用户名: 密码: 验证码:
反式7,8-二羟-9,10-环氧苯并(a)芘诱发细胞应答反应的剂量效应和时间效应的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯并(a)芘(BaP)属于多环芳烃类(PAHs)环境化学污染物,主要由煤、烟草和其它一些有机化合物高温加热或燃烧不完全时产生。苯并(a)芘在体内经微粒体酶代谢活化后生成终致癌物7,8-二羟-9,10-环氧苯并(a)芘(benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide,BPDE),其中反式-BPDE是代谢产物中活性最强的,具有亲电性碳原子活性基团,能与组成核酸的碱基和组成蛋白质的氨基酸的亲核基团共价结合形成加合物,损伤生物大分子的结构和功能,从而引发核苷酸切除修复,DNA跨损伤复制,细胞周期“校正点”等信号通路的激活,以及基因表达的改变。
     BPDE是一个全致癌物,两阶段致癌实验表明它既是致癌剂又是促癌剂。其中,BPDE在癌变发生启动期的机制已经得到了广泛研究,主要是导致DNA突变形成:BPDE第10位上的C与DNA鸟嘌呤的N~2位形成加合物(+)-trans-anti-BPDE-N~2-dG,它们将阻断DNA复制,通过细胞的DNA合成机构的旁路合成途径,即跨损伤DNA合成(translesion DNA synthesis,TLS),细胞可以避免这些未经修复的损伤对细胞的致死性影响,但在损伤碱基的对面常插入错配的碱基,通常是G→T的碱基颠换突变,导致细胞面临基因突变的风险。
     与BPDE的致突变机制广泛研究相反的是,BPDE诱发的细胞早期反应中是如何影响信号转导通路从而激活转录因子和它们的靶基因表达所知甚少。现在的研究发现BPDE作用后p53,PI-3K/Akt/JNKs,MAPKs/AP-1,IKKbeta/NF-kappaB等信号通路被激活。为了研究BPDE对基因表达的直接影响,用DNA免疫沉淀技术鉴定并克隆BPDE结合的DNA片段,总共得到67个基因片段。这些片段经测序并与GenBank数据库BLAST之后,发现其功能包括DNA修复,凋亡相关,锌指蛋白,酶,表达序列标签克隆,CpG岛。这些数据进一步说明BPDE与相关基因DNA直接结合也是诱导基因表达变化的一个重要机制。与此同时,高通量的基因芯片技术也被用于检测BPDE暴露后,细胞中基因发生的全局变化和涉及的信号通路。Akerman等用含有350个人类基因的芯片发现BPDE处理后改变的基因涉及:细胞周期调控,谷胱甘肽解毒,细胞凋亡等等。
     在毒理学研究中,我们通常要考虑细胞或动物暴露于环境污染物后的剂量反应关系。但是,用能诱导非毒性、亚毒性或毒性反应的不同浓度的外来污染物作用后,有时候不一定能得到良好的剂量依赖关系,甚至于能诱导机体产生完全不同的反应。Moller等人的研究结果发现用低、中、高三个浓度道诺红菌素(daunorubicin)处理细胞后,差异蛋白质组显示道诺红菌素能导致20个蛋白的表达水平在三个浓度都上调,大部分不具有剂量依赖关系。
     除了暴露剂量,暴露后的时间间隔也是一个需要考虑在内的重要因素。随着暴露后时间的延长,可以发现与时间相关毒性反应的可观察的基因或蛋白表达改变,有助于了解早期反应和晚期反应的作用机制和寻找相关的生物标记物。
     我们实验室曾用苯并[a]芘处理细胞,引起广泛的蛋白表达改变,其中以锌指蛋白和一些参与转录调控的蛋白多见。为了消除苯并[a]芘的代谢转化效率差异的影响,我们随后采用苯并[a]芘的代谢终产物BPDE进行深入研究,用低浓度0.005μM BPDE处理FL细胞,在细胞外液中发现有3个出现的蛋白点,16个表达上调的蛋白点。为了更好的了解细胞反应的全貌,实验中还用不同的暴露剂量以期获得更多的信息来阐明细胞对BPDE的应答机制。应用基因芯片技术分别检测0.005μM、0.05μM、0.5μMBPDE暴露后基因表达的改变并用实时定量RT-PCR进行验证,发现在低浓度0.005μM和0.05μM浓度组发生改变的基因较少,而高浓度0.5μM发生改变的基因数目较多,这些基因的功能涉及细胞周期调节、信号转导、转录因子、代谢有关的酶等。可能涉及的信号通路包括:p53,MAPK,Akt/PKB。刘更等发现用低浓度0.005μM和0.05μM BPDE可以诱导内质网应激反应(endoplasmic reticulum stress,ER stress),但较高浓度0.5μM BPDE未见类似变化。
     以上这些实验结果使我们迫切想揭示不同浓度BPDE暴露和暴露后不同时间细胞发生的变化。近年来,生物技术的飞速发展使得更全面广泛的了解这种变化成为可能。许多高通量技术如cDNA芯片,实时RT—PCR,以及生物信息学已被用于细胞应激反应,实验结果令人鼓舞。但是这些技术都不能提供转录后的尤其是蛋白质在翻译后修饰的信息,而蛋白质通常是细胞内的功能执行者。以双向电泳(2-DE)作为分离技术和质谱作为鉴定技术的蛋白质组学的方法能同时分离细胞内几千个蛋白,并能研究翻译后修饰以及蛋白的相互作用,因此在相关领域中受到广泛的应用。
