximate diagonalization and joint block diagonalmatrix, which method was used better when sensor number is less than the source number.Combining the improved wavelet subbands with the blind source separation, the separation of theobservation signal with the characteristics of statistics relevance source could be effectively solved;For the mixed model with convolution properties, comparising separation algorithms of the timedomain and frequency domain, a frequency domain algorithm based on independent judgment ofmutual information vector was proposed, nonlinear function including the separation matrix of allthe frequency band was considered to avoid the disturbance uncertainty of frequency-domaindeconvolution in the iterative process. Based on the system dynamic model of the frame, theapplication range of transient model and the convolutive model was studied and new methods wereverified.
     (4) The model of multiple input and single output which is good for subsystem wasestablished and derived from the theory. Then, by constrasting to calculation transfer function andreal transfer function, the analysis method of input interference direction was proposed, and therelation of the acceleration with force transfer function and acceleration with acceleration transferfunction were derived from the theory and experiment. A bench of frame system was built, basedon coherent analysis, the one-way interference model was verified, and for the vibration problem ofa commercial vehicle, the vibration characteristics of excitation and response in the transmissionpaths were tested and analyzed. Base on the method of bidirectional interference average, thecontribution of excitation source and transfer path were effectively identified, which verify the feasibility of the model and method. Others, the recognition rate and accuracy of abnormalvibration diagnosis were improved by using new method. Combined with the general transfer pathanalysis method, which can be applied to effectively identify sound source contradiction and solvethe problem of the mechanical noise for the relevant characteristic noise source on the farm vehicle.
     In conclusion, the characteristics of a multi correlated subsystem were systematically studiedand the issue of its separation and identification was also studied in this paper. The method ofsignal self-adaptive feature extraction, the algorithm of blind source separation for different modelsand the mathematical expressions of different interference model were proposed.These methodsare verified in the vehicle.The results have an important theoretical significance and engineeringapplications for improving fault diagnosis accuracy and vehicle NVH performance, and guidingvehicles NVH designs.
引文
[1]任文堂,李孝宽,李孝平.我国汽车噪声现状及关键控制技术展望[C]全国环境声学电磁辐射环境学术会议,2004:34-38.
    [2]林逸,马天飞,姚为民,等.汽车NVH特性研究综述[J].汽车工程,2002,24(3):177-181
    [3] LI S M, ZHENG Z C. The Probability Density Function Method for Blind Source Separationand the Use in Adaptive Identification for Weak Vibration Signal on Automobile [J]. Advancesin Vibration Engineering,2007,6(1):43-52.
    [4] MAKOTO I, TAKUMI B, KOHEI I. Effect of moderating friction of wheel/rail interface onvehicle/track dynamic behavior [J]. Wear,2008,265(9-10):1497-1503.
    [5] DIONYSIUS M SIRINGORINGO, YOZO F. System identification of suspension bridge fromambient vibration response [J]. Engineering Structures,2008,30(2):462-477.
    [6]贾继德,陈安宇.汽车噪声源识别技术及发展[J].拖拉机与农用运输车.2009,36(6):11-13.
    [7]左言言.拖拉机发动机罩振动的模态相关分析[J].农业机械学报,2003,34(3):16-25.
    [8] SCARPA F.Parametric sensitivity analysis of coupled acoustic-structural systems[J].Journalof Vibration and Acoustics,2000,122:25-27.
    [9]陶泽光,李润方,林腾蛟.车辆系统振动的理论模态分析[J].振动与冲击.2001(2):74-75.
    [10] LANGLEY R S, BROWN A W. The ensemble statistics of the energy of a random systemsubjected to harmonic excitation [J]. Journal of Sound and Vibration,2004,275(3-5):823-846.
    [11]杜丽萍,王双维,化晓茜,等.基于现代谱估计的噪声源在线识别方法研究[J].噪声与振动控制,2008,2:60-63.
