用户名: 密码: 验证码:
我国石鸡分子生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石鸡(Alectoris chukar)是我国北方干旱、半干旱荒漠环境的指示性鸟类,是广布种,亚种分化众多。由于更新世冰期的影响,它们可能具有不同的进化历史和系统地理结构。本文旨在通过对mtDNA细胞色素b基因828bp序列遗传信息的分析,达到如下目的:(1)重建我国石鸡的系统地理结构,阐明更新世冷暖气候交替发生对它们系统进化的作用;(2)揭示环境因子对石鸡贺兰山亚种(A.c.potanini)遗传结构的影响(3)设计合理的取样策略(4)从遗传学角度探讨石鸡的保护问题。
     本文共分析了石鸡238个样本,分为形态差异明显的6个亚种:华北亚种Alectoris chukar pubescens、贺兰山亚种Alectoris chukar potanini、南疆亚种Alectoris chukar pallida、新疆亚种Alectoris chukar falki、准噶尔亚种Alectoris chukar dzungarica、疆西亚种Alectoris chukar pallescens。
     结果表明,石鸡的Cytb基因密码子存在偏倚,A和C比例明显高于G和T的比例。石鸡238个样本共发现28个变异位点,26种单倍型,单倍型C1为所有种群共享,所占比例为58.82%。除了准噶尔亚种、南疆亚种可能由于样本量较少,而且采样点都位于亚种分布的边缘地带而与其他大多数亚种的遗传分化较小外,其他各亚种间都有显著的遗传差异,部分的支持了传统的按表形和生境进行的亚种分类。6个亚种在系统地理结构上属于“系统发生连续,具有部分空间隔离”的地理格局。
     6个亚种根据单倍型系统树分为两个亚种组:A.c.pubescens-A.c.potanini亚种组和Alectoris chukar pallescens -A.c.pallida-A.c.falki-A.c.dzungarica。两亚种组间的分歧进化大约在21万年前,主要受更新世第四次冰期的影响。A.c.pallescens由于受第三次冰期的作用,与其他亚种在20.7-33.3万年前率先开始独立进化。A.c.dzungarica、A.c.pallida、A.c.falki之间的分化主要受第四次寒冷期的影响,分歧时间约10-20万年。A.c.potanini和A.c.pubescens的分歧时间为5.3万年,主要受第五次寒冷期以及暴雨泥石流的影响。可见,我国石鸡的亚种分化不是一次性完成的,而是受更新世中晚期冰期间冰期的反复作用以及更新世晚期和全新世暴雨泥石流的影响而逐步形成的。
     贺兰山亚种6个地理种群分为差异极显著的南北两个集群,其系统地理结构属于“系统发生连续,具有部分空间隔离”的地理格局。
     贺兰山亚种6个地理种群的遗传多样性与温度和降水量负相关,与日照率正相关,其中核苷酸多样性与日照率和降水量的相关性都达到了显著水平,说明日照率和降水量是影响A.c.potanini遗传多样性的决定因子。日照率和降水量对种群间遗传距离的影响较大。降水量变异系数是序列变异率的主导因子。碱基组成受海拔、日照率、降水量的影响较大。本文所选的9个环境因子中,日照率对石鸡贺兰山亚种遗传结构的影响最大。
     温度和降水量变异系数与贺兰山亚种遗传多样性、种群内遗传距离和序列变异率负相关,说明稳定的环境有利于遗传变异和遗传多样性的累积。
     石鸡采样范围可能是决定环境因子对遗传多样性影响结果不同的一个因素。本实验结果和以往的研究都表明来自采样范围较广、生境差异较大或年平均降水量相对较低的石鸡属鸟类种群的遗传多样性与温度和降水量负相关,来自采样范围较小、生境差异较小的或降水量相对较高的石鸡属种群的遗传多样性与温度和降水量正相关。
     对寿鹿山种群遗传多样性与样本量的研究表明,样本量为15时,单倍型多样性和核苷酸多样性都相对较高,并在15后趋于稳定,所以对石鸡遗传多样性相关研究的合理样本量大约为15。
     喀喇昆仑山种群(疆西亚种种群)和天山、北山、贺兰山、寿鹿山种群由于高度的地理隔离,应划为5个不同的的进化显著单元进行应重点保护。
Chukar partridges(Alectoris chukar)is an indicative species of arid and semiarid environments in northern China.It.has numerous subspecies with broad distribution.These subspecies might have different evolutionary history and phylogeographical structure that were heavily affected by Pleistocene glaciations. We used polymerase chain reaction(PCR)and direct sequencing methods to infer their molecular ecology based on mitochondrial DNA(mtDNA)Cytb data.The aims are:(1)to reconstruct their phylogeographical relationships within the background of Pleistocene climate.(2)to infer the effects of environmental factors on population genetic diversity of the two partridges.(3)to design sampling strategy (4)to discuss the conservation of the two partridges as viewed from genetics.
     This study analyzed 238 Chukar partridges including six subspecies (A.c.pubescens,A.c.potanini,A.c.pallida,A.c.falki,A.c.drungaria, A.c.pallescens).The Codon Bias Index(CBI)showed that Cytb gene had compositional bias within chukar partridges.28 variable sites defined 26 haplotypes,all populations shared haplotype C1,which is of high frequency of 58.28%.Most of pairwise differences within 6 subpopulations were significant.