     因此,在本研究中,应用双向电泳和基质辅助激光解吸飞行时间质谱(MALDI-TOF)相结合的蛋白质组学方法来筛选不同浓度BPDE暴露和暴露后不同时间哺乳动物细胞的差异表达蛋白,研究可能存在的差异表达蛋白与BPDE浓度、作用时间的关系,找寻对BPDE有特异反应的蛋白。通过生物信息学方法对差异蛋白进行分类,探讨不同功能蛋白对BPDE的响应可能对细胞产生的毒性影响。
     我们用BPDE处理FL细胞,二甲基亚砜作为溶剂对照组,然后提取细胞总蛋白。采用24cm,pH 4-7的IPG胶条及同时可跑12块胶的Ettan DALTⅡ垂直电泳系统进行分离,银染的胶经数字化成像和图象分析后发现:量效关系中有65个蛋白斑点在BPDE处理后12小时发生了显著的变化。其中有1个斑点在0.05μM和0.5μM BPDE处理后的细胞中检测到,1个斑点仅在0.5μM BPDE处理后的细胞中检测到;另外有24个蛋白斑点在0.005μM BPDE处理后表达量发生改变(11个上调,13个下调),24个蛋白斑点在0.05μM BPDE处理后表达量发生改变(16个上调,8个下调),25个蛋白斑点在0.5μM BPDE处理后表达量发生改变(14个上调,11个下调),有10个蛋白斑点在两个处理剂量组都发生了改变,没有蛋白斑点在三个剂量组都发生改变。进一步的,我们切取胶上的差异蛋白斑点,然后用特异性的胰酶消化,酶解后的肽段用基质辅助的激光解吸离子化-飞行时间质谱(MALDI-TOF)鉴定,得到各个蛋白的肽质指纹图谱(peptide mass fingerprinting,PMF)。根据肽质指纹图,在网上用MASCOT搜索软件分别搜寻NCBI的非冗余蛋白序列数据库(nrNCBI),46个蛋白质得到了鉴定。这些得到成功鉴定的蛋白质功能涉及面非常广,包括转录调控,细胞周期,细胞增殖,信号转导,细胞骨架,发育,代谢以及其他功能未明的等等。表明BPDE对细胞产生了广泛的影响。
     在时效研究中发现用0.05μMBPDE处理后3小时,12小时和24小时,一共有128个蛋白斑点的表达发生了改变。36个蛋白斑点在0.05μM BPDE处理后3小时表达量发生改变(11个上调,25个下调),29个蛋白斑点在0.05μM BPDE处理后12小时表达量发生改变(20个上调,9个下调),69个蛋白斑点在0.05μMBPDE处理后24小时表达量发生改变(35个上调,34个下调),有6个蛋白斑点在两个处理时间点都发生了改变,没有蛋白点在三个处理时间点都发生改变。其中84个斑点得到了成功鉴定。与量效研究相似的是,时效研究中这些得到成功鉴定的蛋白质功能涉及面也非常广,几乎涵盖了量效中改变蛋白的各个类别。
     结论:BPDE作用后细胞内发生了广泛的变化,有众多蛋白参与了应答反应,这些蛋白涉及到细胞的不同功能,为进一步研究BPDE与机体交互作用的分子机制提供了线索,并为寻找人群接触环境致癌物后的生物标记物提供可能。研究未发现蛋白有剂量依赖关系和时间依赖关系,说明不同浓度BPDE暴露及暴露后不同时间细胞应答反应机制是不一样的,高浓度BPDE作用后,细胞应答反应体系不是低浓度作用后的简单放大,存在更为复杂的致毒机制,不同浓度BPDE暴露及暴露后不同时间,可能激活细胞内不同的途径来产生毒性效应。
Benzo(a)pyrene is one of the polycyclic aromatic hydrocarbons(PAHs) environmental pollutants and can be generated from incomplete combustion of organic materials such as gasoline in motor vehicles, coal burning, cooking, and tobacco smoke. Benzo(a)pyrene is metabolically activated to form the ultimate carcinogen benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) by microsome enzymes. Anti-BPDE is the most carcinogenetic form and the electrophilic species of it is able to interact with nucleophilic sites on cellular DNA, RNA and protein resulting in bulky-adduct damage. As a result, nucleotide excision repair, translesion DNA synthesis, activation of cell cycle checkpoint pathway and alterations of gene expression are induced.