    [12] SAADAOUI W, JELASSI K. Gearbox-Induction machine Bearing fault diagnosis usingspectral analysis[C]. Second UKSIM European Symposium on Computer Modeling andSimulation,2008,(10):342-352.
    [13]连小珉.声强技术及其在汽车工程中的应用[M].北京:清华大学出版社,2001.
    [14]陈步达,王诗恩,周孔亢.车辆主要噪声源识别方法的研究[J].机械工程学报.1997,33(6):77-80.
    [15]李志远,郑传荣,刘正士.振速法在汽车变速器噪声在线检测中的应用[J].2005,36(10):34-37.
    [16]宋晶,刘晓玲.汽车噪声源的常用识别方法研究与分析[J].四川工业学院学报,2004,139-141.
    [17]陈茉莉,李舜酩.信号源识别的相干函数法[J].中国机械工程,2007,18(1):95-100.
    [18]吴海平,楼京俊,刘文武.相干噪声源贡献量排序分析方法[J].四川兵工学报,2012,33(11):89-92.
    [19]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [20]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006.
    [21]陈明奎,刘正平.用多重自相关法检测微弱正弦信号[J].噪声与振动控制,2006,(5):28-61.
    [22]马建仓,刘小龙.航空发动机转子振动信号的早期故障分析[J].计算机测量与控制,2010.18(2):276-279.
    [23] JIN S, WEAR S, RAGHUVEER M R. Reconstruction of speckled images using bispectra [J],Journal of the Optical Society of America A,1992(3):371-376.
    [24]曹汉强,陈汝钧,李旭涛,等.杂乱背景中隐藏信号的三重相关检测技术[J].光电学报,2005,32(9):5-11.
    [25]何正嘉,訾艳阳,孟庆丰,等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001.
    [26] STROMBERG J. A modified Franklin system and higher order spline systems on Rn asunconditional bases for Hardy spaces[C]. Conference in Honor of A Zygmund,1981,2:475-493.
    [27] LI L, QU L, LIAO X. Haar wavelet for machine fault diagnosis [J]. Mechanical Systems andSignal Processing.2007,21(4):1773-1786.
    [28] PENG Z K, CHU F L. Application of the wavelet transform in machine condition monitoringand fault diagnostics: a review with bibliography[J]. Mechanical Systems and SignalProcessing.2004,18(2):199-221.
    [29] ZHANG X F, XU D Z, QI Z F. A study on the singular signal detection based on wavelettransform [J]. Systems Engineering and Electronics.2003,25(7):814—816.
    [30] HUANG N E, SHEN Z, LONG S R, etal. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of RoyalSociety of London Series A: Mathematical, Physical and Engineering Sciences,1998,454(1971):903-995.
    [31] HUANG N E, SHEN Z, Long S R. A new view of nonlinear water waves: The Hilbertspectrum [J]. Annual Review of Fluid Mechanics.1999,31:417-457.
    [32]王婷. EMD算法研究及其在信号去噪中的应用[D].哈尔滨:哈尔滨工程大学,2010.
    [33] LINSKER R. An application of the principle of maximum information preservation to linearsystems [J]. Adv, Neural Inform. Process Systems,1989,1,186-194.
    [34] LEE T W, GIROOLAMI M, SEJNOWSKI T J. Independent component analysis using anextended infomax algorithm for mixed sub-gaussian and super-gaussian sources [J]. NeuralComputation,1999,11(2):417-441.
    [35]何振亚.自适应信号处理[M].北京:科学出版社,2002.
    [36] DENTINO M, MECOOL J, WINDROW B. Adaptive filtering in the frequency domain [J].Proceedings Letters,1978,66(12):1656-1659.
    [37]黄捷,任宏滨,简金蕾.小波包变换结合最小均方自适应滤波算法[J].探测与控制学报,2008,30(3):77-80.
    [38] CHANG S H, CHANG C C. The application of wavelet-based least mean Square algorithm inadaptive beamforming [J]. Journal of Marine Science and Technology,1997,5(1):13-21.