     Calibrated rates of molecular evolution suggested that two subspecies groups began to diverged about 0.21 million years ago,mainly affected by the Pleistocene forth frigid.During 0.15-0.24 Ma,the A.c.pallescenes began to diverged with others at and formed different subspecies 0.207-0.333,so the subspeciation of it was mainly affected by Pleistocene third frigid.The A.c.potanini and A.c.pubescens independently evolved about 0.053 Ma ago due to the effect of Pleistocene forth frigid and debries flow.
     The phylogeographic structure of the six subpopulations belonged to "Phylogenetic continuity,spatial separation" geographic pattern,same went the six populations of A.c.potanini,resulting from the synergistic affection of glaciers, debris flow the middle and latter of the Pleistocene.
     Genetic diversity of A.c.potanini decreased with increasing temperature and rainfall.However,it increased with average rate of annual sunshine.Both correlations of neucleotide diversity and average annual sunshine time as well as rainfall were significant.So,average annual sunshine time and rainfall were two main factors for genetic diversity.These two factors were also most important for genetic differrenciations within populations as well as neucleotide composition. Moreover,altitude also effected the neucleotide composition.Among nine ecology factors in this study,average annual sunshine time was the most impotant one for genetic stucture of of A.c.potanini.
     Genetic diversity showed negative correlation with variation coefficients of temperature and rainfall,so did genetic differrenciations and sequence differences within populations Namely,the more stable the climate,the higher the genetic diversity as well as genetic differrenciations and sequence differences within populations observed.
     Sampling geographic scope might effected the different results of correlation of ecology and genetic structure in Alectoris.genetic diversities of populations from spacial regions with considerable ecology differences and relatively lower rainfall tended to show negative correlation with average annual temperature and average annual rainfall.
     When sample size reached fifteen in SL population,both haplotype diversity and neucleotide diversity tended to keep stable,and before fifteen,genetic diversity fluctuated sharply and with no rule.So we infer the reasonable sample size for a A.chukar population would be 15.
     A.c.pallescens population as well as TS,BS,HL,SL populations were all highly isolated,they were met the criteria for 5 different distinct evolutionary significant units(ESU).
引文
1.曹兴山.1996.甘肃第四纪气候期划分.干旱区研究.13(3):28-40.