    BPDE is a complete carcinogen, which plays a role in tumor initiation and promotion in two-stage carcinogenesis test. Extensive studies have been done in the mechanism of BPDE in mutagenesis. DNA damage occurs mainly by binding of C 10 position of anti-BPDE with N~2-dG in DNA to form the adduct (+)-trans-anti-BPDE-N~2-dG. The bulky adduct will block DNA replication. However, a DNA synthesis bypass way, translesion DNA synthesis can help cell to avoid the deadly fate of un-repaired DNA damage. As a result, mispairing base is often inserted opposite the lesion, which increases the risk of mutagenesis mainly G→T transversion mutation。
    However, the mechanism involved in the early responses induced by BPDE, which is thought to be mediated through initiating signal transduction pathways leading to activation of transcription factors and their target genes, is barely
    understood.
    Studies have shown signaling pathway such as p53, PI-3K/Akt/JNKs, MAPKs/ AP-1, IKKbeta/NF-kappaB was activated after BPDE exposure. To investigate the direct effects of BPDE on gene expression, DNA immunoprecipitation technique was used to identify and clone BPDE-binding DNA fragments. A total of 67 fragments were sequenced and BLASTed in the GenBank database. The 67 fragments include DNA repair and apoptosis-related genes, zinc finger protein, cellular enzymes, expressed sequence tag clones, and CpG islands. These data further demonstrate that direct binding of BPDE with DNA of related genes is an important mechanism of BPDE-induced alterations in gene expression。 In addition, high-throughput gene microarray has been applied to detect the cellular global changes in gene and signaling pathways. After exposure to BPDE, Akennan et al used a human 350 gene array and found the genes with alterated expression were involved in cell cycle regulation, glutathione detoxification, cell apoptosis and etc.
    In study of responses to toxins, dose-related responses should be well considered. However, different doses belong to nontoxic, subtoxic or toxic ranges may actually induce dose dependent or completely different responses. In a proteomics study, Moller et al. found that treatment with daunorubicin of low, medium and high dose led to a significant up-regulation of 20 proteins, independent of the concentration used.
    In addition to exposure dose, the intervals after exposure is also should be taken into accounted. While the intervals elongates, the time related alteration in gene or protein expression could be discovered. It provides the possibility for the understanding of the mechanisms and finding of the biomarkers of the early and late response.
    In our laboratory, we have performed proteomic analysis in B[a]P-treatment in human amnion epithelial cells and a comprehensive alteration of protein expression profiles were found. The identified proteins included a number of zinc finger proteins and other transcription regulators. In order to eliminate the potential confounding effects of differential metabolic activation, we used the reactive metabolites of B[a]P for further study. Human amnion cells (FL cells) were exposed to 0.005μM BPDE in a secretome proteomic experiment, as a result, 3 and 16 protein spots were found
    appearing and up-regulated in the cultured medium of BPDE treated cells as compared to the control group. Oligonucleotide microarray technique was also applied to detect the differential gene expression profiles after exposure to 0.005μM, 0.05 and 0.5μM BPDE, followed by quantitative real-time RT-PCR validation. There were few and robust gene expression changes, respectively, in response to the two lower doses and the higher dose of BPDE. The results in high dose exposure showed the alteration in expression level of genes related to cell cycle control, signaling molecules, transcription factors, and metabolic enzymes etc., signaling pathways such as p53-mediated, mitogen-activated protein kinases, MAPKs, Akt/PKB were activated. Additionally, Liu et al found 0.005μM and 0.05μM BPDE could trigger the endoplasmic reticulum stress in exposed cells, while 0.5μM BPDE could not induce such a response.
    All these findings raised our interests in revealing the cellular changes at different concentrations and time intervals after exposure. The rapid development of biological techniques has given us the possibility to try to understand the changes more comprehensively. Nowadays, many high-throughput methods including gene expression microarray assay, real-time RT-PCR analysis and bioinformatics are under way in this laboratory for the study of cell stress responses, and the preliminary results are inspiring. But these methods cannot provide direct information of how proteins are regulated at the translational or post-translational levels. Since proteins rather than mRNA are usually the functional executors in cells. Proteomic analysis, which combines 2-DE and mass Spectrometry, allows simultaneous monitoring of the expression of hundreds and even thousands of proteins in a sample following exposure to toxicant. Furthermore, it can study the post translation modification and protein interaction. Therefore, proteomic analysis is becoming a popular high throughput method of choice to detect differentially expressed proteins between profiles after exposure to toxicants.
    In our present studies, 2-DE combining MS was undertaken to identify the differentially expressed proteins following exposure to different doses of BPDE as well as at different time intervals after BPDE exposure. The differentially expressed proteins were classified according to their function through bioinformatics analysis
    and the functional implications of these proteins were discussed.