    [39]代海波,单锐,王换鹏,等.基于改进阈值函数的小波去噪算法研究[J].噪声与振动控制,2012,12(6):189-193.
    [40] LIU Z L, QUAN H Y, XU S, etal. Study of Spectrum Analysis Based on EMD AdaptiveFilter[C]. International Conference on Computational Intelligence and Security.2009,2(94):598-600.
    [41] MURTY S, KOMPELL A. A technique to determine the number of incoherent sources to theresponse of a system [J]. Mechanical System and Signal Processing,1994,8(4):363-380.
    [42] PRECE S M, BERNHARD R J. Virtual coherence: A digital signal processing technique forincoherent source identification [C]. Proceedings of the Fourth MAC, Canada: New WarniaPress,1986:1256-1262.
    [43] A Hyv rinen, KARHUNEN J, OJA E. Independent Component Analysis [M]. New York:Wiley,2001.
    [44]焦卫东,杨世锡,吴昭同.基于SVD-Clustering的源数估计方法[J].浙江大学学报(工学版),2004,38(2):171-174.
    [45]李宁,史铁林.基于功率谱密度的盲信号源数估计[J].数据采集与处理.2008,23(1):1-7
    [46]王衍学,何正嘉,成玮,等.基于源数估计的船舶振源盲识别研究[J].中国舰船研究,2010,5(1):1-5.
    [47] HILLARY B, EWINS D J. The use of strain gauges in force Determination and frequencyresponse function measurement [C].Proceedings of the2nd International Modal AnalysisConference,1984:627-634.
    [48] JOHN C, FABIO P. Force Estimation using Operational Data[J].Proceedings of the8thInternational Modal Analysis Conference [C],1996:1586-1592.
    [49]何祚镛.声学逆问题-声全息变换技术及源特性判别[J].物理学进展,1996,16(3-4):600-812.
    [50] YOUNG K K, YANG H K. Holographic Reconstruction of Active Sour ces and SurfaceAdmittance in an Enclosure[J]. Acoustical Society of America,1999,105(4):2377-2383.
    [51]王之程,陈宗岐.舰船噪声测量与分析[M].北京:国防工业出版社,2004.
    [52] GOYDER H G D, WHITE R G.. Vibrational power flow from machines into built-upstructures, part II: Wave propagation and power flow in beam-stiffened plates [J]. Journal ofsound and vibration.1980,68(1):59-117.
    [53] PETERSSON B. On effective mobilities in the prediction of structure-borne soundtransmission between a source structure and a receiving structure, part I: Theoreticalbackground and basic experimental studies [J]. Journal of Sound and Vibration,1982,82:517-540.
    [54] PINNINGTON R J.Vibrational power flow transmission from a finite beam to an infinitereceiver beam via a continuous complainant mount[J].Journal of Sound and Vibration,2010,137(1):117-129.
    [55] DEJONG R G. A study of vehicle interior noise using statistical energy analysis [J]. SAETechnical Paper850960,2005, doi:10.4271/850960.
    [56] LANGLEY R S, BROWN A W. The ensemble statistics of the energy of a random systemsubjected to harmonic excitation [J]. Journal of Sound and Vibration.2004,275(3-5):823-846.
    [57]杨波,沈顺振.隔振系统中功率流的传递[J].舰船力学学报.1984,(8):1-10.
    [58]严济宽,宋孔杰.四端参数法在振动隔离中的应用[J].噪声与振动控制.1985,(12):3-11.
    [59]王建兵,刘保东.应用振动功率流分析支座对桥梁抗震性能的影响[J].工程抗震与加固改造.2006,28(2):36-39.
    [60]李增光,吴天行.铁道车辆-轨道-高架桥耦合系统振动功率流分析[J].振动与冲击,2010,29(11):79-93.
    [61] KLERK D, OSSIPOV A. Operational transfer path analysis: Theory, guidelines and tire noiseapplication[J]. Mechanical Systems and Signal Processing.2010,(24):1950-1962.