    2.陈妍珂.2006.我国六盘山地区大石鸡和石鸡的渐渗杂交.博士毕业论文.
    3.崔之久,谢又予,熊黑钢,曾思伟.1991浅谈中国第四纪泥石流历史与沉积环境.(中国第四4.纪冰川与环境研究中心,中国第四纪冰川与环境研究中心,中国第 四纪研究委员会编)北京科学出版社,254-263.
    4.胡志昂,张亚平.1997.中国动植物的遗传多样性.杭州:浙江科学技术出版社
    5.黄族豪,刘迺发,周天林.2003.陇东黄土高原石鸡的遗传多样性与保护.生物多样性,11(6):454-460.
    6 黄族豪,刘迺发.2004.陇东黄土高原石鸡的分子系统地理结构.动物学报,50(4):576-582.
    7.黄族豪.2005.我国石鸡属鸟类的分子生态学研究.博士毕业论文.
    8.李吉均,文世宣,张青松,王富葆,郑本兴,李炳元.1979.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学.(6):608-616.
    9 林泉.2007.生态危局祁连山 生态经济.2.
    10.林振耀、吴详定.1978青藏高原隆起对气候的影响.青藏高原科学讨论会论文集(青臧高原隆起的时代、幅度和形式),北京:科学出版社.
    11 刘迺发.1984大石鸡分类地位的研究.动物分类学报,(2):212-217.
    12 刘迺发,黄族豪,文陇英.2004.大石鸡亚种分化及一新亚种描述(鸡形目,雉科).动物分类学报,29(3):600-605.
    13.刘迺发,黄族豪,周天林.2003.石鸡线粒体DNA的种群遗传变异分析.见:颜重威编.海峡两岸鸟类学术研讨会论文集.台北:国立自然科学博物馆,275-280.
    14.刘迺发,黄族豪.2007.中国石鸡生物学.中国科学技术出版社.
    15.刘迺发,陈小勇,何德奎.1996.兰州地区大石鸡栖息地选择.动物学报,42增刊:83-89.
    16.刘迺发,黄族豪,文陇英.2004.大石鸡亚种分化及一新亚种描述(鸡形目,雉科)动物分类学报,29(3):600-605.
    17.马敬能,菲利普斯.2000.中国鸟类野外手册.长沙:湖南教育出版社.
    18.施雅风,任炳辉.1998中国西部地区的冰川地貌.见:施雅风著,地理环境与冰川研究.北京:科学出版社,pp574-602.
    19 孙儒泳.2001.动物生态学原理.北京师范大学出版社 91-95
    20.王香亭.1991.甘肃脊椎动物志.甘肃科学技术出版社 387-395.
    21.王永焱.1974秦岭以北黄土区第四纪古气候探讨.西北大学学报.(1):29-35.
    22.牛屹东,李明,魏辅文,冯祚建.2001.线粒体DNA用作分子标记的可靠性和研究前景.遗传.23(6):593-598.
    23 王静,李明,魏辅文等.2001分子系统地理学及其应用.动物分类学报.26(4):431-439.
    24 王香亭.1991.甘肃脊椎动物志.甘肃科学技术出版社 387-395.王元兴.1993.动物繁殖学 江苏科学技术出版社,
    25.王子玉.1986.云台山鸟类考察报告.动物学杂志 10:20-28.
    26.文陇英,张立勋,刘迺发.2005.以mtDNA细胞色素b基因探讨斑翅山鹑的分类地位.动物学研究26(1):69-75
    27.卫明,侯鹏,黄族豪和刘迺发.2002.环境因子对大石鸡种群遗传结构的影响.生态学报,22(4):528-534.
    28.杨志松.2007.我国石鸡属鸟类系统地理结构及其种间杂交的研究博士毕论文.
    29 殷秀芹等.2004.生物地理学.高等教育出版社.6-23.
    30 张亚平,施立明.1992.动物线粒体DNA多态性的研究概况.动物学研究.13(3):289-298.
    31.赵松乔.1985.中国沙漠、戈壁的形成和演变.见:赵松乔主编.中国干旱地区自然地理.科学出版社,pp1-17.
    32.郑光美.2002.世界鸟类与分布名录.北京:科学出版社.
    33.郑作新.1978.中国动物志鸟纲第四卷—鸡形目.北京:科学出版
    34.Allendorf FW,Leary RF,1988.Conservation and distribution of genetic variation in a polytypic species,the cutthroat trout.Conserv.Biol.,2:170-184.
    35 Avise JC,Neigel JE and Arnold J.1984.Demographic influences on mitochondrial DNA lineage survivorship in animal populations. Journal of Molecular Evolution, 20:99-105.
    36. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Niegel JE, Reeb CA and Saunders NC. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann. Rev. Ecol. Syst., 18: 489-522.
    37 Avlse J C, Walson W S, SibIey C G. DNA sequence support for a close phylogenetic relationship between some stocks and new word vultures. Proc. Natl Acad USA, 1994, 91: 5173-5177
    38. Avise JC. 1994. Molecular Markers, Natural History and Evolution. Chapman & Hall, New York.
    39 Avise JC. 1996. Toward a regional conservation genetic perspective: Phylogeography of fauna in the southeastern United States. In: Avise J C and Hamrick J L (eds), Conservation genetics: case histories from nature. Chapman & Hall, New York, 431-470.
    