    In order to identify the proteins of differential expression in the FL cells after BPDE treatment, the IPG strips (24 cm, pH 4-7) and Ettan DALT II vertical electrophoresis system which allow a higher loading capacity and provide a longer separation distance for micropreparative runs were used to separate the whole cellular proteins of the FL cells treated with BPDE and DMSO, respectively. Then the 2D gels were visualized by silver staining; the digitized images were analyzed with 2D analysis software. In dose response study, 65 protein spots showed significant changes in BPDE-treated cells compared to control cells (DMSO treatment). There was 1 protein spot detected after 0.05μM and 0.5μM BPDE treatment, 1 protein spot detected only after 0.5μM BPDE treatment. Moreover, another 24 protein spots were found to be affected by 0.005μM BPDE(11 were up-regulated, 13 were down-regulated), 24 protein spots were found to be affected by 0.05μM BPDE(16 were up-regulated, 8 were down-regulated), 25 protein spots were found to be affected by 0.5μM BPDE(14 were up-regulated, 11 were down-regulated); however,10 protein spots were found to be affected by BPDE in two doses, no protein spot was affected by BPDE in three doses. These protein spots were cut from the gels and subjected to in-gel digestion with trypsin. The peptides were analyzed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass Spectrometry to obtain the peptide mass fingerprinting (PMF). And based on the information of PMF, some of the proteins were identified by searching non-redundant NCBI protein database using MASCOT software. Forty six protein spots were identified successfully. These identified proteins are involved in a variety of cellular process including transcription regulation, cell-cycle control, cell proliferation, signal transduction, cell skeleton, development, metabolism and some proteins with unknown functions. Based on the result, BPDE exposure induced comprehensive cellular responses.
    One hundred and twenty eight protein spots showed significant differential expression in the time response study. 36 protein spots were found to be affected by 0.05μM BPDE(11 were up-regulated, 25 were down-regulated) at 3 hour after exposure, 29 protein spots were found to be affected by 0.05μM BPDE(20 were
    up-regulated, 9 were down-regulated) at 12 hour, 69 protein spots were found to be affected by 0.05μM BPDE(35 were up-regulated, 34 were down-regulated)at 24 hour; however,6 protein spots were found to be affected by BPDE in two time intervals, no protein spot was affected by BPDE in three time intervals. Eighty four protein spots were identified successfully. Similar to the dose response study, these identified proteins are involved in a variety of cellular process.
    Conclusion: There are comprehensive responses in the FL cells after exposure to BPDE. Many proteins are involved in BPDE-induced cellular responses in mammalian cells. These proteins take part in a variety of cellular processes. This work provides the new insight into the mechanisms of BPDE and the possibility of new biomarkers for evaluating the exposure to environmental carcinogen. Little dose-dependent or time-dependent manner could be observed in the proteins in the dose response study or time response study. Therefore, the biological responses of high dose exposure can't be considered as only an amplification of low dose response. BPDE may activate different pathway to regulate the cell response machinery followed exposure to different doses as well as at different time intervals after exposure.
引文
[1] K. Olden and S. Wilson Environmental health and genomics: visions and implications, Nat Rev Genet 1 (2000) 149-153.
    [2] W. Luo, W. Fan, H. Xie, L.Jing, E. Ricicki, P. Vouros, L.P. Zhao and H. Zarbl Phenotypic anchoring of global gene expression profiles induced by N-hydroxy-4-acetylaminobiphenyl and benzo[a]pyrene diol epoxide reveals correlations between expression profiles and mechanism of toxicity, Chem Res Toxicol 18 (2005) 619629.
    [3] A.S. Andrew, A.J. Warren, A. Barchowsky, K.A. Temple, L. Klei, N.V. Soucy, K.A. O'Hara and J.W. Hamilton Genomic and proteomic profiling of responses to toxic metals in human lung cells, Environ Health Perspeet 111 (2003) 825-835.
    [4] A. Moller, M. Soldan, U. Volker and E. Maser Two-dimensional gel electrophoresis: a powerful method to elucidate cellular responses to toxic compounds, Toxicology 160(2001) 129-138.
    [5] S.W. Kim, H.J. Hwang, E.J. Cho, J.Y. Oh, Y.M. Baek, J.W. Choi and J.W. Yun Time-dependent plasma protein changes in streptozotucin-induced diabetic rats before and after fungal polysachharide treatments, J Proteome Res 5 (2006) 2966-2976.
    [6] K. Bender, C. Blattner, A. Knebel, M. Iordanov, P. Herrlich and H.J. Rahmsdorf UV-induced signal transduction, J Photochem Photobiol B 37(1997) 1-17.
    [7] S.L. Hockley, V.M. Arlt, D. Brewer, I. Giddings and D.H. Phillips Time- and concentration-dependent changes in gene expression induced by benzo(a)pyrene in two human cell lines, MCF-7 and HepG2, BMC Genomics 7 (2006) 260.
    [8] H. Bartsch and E. Hietanen The role of individual susceptibility in cancer burden related to environmental exposure, Environ Health Perspect 104 Suppl 3 (1996) 569-577.
    [9] A.H. Conney Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture, Cancer Res 42(1982) 4875-4917.
    [10] D.H. Phillips Fifty years of benzo(a)pyrene, Nature 303 (1983) 468-472.
    [11] A.H. Conney, R.L. Chang, D.M. Jerina and S.J. Wei Studies on the metabolism of benzo[a]pyrene and dose-dependent differences in the mutagenic profile of its ultimate carcinogenic metabolite, Drug Metab Rev 26 (1994) 125-163.