    [62] JUHA P. Finding and Fixing Vehicle NVH Problems with Transfer Path Analysis[J]. Soundand Vibration,2005.
    [63] BENDAT J S. Solutions for the multiple input/output problem [J]. Journal of Sound andVibration.1976,44(3):311-325.
    [64] KOSS L L, ALFREDSON R J. Identification of transient sound sources on a punch press [J].Journal of Sound and Vibration.1974,34:11-33.
    [65]许其宏.声源识别的偏相干函数计算[J].声学学报,1989,14(5):377-382.
    [66] JULIUS S B, ALLAN G P. Random Data: Analysis and Measurement Procedures[M].America: Wiley,2011.
    [67] PARK J S, KIM K J. Determination of priority among correlated inputs in sourceidentification problems [J]. Mechanical Systems and Signal Processing,1992,6(6):491-502.
    [68] BAE B K, Kim K J. A Hilbert transform approach in source identification via multiple-inputsingle-output modeling for correlated Inputs [J]. Mechanical Systems and Signal Processing,1998,12(4):501-513.
    [69]黄敦朴,王友智.振动主传递途径的识别[J].振动工程学报,1989,2(1):32-37.
    [70]陈茉莉,李舜酩.信号源识别的相干函数法[J].中国机械工程,2007,18(1):95-100.
    [71]王维凡.诊断振动传递的分层极大流法[J].振动工程学报,1994,7(2):126-132.
    [72]张宝成,徐雪仙.源贡献的时域分析方法[J].船舶力学,200l,5(4):54-60.
    [73]章林柯,江涌,何琳.乔列斯基分解应用于偏相干问题的可行性研究[J],船舶力学,2011,15(5):556-562.
    [74]廖庆斌.车辆的结构-声耦合振动分析及其控制研究[D].南京:南京航空航天大学,2008:12-25.
    [75] AIRAHEEM K F, ROY A, RAMACHANDRAN K P, etal. Application of TheLaplace-Wavelet Combined With ANC for Rolling Fault Diagnosis[J]. Journal of Vibrationand Acoustics,2008,(130):1-9.
    [76] HUANG N E, ZHENG S, STEVEN RL, etal. The empirical mode decomposition and theHilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings theroyal of society,1998,454:903-995.
    [77] LIU X F QIN S R, BO L. Treatment about existing problems from EMD algorithm [C]. The9th Interrelation. Conference on Vibration Theory and Application,2007,10:17-19.
    [78] STEVENSON N, MESBAH M, BOASHASH B. A sampling limit for the empirical modedecomposition[C]. THE8th International Symposium on Signal Processing and itsApplications,2005,2:647-650.
    [79]沈路,杨富春,周晓军,等.基于改进EMD与形态滤波的齿轮故障特征提取[J].振动与冲击,2010,29(3):154-157.
    [80]黄迪山.经验模式分解中虚假模态分量消除法[J].振动、测试与诊断,2011,31(3):381-384.
    [81] WU Z H, HUANG. N. Ensemble Empirical Mode Decomposition: a noise-assisted dataanalysis method[J]. Advances in Adaptive Data Analysis,2009:1(1):41-50.
    [82] LIU X F QIN S R, BO L. Treatment about existing problems from EMD algorithm [C]. The9th International Conference on Vibration Theory and Application,2007,10:17-19.
    [83] ZHAO J P. Improvement of Mirror Extending in Empirical Mode Decomposition Method andthe Technology for Eliminating Frequency Mixing [J]. High Technology Letters,2002,8(3):40-47.
    [84]曹冲锋,杨世锡,杨将新.基于白噪声统计特性的振动模式提取方法[J].机械工程学报,2010,46(3):65-70.
    [85] FLANDRIN P, RILLING G., GONCALVES P. Empirical mode decomposition as a filter bank[J]. IEEE Signal processing letters,2004,11(2):112–114.
    [86]王婷. EMD算法研究及其在信号去噪中的应用[D].哈尔滨:哈尔滨工程大学,77-101.