    40. Avise J C, Walker D. 1998. Pleistocene phylogeographic effects on avian populations and the speciation process. Proceeding of the Royal Society of London 265: 457-463.
    
    41. Avise J C. 2000. Phylogeography: the History and Formation of Species (M). Mass.: Harvard University Press, Cambridge, 1-447
    
    42 Bermingham E and Avise JC.1986. Molecular zoogeography of freshwater fishes in the southeastern United States. Genetics, 113:939-965.
    
    43. Brown WM, George M and Wilson AC. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl Acad. Sci. USA 76(4): 1967-1971.
    
    44 Brown WM. 1983. Evolution of mitochondrial DNA. In: Nei M and Keohn RK (eds). Evolution of genes and proteins. Sinaver: Sunderland Mass, 62-68.
    
    45. Dobzhansky,T. 1970. Genetics of the EUniversity Press, New York.
    
    46. Dumolin-Lapegue S, Demesure B, Le Corre V, Fineschi S, Petit R J. 1997. Phylogeographic structure of white oaks throughout the European continent. Genetics, 146: 1475-1487.
    47. El Mousadik A, Petit R J. 1996. Chloroplast DNA phylogeography of the argan tree of Morocco. Molecular Ecology 5: 547-555.
    48. Ferris C, King R A, Vainola R, Hewitt G M. 1998. Chloroplast DNA recognizes three refugia sources of European oaks and suggests independent eastern and western immigrations to F inland. Heredity 80: 584-593.
    49. Felsenstein J. 1985. Confidence limits on phylogenies : an approach using the bootstrap. Evol, 39, 783 -791.
    50. Filippo Barbanera,Monica Guerrini,Aleem A. Khan, Panicos Panayides ,Pantelis Hadjigerou ,Christos Sokos ,Sundev Gombobaatar, Sarah Samadi ,Bakht Y. Khan, Sergio Tofanelli ,Giorgio Paoli ,Fernando Dini. Human-mediated introgression of exotic chukar(Alectoris chukar, Galliformes) genes from East Asia into native Mediterranean partridges. Biol InvasionsDOI 10.1007/s10530-008-9251-0
    51. Gyllensten U, Wharton D and Wilson AC. 1985. Maternal inheritance of mitochondrial DNA during backcrossing of two species of mice. The Journal of Heretidy, 76:321-324.
    52. Haig S. M. .1998. Molecular contributions to conservation.Ecology, 2 :413 -425.
    53. Hewitt G M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247-276.
    54. Hewitt GM. 1999. Post-glacial re-colonization of European biota. Biol J Linn Soc.68:87-112.
    55. Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907-913.
    56. Huang ZH, Liu NF, Zhou TL and Ju B. 2005. Effects of environmental factors on population genetic structure in chukar partridge (Alectoris chukar). Journal of Arid Envrionments. 62:427-434.
    57. Huang ZH, Liu NF. 2004. Genetic structure of chukar partridge (Alectoris chukar) populations in the Longdong Loess Plateau, China. J. Ornithol. 145: 137-141.
    
    58. Huang ZH, Liu NF, Long J. 2006. Population genetic structure, haplotype distribution and genetic diversity of the rust-necklaced partridge Alectoris magna lanzhouensis based on mtDNA control region sequence. Acta Zoologica Sinica.
    
    59. Huang Zuhao, Liu Naifa , Luo Shuixiang,Jin Long. 2007. Phylogeography of rusty-necklaced partridge (Alectoris magna) in northwestern China. Molecular Phylogenetics and Evolution 43
    
    60 Kessler LG , Arise J C A comparative description of mitochondrial DNA differentiation in selected avian and other vcrtebrau-genera. Evolution, 1985. 39: 831 — 837
    
    61. Koslova EV. 1952. Avifauna of Tibean Plateau, its family ties and history. Proc.Zool.Inst.Ac.Sci.USSR, 9:964-1028.
    
    62. Kumar S, Tamura K, Nei M. 2004. MEGA3 : integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5:150 -163.
    
    63. Lerner LM. 1968. Heredity, Evolution, and Society. Freeman, San Francisco.
    
    64. Li BY and Li JJ. 1991. Quaternary Glacial Distribution of the QinghaiXizang (Tibet) Plateau. Beijing: Science Press. 1-10.
    
    65. Meffe GK and Carroll CR. 1994.Principles of conservation biology. Sinauer Associates, Inc., Sunderland, Massachusettes.
    
    66. Lucchini V and Randi E. 1998 Mitochondrial DNA sequence variation and phylogeographcial structure of rock partridge (Alectoris graeca) populations. Heredity, 31:528-536.
    