    [12] M. Cosman, C. de los Santos, R. Fiala, B.E. Hingerty, S.B. Singh, V. Ibanez, L.A. Margulis, D. Live, N.E. Geacintov, S. Broyde and et al. Solution conformation of the major adduct between the carcinogen (+)-anti-benzo[a]pyrene diol epoxide and DNA, Proc Natl Acad Sci USA 89 (1992) 1914-1918.
    [13] C. Heidelberger Chemical oncogenesis in culture, Adv Cancer Res 18 (1973) 317-366.
    [14] T. Shimada, E.M. Gillam, Y. Oda, F. Tsumura, T.R. SuRer, F.P. Guengerich and K. Inoue Metabolism of benzo[a]pyrene to trans-7,8-dihydroxy-7, 8-dihydrobenzo[a]pyrene by recombinant human cytochrome P450 1B1 and purified liver epoxide hydrolase, Chem Res Toxicol 12 (1999) 623-629.
    [15] H. van Steeg The role of nucleotide excision repair and loss of p53 in mutagenesis and carcinogenesis, Toxicol Lett 120 (2001) 209-219.
    [16] S. Mukhopadhyay, D.R. Clark, N.B. Watson, W. Zacharias and W.G. McGregor REV1 accumulates in DNA damage-induced nuclear foci in human cells and is implicated in mutagenesis by benzo[a]pyrenediolepoxide, Nucleic Acids Res 32 (2004) 5820-5826.
    [17] D. Chiapperino, M. Cai, J.M. Sayer, H. Vagi, H. Kroth, C. Masutani, F. Hanaoka, D.M. Jerina and A.M. Cheh Error-prone translesion synthesis by human DNA polymerase eta on DNAcontaining deoxyadenosine adducts of 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrohenzo[a] pyrene, J Biol Chem 280 (2005) 39684-39692.
    [18] R.S. Weiss, P. Leder and C. Vaziri Critical role for mouse Husl in an S-phase DNA damage cell cycle checkpoint, Mol Cell Biol 23 (2003) 791-803.
    [19] N. Guo, D.V. Failer and C. Vaziri A novel DNA damage checkpoint involving post-transcriptional regulation of cyclin A expression, J Biol Chem 275 (2000) 1715-1722.
    [20] G.S. Akerman, B.A. Rosenzweig, O.E. Domon, L.J. McGarrity, L.R. Blankenship, C.A. Tsai, S.J. Culp, J.T. MacGregor, F.D. Sistare, J.J. Chen and S.M. Morris Gene expression profiles and genetic damage in benzo(a)pyrene diol epoxide-exposed TK6 cells, Murat Res 549 (2004) 43-64.
    [21] W. Levin, A.W. Wood, P.G. Wislocki, J. Kapitulnik, H. Yagi, D.M. Jerina and A.H. Conney Carcinogenicity of benzo-ring derivatives of benzo(a)pyrene on mouse skin, Cancer Res 37(1977) 3356-3361.
    [22] M.K. Buening, P.G. Wislocki, W. Levin, H. Yagi, D.R. Thakker, H. Akagi, M. Koreeda, D.M. Jerina and A.H. Conney Tumorigenicity of the optical enantiomers of the diastereomeric benzo[a]pyrene 7,8-diol-9,10-epoxides in newborn mice: exceptional activity of(+)-7beta, Salpha-dihydroxy-galpha, 10alpha-epoxy-7,8,9,10- tetrahydrohenzo[a] pyrene, Proc Natl Acad Sci U S A 75 (1978) 5358-5361.
    [23] T.J. Slaga, W.J. Bracken, G. Gleason, W. Levin, H. Yagi, D.M. Jerina and A.H. Conney Marked differences in the skin tumor-initiating activities of the optical enantiomers of the diastereomeric henzo(a)pyrene 7,8-dioi-9,10-epoxides, Cancer Res 39 (1979) 67-71.
    [24] Y. Zhang, X. Wu, D. Guo, O. Rechkoblit, N.E. Geacintov and Z. Wang Two-step errorprone bypass of the (+)- and (-)-trans-anti-BPDE-N2-dG adducts by human DNA polymerases eta and kappa, Murat Res 510 (2002) 23-35.
    [25] O. Rechkoblit, Y. Zhang, D. Guo, Z. Wang, S. Amin, J. Krzeminsky, N. Louneva and N.E. Geaeintov trans-Lesion synthesis past bulky benzo[a]pyrene diol epoxide N2-dG and N6-dA lesions catalyzed by DNA bypass polymerases, J Biol Chem 277 (2002) 30488-30494.
    [26] B. Zhao, J. Wang, N.E. Geacintov and Z. Wang Poleta, Polzeta and Revl together are required for G to T transversion mutations induced by (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells, Nucleic Acids Res 34 (2006) 417-425.
    [27] C.J. Marshall, K.H. Vousden and D.H. Phillips Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, henzo(a)pyrene diol-epoxide, Nature 310(1984) 586-589.