    [87] RIERO P F, NORAS J M, Cruickshank D J M. Linear equalizers with dynamic and automaticlength selection[J]. Electron letters,2001,37(25):1553-1554.
    [88] GU Y, TANG K, CUI H, etal. LMS algorithms with gradient descent filter length [J]. IEEESignal process letters,2004,11(3):305-307.
    [89] GONG Y, COWAN C F N. An LMS style variable tap length algorithm for structureadaptation [J]. IEEE Tran Signal Processing,2005,53(7):2400-2407.
    [90]夏婷婷,赵光,王黎.一种变步长LMS算法及仿真[J].辽宁工业大学学报(自然科学版),2011,31(5):298-300.
    [91]董航,孙洪.一种变阶数自适应滤波算法[J].系统工程与电子技术,2009,31(1):15-18.
    [92]张亮亮,唐驾时,李立斌.虚拟激励算法下的汽车悬架振动分析[J].振动与冲击,2006,25(6):168-169.
    [93] YPMA A, LESHEM A. Blind separation of machine vibration with bilinear forms [A]. Inproceeding of ICA’2000,2000:109-114.
    [94] GELLE G, Colas M, DELAUNAY G.Blind source separation applied to rotating machinesmonitoring by acoustical and vibrations analysis[J].Mechanical System and Signal andProcessing,2000,14(3):427-442.
    [95] GELLE G, COLAS M, SERVIERE C. Blind source separation: A new pre-processing tool forrotating machines monitoring [J]. IEEE Transactions on Instrumentation and measurement,2003,52(3):790-795.
    [96] KNAAK M, FILBERT D.Acoustical semi-blind source separation for machine monitoring[J].Processing of the third Workshop on blind source separation and independent componentanalysis,2001,361-366.
    [97] CARDOSO J F. Blind Beamforming for Non-Gaussian Signals[C]. Radar and SignalProcessing,1993,140(6):224-230.
    [98] Hyv rinen A. The fixed-point algorithm and maximum likehood estimation for independentcomponent analysis[J]. Neural Processing Letters,1999,10(1):1-5.
    [99] HERBERT B, ROBERT A, WALTER K. Blind source separation for convolutive mixtures: Aunified treatment [J]. Audio Signal Processing,2004,10:256-294.
    [100] SERVIERE C, FABRY P. Blind source separation of noisy harmonic signals for rotatingmachine diagnosis [J]. Journal of Sound and Vibration,2004,272:317-339.
    [101] LI Q Y, and ZHANG ZY. Blind Source Separation/Channel Equalization of NonlinearChannels With Binary Inputs [J]. IEEE Transaction on signal processing,2005,53(7):2315-2323.
    [102] ZHANG K, CHAN L W. An adaptive method for subband decomposition ICA [J], NeuralComputation,2006,18(1):191-223.
    [103]李舜酩,杨涛.基于峭度的转子振动信号盲分离[J].应用力学学报,2007,24(4):560-565.
    [104] CARDOSO J F, LAHELD B H. Equivariant adaptive source separation[J]. Signal Processing,1996,44(12):3017-3030.
    [105] CARDOSO J F. High-Order Contrast for Independent Component Analysis[J]. NeuralComputation,1999,11(1):157-193.
    [106] BELL A J, SEJNOWSKI T J. An information-maximization approach to blind separation andblind deconvolution [J]. Neural Computation,1995,7(1):1129-1159.
    [107] AMARI S, CICHOCKI A. Adaptive blind signal processing-neural network approaches[J].Proceeding of the IEEE,1998,86(10):2026-2048.
    [108] HOWARD H Y, AMARI S. Adaptive online learning algorithm for blind separation:maximum entropy and minimum mutual information[J]. Neural Computation,1997,9(7):1457-1482.
    [109] Hyv rinen A, OJA E. A fast fixed-point algorithm for independent component analysis[J].Neural Computation,1997,9(7):1483-1492.