    67. Mayr E. 1970. Population, Species, and Evolution. Harvard University Press, Cambridge, Mass. 71-75.
    
    68. Merrell D J. 1981. Ecological Genetics. Longman, London.
    
    69.. Moritz C (1994) Defining 'evolutionarily significant units' for conservation. TREE 9:373-375.
    
    70. Moritz C, Faith D P. 1998. Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular Ecology 7: 419-430.
    71. Moritz C .2002. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238-254.
    72.Newton A C, Allnot T R, Gillies A C M, Lowe A J, Ennos R A. 1999. Molecular phylogeography intraspecific variation and conservation of tree species. Trends in Ecology and Evolution 14: 140-145.
    
    73 O'Brien SJ and Mayr E. 1991. Bureaucratic mischief: recognizing endangered species and subspecies. Science. 251:1187-1188.
    
    74. Petitet RJ, Mousadik AE and Poas 0. 1998. Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12(4):844-855.
    
    75. Randi E., C. Tabarroni and S. Kark. 2006. The role of history vs. demography in shaping genetic population structure across an ecotone: chukar partridges (Alectoris chukar) as a case study. Diversity and Distributions. 12:6, 714-724.
    
    76. Randi E and Alkon PU. 1994. Genetic structure of Chukar (Alectoris chukar) population in Isael. Auk. 11(2): 216-226.
    
    77. Randi E and Bernard-Laurent A. 1999. Population genetic of a hybrid zone between the red-legged partridge and rock partridge. Auk. 116(2):324-337.
    
    78. Randi E, Meriggi A, Lorenzini R. Fusco G and Alkon PU. 1992. Biochemical analysis of relationships of Mediterranean Alectoris partridge. Auk. 102:358-367.
    
    79. Randi E. 1996 A mitochondrial cytochrome b phylogeny of the Alectoris partridges. Molecular Phylogenetic Evolution, 6(2):214-27.
    
    80. Randi, E. and Lucchini V.1998. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J Mol Evol, 47(4): 449-62.
    
    81 Randi, E., C.Tabarroni, S.Rimondi, V.Lacchini, and A. Sfougaris. 2003. Phylogeography of the rock partridge (Alectoris graeca). Molecular Ecology. 12:2201-2214.
    
    82. Roy K, Valentine J W, Jablonski D and Kidwell S M. 1996 Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. Trends Ecol. Evol, 11:458-463.
    
    83. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Roza R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497.
    
    84. Schneider J M, Elgar M A. 1998. Spiders hedge genetic bets. Trends in Ecology and Evolution 13 (6): 218-219.
    
    85 ShieldG F Wilson AC. Calibratfion of mitochondrilal DNA evolution in geese. J.Mol. Evol, 1987a, 24: 212- 217.
    
    86 Shields G F, Wilson A C.Subspecies of Canada goose (Btanta eanade-sis) have distinct mirochondriaI DNAs. Evolition 1987b, 41 662- 666.
    
    87. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139: 457-462.
    
    88. Sinclair W T, Morman J D, Ennos R A. 1999. The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Molecular Ecology 8: 83-88.
    
    89. Smith JM and Smith NH. 2002. Recombination in animal mitochondrial DNA. Mol Biol. Evol.19: 2330-2332.
    
    90. Soule ME and Hillis LS. 1998. No need to isolate genetics. Science. 282: 1658-1659.
    
    91. Stebbins GL. 1950. Variation and envolution in plants.New York:Columbia University. Press. 27-102
    
    92. Taberlet P, Fumaglli L and Wust-saucy A. 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology. 7:477-494.
    
    93. Tomaru N, Mitsutsuji T, Takahashi Y, Uchida K, Ohba K. 1997. Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the late-Quaternary. Heredity. 78: 241-241.
    
    94. Taberlet P, Fumagalli L, Wust-Saucy A G, Cossons J F. 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7: 453-464.
    
    95. Waser N M . 1993. Population structure , optimal outbreeding ,and assortative mating in angiosperm. In : Thornhill N W(ed.). The Natural History of Inbreeding and Outbreeding. The University of Chicago Press , Chicago : 173-199.
    
    96. Watson GE. 1962. Sympatry in palearctic Alectoris partridge . Evolution. 16:11-19.
    
    97. Zink R M Geography Of mitochondrial DNA variation on two sympatric sparrows. Evolution, 1991. 15: 329- 339
    
    98 Wright JW. 1983.The origin of the parthenogenetic lizard (Cnemidophorus laredoensis) inferred from mtDNA analysis. Herpetologia, 39:410-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700