    [28] D.R. Lloyd and P.C. Hanawalt p53-dependent global genomic repair of benzo[a]pyrene7,8-diol-9,10-epoxide adducts in human cells, Cancer Res 60 (2000) 517-521.
    [29] J. Li, M.S. Tang, B. Liu, X. Shi and C. Huang A critical role of PI-3K/Akt/JNKs pathway in benzo[a]pyrene diol-epoxide (B[a]PDE)-induced AP-l transactivation in mouse epidermal Cl41 cells, Oncogene 23 (2004) 3932-3944.
    [30] W. Ouyang, Q. Ma, J. Li, D. Zhang, J. Ding, Y. Huang, M.M. Xing and C. Huang Benzo[a] pyrene diol-epoxide (B[a]PDE) upregulates COX-2 expression through MAPKs/AP-1 and IKKbeta/NF-kappaB in mouse epidermal Cl41 cells, Mol Carcinog 46 (2007) 32-41.
    [31] Z. Liang, S.M. Lippman, A. Kawabe, Y. Shimada and X.C. Xu Identification of henzo(a) pyrene diol epoxide-binding DNA fragments using DNA immunoprecipitation technique, Cancer Res 63 (2003) 1470-1474.
    [32] A. Wang, J. Gu, K. Judson-Kremer, K.L. Powell, H. Mistry, P. Simhambhatla, C.M. Aldaz, S. Gaddis and M.C. MacLeod Response of human mammary epithelial cells to DNA damage induced by BPDE: involvement of novel regulatory pathways, Carcinogenesis 24(2003) 225-234.
    [33] Z. Gao, J. Jin, J. Yang and Y. Yu Zinc finger proteins and other transcription regulators as response proteins in benzo[a]pyrene exposed cells, Murat Res 550 (2004) 11-24.
    [34] G. Liu and Y. Yu Endoplasmic reticulum stress is involved in N-methyl-N'-nitro-N-nitrosoguanidine, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide and mitomycin-induced cellular response in FL cells, Chinese Journal of Pathophysiology Ⅰ (2006) 1-6.
    [35] A. Abbott A post-genomic challenge: learning to read patterns of protein synthesis, Nature 402 (1999) 715-720.
    [36] L. Anderson and J. Seilhamer A comparison of selected mRNA and protein abundances in human liver, Electrophoresis 18 (1997) 533-537.
    [37] R.G. Krishna and F. Wold Post-translational modification of proteins, Adv Enzymol Relat Areas Mol Biol 67 (1993) 265-298.
    [38] J.M. Pratt, J. Petty, Ⅰ. Riba-Garcia, D.H. Robertson, S.J. Gaskell, S.G Oliver and R.J. Beynon Dynamics of protein turnover, a missing dimension in proteomics, Mol Cell Proteomics 1 (2002)579-591.
    [39] D. Figeys Functional proteomics: mapping protein-protein interactions and pathways, Curr Opin Mol Ther 4 (2002) 210-215.
    [40] M. Fountoulakis Proteomics: current technologies and applications in neurological disorders and toxicology, Amino Acids 21 (2001) 363-381.
    [41] M. Barrier and P.E. Mirkes Proteomics in developmental toxicology, Reprod Toxicol 19(2005) 291-304.
    [42] L.R. Bandara and S. Kennedy Toxicoproteomics - a new preclinical tool, Drug Discov Today 7 (2002) 411-418.
    [43] S. Naaby-Hansen, M.D. Waterfield and R. Cramer Proteomics-post-genomic cartography to understand gene function, Trends Pharmacol Sci 22 (2001) 376-384.
    [44] A. Aitken Functional specificity in 14-3-3 isoform interactions through dimer formation and phnsphorylation. Chromosome location of mammalian isoforms and variants, Plant Mol Biol 50 (2002) 993-1010.
    [45] D.L. Darling, J. Yingling and A. Wynshaw-Boris Role of 14-3-3 proteins in eukaryotic signaling and development, Curr Top Dev Bio168 (2005) 281-315.
    [46] S. An, J. Chert, X. Chen, Y. Zhao and L. Liu [Gene expression differences between the anti-BPDE-transformed and normal cells by suppression subtractive hybridization], Wei Sheng Yan Jiu 33 (2004) 651-653.
    [47] H. Hermeking and A. Benzinger 14-3-3 proteins in cell cycle regulation, Semin Cancer Biol 16 (2006) 183-192.
    [48] H. Hermeking, C. Lengauer, K. Polyak, T.C. He, L. Zhang, S. Thiagalingam, K.W. Kinzler and B. Vogelstein 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression, Mol Cell 1(1997) 3-11.
    [49] A.T. Ferguson, E. Evron, C.B. Umbricht, T.K. Pandita, T.A. Chart, H. Hermeking, J.R. Marks, A.R. Lambers, P.A. Futreal, M.R. Stampfer and S. Sukumar High freqneney of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer, Proc Natl Acad Sci U S A 97 (2000) 6049-6054.