    [110] Hyv rinen A, KARHUNEN J, OJA E. Independent component analysis[M]. New York:Wiley,2001.
    [111] Hyv rinen A and OJA E. Independent component analysis: algorithms and applications[J].Neural Networks,2000,13(4-5):411-430.
    [112] BELOUCHRANI A, AMARI M G. Blind source separation based on time-frequency signalrepresentations[J]. Signal Processing,1998,46(11):2888-2897.
    [113] PLATT J C, FAGGIN F. Networks for the separation of sources that are superimposed anddelayed[J]. Neural Information Processing System,1992,4(1):730-737.
    [114] BINGHAM E and HYVARINEN A. A fast fixed-point algorithm for independent componentanalysis of complex valued signals [J]. Neural System,2000,10(1):1-8.
    [115] BUREL G. Blind separation of sources: a nonlinear neural algorithm[J]. Neural Networks,1992,5(6):937-947.
    [116] PAJUNEN P, HYVARINEN A, KARHUEN J. Nonliear blind source separation byself-organizing maps[C]. Progress in Neural Information Processing: Processing of ICONIP’96,1996,2:1207-1210.
    [117] YANG H H, AMARI S, CICHOCKI A. Information back-propagation for blind separation ofsources from non-linear mixture[C]. In Proceedings of the International Conference on NeuralNetworks,1996,4:2141-2146.
    [118] TABEL A, JUTTEN C. Batch algorithm for source separation in post-nonlinear mixtures[J].First International Workshop on Independent Component Analysis and signal Separation,1999,155-160.
    [119] TABEL A, JUTTEN C. Source separation in post-nonlinear mixtures[J]. Signal Processing ofIEEE Transactions,1999,47(10):2807-2820.
    [120] YPMA A, PAJUNEN P. Rotating machine vibration analysis with second-order independentcomponent analysis[J]. First International Workshop on Independent Component Analysis andSignal Separation, ICA’99,1999:37-42.
    [121] YPMA A, LESHEM A, Robert P W D. Blind separation of rotating machine sources: bilinearforms and convolutive mixtures[J]. Neurocomputing,2002,49(1):349-368.
    [122] GELLE G, Colas M. Blind source separation: A tool for rotating machine monitoring byvibration analysis[J]. Sound and Vibration,2001,248(5):865-885.
    [123] POYHONEN S, JOVER P, HYOTYNIEMI H. Independent component analysis of vibrationfor fault diagonosis of an induction motor[C]. Processing of the IASTED InternationalConference Circuits, Signal and systems,2003,1:203-208.
    [124] KNAAK M, KUNTER M, FILBERT D. Blind source separation for acoustical machinediagnosis[C]. Digital Signal Processing of14th International Conference on2002,1:159-162.
    [125] KNAAK M, KUNTER M, FIBERT D. Acoustical machine monitoring using blind sourceseparation[C]. Processing of International Conference on Acoustical and vibratorysurveillance methods and diagnostics techniques,2001,1:12-16.
    [126] RHABI M E L, FENNIRI H, GELLE G, etal Blind separation of rotating machine signalsusing penalized mutual information criterion and minimal distortion principle[J]. MechanicalSystem and Signal Processing,2005,19(5):1282-1292.
    [127]焦卫东,杨世锡,吴昭同.机械声源信号的带通滤波盲分离[J].振动工程学报,2003,16(3):345-348.
    [128] Hyv rinen A. Independent component analysis in the presence of Gaussian noise bymaximizing joint likelihood [J]. Neurocomputing,1998,(22):49-67.
    [129] CICHOCKI A, DOUGLAS S C, AMARI S. Robust techniques for independent componentanalysis (ICA) with noisy data[J]. Neurocomputing,1998,(22):113-129.
    [130] RIVET B, VIGNERON V, PARASCHIV I A, etal. Wavelet denoising for blind sourceseparation in noisy mixtures[J]. Lecture notes in computer science,2004,3195:263-270.