    [50] N. Iwata, H. Yamamoto, S. Sasaki, F. Itoh, H. Suzuki, T. Kikuchi, H. Kaneto, S. Iku, I. Ozeki, Y. Karino, T. Satoh, J. Toyota, M. Satoh, T. Endo and K. Imai Frequent hypermethylation of CpG islands and loss of expression of the 14-3-3 sigma gene in human hepatocellular carcinoma, Oncogene 19 (2000) 5298-5302.
    [51] M. Gasco, A. Sullivan, C. Repellin, L. Brooks, P.J. Farrell, J.A. Tidy, B. Duane, B. Gustersort, D.J. Evans and T. Crook Coincident inactivation of 14-3-3sigma and p16INK4a is an early event in vulval squamous neoplasia, Oncogene 21 (2002) 1876-1881.
    [52] M. Gasco, A.K. Bell, V. Heath, A. Sullivan, P. Smith, L. Hiller, I. Yulug, G. Numico, M. Merlano, P.J. Farrell, M. Tavassoli, B. Gusterson and T. Crook Epigenetic inactivation of 14-3-3 sigma in oral carcinoma: association with p16(INK4a) silencing and human papillomavirus negativity, Cancer Ras 62 (2002) 2072-2076.
    [53] Y. Yatabe, H. Osada, Tatematsu, T. Mitsudomi and T. Takahashi Decreased expression of 14-3-3sigma in neuroendocrine tumors is independent of origin and malignant potential, Oncogene 21 (2002) 8310-8319.
    [54] L. Cheng, C.X. Pan, X.J. Yang, A. Lopez-Beltran, G.T. MacLennan. H.Lin. Kuzel, V. Papavero, M. Tretiakova, K. Nigro, M.O. Koch and J.N. Eble Small cell carcinoma of the urinary bladder: a clinicopathologic analysis of 64 patients, Cancer 101 (2004) 957-962.
    [55] H. Suzuki, F. Itoh, M. Toyota, T. Kikuchi, H. Kakiuchi and K. Imai Inactivation of the 14-3-3 sigma gene is associated with 5' CpG island hypermethylation in human cancers, Cancer Res 60 (2000) 4353-4357.
    [56] C.B. Umbdcht, E. Evron, E. Gabrielson, A. Ferguson, J. Marks and S. Sukumar Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer, Oncogene 20 (2001) 3348-3353.
    [57] H. Osada, Y. Tatematsu, Y. Yatabe, T. Nakagawa, H. Konishi, T. Harano, E. Tezel, M. Takada and T. Takahashi Frequent and histological type-specific inactivation of 14-3-3 sigma in human lung cancers, Oncogene 21 (2002) 2418-2424.
    [58] H. Wakabayashi, M. Yano, N. Tachikawa, S. Oka, M. Maeda and H. Kido Increased concentrations of 14-3-3 epsilon, gamma and zeta isoforms in cetebrospinal fluid of AIDS patients with neuronal destruction, Clin Chim Acta 312 (2001) 97-105.
    [59] Z. Yu, B.N. Ford and B.W. Glickman Identification of genes responsive to BPDE treatment in HeLa cells using cDNA expression assays, Environ Mol Mutagen 36 (2000) 201-205.
    [60] N. Tommerup and H. Vissing Isolation and free mapping of 16 novel human zinc finger-encoding cDNAs identify putative candidate genes for developmental and malignant disorders, Genomics 27 (1995) 259-264.
    [61] M. Ladomery and G. Dellaire Multifunctional zinc finger proteins in development and disease, Ann Hum Genet 66 (2002) 331-342.
    [62] Y. Sun, H. Shao, Z. Li, J. Liu, L. Gao, X. Peng, Y. Meng and W. Li ZNF268, a novel kruppel-like zinc finger protein, is implicated in early human liver development, Int J Mol Meal 14 (2004) 971-975.
    [63] Y. Sun, D.M. Gou, H. Liu, X. Peng and W.X. Li The KRAB domain of zinc finger gene ZNF268: a potential transcriptional repressor, IUBMB Life 55 (2003) 127-131.
    [64] A.M. Krackhardt, M. Witzens, S. Harig, F.S. Hodi, A.J. Zauls, M. Chessia, P. Barrett and J.G Gribben Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX, Blood 100 (2002) 2123-2131.
    [65] M.J. Matunis, W.M. Michael and G. Dreyfuss Characterization and primary structure of the poly(C)-binding heterogeneous nuclear ribonucleoprotein complex K protein, Mol Cell Biol 12(1992) 164-171.
    [66] K. Bomsztyk, O. Denisenko and J. Ostrowski hnRNP K: one protein multiple processes, Bioessays 26 (2004) 629-638.
    [67] J. Ostrowski, I. Van Seuningen, R. Seger, C.T. Ranch, P.R. Sleath, B.A. McMullen and K. Bomsztyk Purification, cloning, and expression of a murine phosphoprotein that binds the kappa B motif in vitro identifies it as the homolog of the human heterogeneous nuclear ribonucleoprotein K protein. Description of a novel DNA-dependent phosphorylation process, J Biol Chem 269 (1994) 17626-17634.