    [131] PARASCHIV I A., JUTTERN C, AMINIAN K. Source separation in strong noisy mixtures:A study of wavelet de-noising pre-processing[C]. IEEE International conference on Acoustics,Speech and Signal Processing-Proceedings,2002,3:1681-1684.
    [132] TONG L, LIU R. Indeterminacy and Identifiability of Blind Identification[J]. IEEE Trans. onCircuits and Systems,1991,38(5):499-509.
    [133]李舜酩,杨涛.盲源信号分离及其发展[J].传感器技术,2005,24(4):1-4.
    [134] CHOI S, CICHOCKI A, BELOUCHRANI A. Blind separation of second-order nonstationaryand temporally colored sources[C]. Proceedings of the11th IEEE Signal Processing Workshopon Statistical Signal Processing,2001,(1):444-447.
    [135]杨福生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006.
    [136]马建仓,牛奕龙,陈海洋.盲信号处理[M].北京:国防工业出版社,2006.
    [137] GEELE G, COLAS M, DELAUNAY G. Blind sources separation applied to rotatingmachines monitoring by acoustical and vibrations analysis [J]. Mechanical Systems and SignalProcessing,2000,14(3):427-442.
    [138] BELOUCHRANI A, ABED M K, CARDOSO J F, et al. A blind source separation techniqueusing second order statistics[J]. IEEE Transmission. on Signal Processing,1997,45(2):434-444.
    [139] CHOI S, CICHOCKI A, BELOUCHRANI A. Second order nonstationary sourceseparation[J]. VL Signal Processing,2002,32(1-2):93-104.
    [140] CARDOSO J F, SOULOUMIAC A. Jacobi angles for simultaneous diagonalization [J]. InSLAM Journal of Matrix Analysis and Applications,1996,17(1):161-164.
    [141] BLASCHKE T. Independent Component Analysis and Slow Feature Analysis: Relations andCombination [D]. Berlin: Humboldt-Universit t zu Berlin,2004.
    [142] Hyv rinen A. Fast ICA for noisy data using Gaussian moments[C]. Processing of the1999IEEE International Symposium on Circuits and Systems (ISCA’99).2000,5:57-61.
    [143] DOUGLAS S C, CICHOCKI A, AMARI S. A bias removal technique for blind sourceseparation with noisy measurements[J]. Electronics Letters,1998,34(14):1379-1380.
    [144] Hyvarinen A. Gaussian moments for noisy independent component analysis[J]. IEEE SignalProcessing Letters,1999,6(6):145-148.
    [145]阳平.航空发动机混叠振动信号的盲源分离研究[D].南京:南京航空航天大学,2008.
    [146] CHOUDERY R A. Variational methods for Bayesian independent component analysis[D].Oxford: University of Oxford,2002.
    [147] CHOUDERY R A, ROBERTS S J. Flexible Bayesian independent component analysis forblind source separation[C]. Third International Conference on Independent ComponentAnalysis and Blind Signal Separation(ICA-2001),2001,2:1120-1134.
    [148]杨世锡,焦卫东,吴昭同.独立分量分析基网络应用于旋转机械故障特征提取与分类[J].机械工程学报,2004,40(3):45-49.
    [149] MINKA T P. Automatic choice of dimensionality for PCA[J]. Advances in NeuralInformation Processing Systems,2000,13:598-604.
    [150]李舜酩,雷衍斌.基于负熵的转子混叠振动信号盲识别[J].中国机械工程,2009,20(4):437-441.
    [151]何振亚,刘琚,梅良模.基于累积量展开的神经网络盲源分离算法[J].通信学报,1999,20:76-82.
    [152] COMON P. Independent component analysis, a new concept [J]. Signal Processing,1994,36(2):287-314.
    [153] TANAKA T, CICHOCKI A. Subband decomposition independent component analysis andnew performance criteriain[C]. Proceedings of International Conference on Acoustics, Speech,and Signal Processing,2004,5:541-544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700