    [68] E.F. Michelotti, G.A. Michelotti, A.I. Aronsohn and D. Levens Heterogeneous nuclear ribonucleoprotein K is a transcription factor, Mol Cell Biol 16 (1996) 2350-2360.
    [69] J. Ostrowski, Y. Kawata, D.S. Schullery, O.N. Denisenko and K. Bomsztyk Transient recruitment of the hnRNP K protein to inducibly transcribed gene loci, Nucleic Acids Res 31 (2003) 3954-3962.
    [70] S. Thakur, T. Nakamura, G. Calin, A. Russo, J.F. Tamburrino, M. Shimizu, G. Baldassarre, S. Battista, A. Fusco, R.P. Wassell, G. Dubois, H. Alder and C.M. Croce Regulation of BRCA 1 transcription by specific single-stranded DNA binding factors, Mol Cell Biol 23 (2003) 3774-3787.
    [71] M.H. Lee, S. Mori and P. Raychaudhuri trans-Activation by the hnRNP K protein involves an increase in RNA synthesis from the reporter genes, J Biol Chem 271 (1996) 3420-3427.
    [72] T. Tomonaga and D. Levens Heterogeneous nuclear ribonucleoprotein K is a DNA-binding transactivator, J Biol Chem 270 (1995) 4875-4881.
    [73] T. Tomonaga and D. Levens Activating transcription from single stranded DNA, Proc Natl Acad Sci U S A 93 (1996)5830-5835.
    [74] A. Moumen, P. Masterson, M.J. O'Connor and S.P. Jackson hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage, Cell 123 (2005) 1065-1078.
    [75] P. Joseph, Y.X. Lei, W.Z. Whong and T.M. Ong Oncogenic potential of mouse translation elongation factor-1 delta, a novel cadmium-responsive proto-oncogene, J Biol Chem 277(2002) 6131-6136.
    [76] K. Ogawa, T. Utsunomiya, K. Mimori, Y. Tanaka, F. Tanaka, H. Inoue, S. Murayama and M. Mori Clinical significance of elongation factor-1 delta mRNA expression in oesophageal carcinoma, Br J Cancer 91 (2004) 282-286.
    [77] Y. Liu,Q. Chen and J.T. Zhang Tumor suppressor gene 14-3-3sigma is down-regulated whereas the proto-oncogene translation elongation factor 1delta is up-regulated in non-small cell lung cancers as identified by proteomic profiling, J Proteome Res 3 (2004)728-735.
    [78] M. Jung, A.D. Kondratyev and A. Dritschilo Elongation factor 1 delta is enhanced following exposure to ionizing radiation, Cancer Res 54 (1994) 2541-2543.
    [79] E. Kolettas, M. Lymboura, K. Khazaie and Y. Luqmani Modulation of elongation factor-1 delta (EF-1 delta) expression by oncogenes in human epithelial cells, Anticancer Res 18(1998) 385-392.
    [80] S.J. An, J.K. Chen, L.L. Liu, Y.F. Zhao and X.M. Chen Over-expressed genes detected by suppression subtractive hybridization in carcinoma derived from transformed 16HBE cells induced by BPDE, Biomed Environ Sci 18 (2005) 302-306.
    [81] Y. Sun, X. Li, B. Wu, P. Sun and Z. Rao Crystallization and preliminary crystallographic analysis of human eukaryotic translation initiation factor 5A (eIF-SA), Protein Pept Lett 12(2005) 713-715.
    [82] C.A. Taylor, M. Senchyna, J. Flanagan, E.M. Joyce, D.O. Cliche, A.N. Boone, S. Culp-Stewart and J.E. Thompson Role of eIF5A in TNF-alpha-mediated apoptosis of lamina cribrosa cells, Invest Ophthalmol Vis Sci 45 (2004) 3568-3576.
    [83] M. Caraglia, M. Marra, G. G. Giuberti, A.M. D'Alessandro, A. Budillon, S. del Prete, A. Lentini, S. Beninati and A. Abbruzzese The role of eukaryotic initiation factor 5A in the control of cell proliferation and apoptosis, Amino Acids 20 (2001) 91-104.
    [84] A.L. Li, H.Y. Li, B.F. Jin, Q.N. Ye, T. Zhou, X.D. Yu, X. Pan, J.H. Man, K. He, M. Yu, M.R. Hu, J. Wang, S.C. Yang, B.F. Shen and X.M. Zhang A novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis, J Biol Chem 279 (2004) 49251-49258.
    [85] X. Shen, Y. Yang, W. Liu, M. Sun, J. Jiang, H. Zong and J. Gu Identification of the p28 subunit of eukaryotic initiation factor 3(elF3k) as a new interaction partner of cyclin D3, FEBS Lett 573 (2004) 139-146.
    [86] S. Karki, L.A. Ligon, J. DeSantis, M. Tokito and E.L. Holzbaur PLAC-24 is a cytoplasmic dynein-binding protein that is recruited to sites of cell-cell contact, Mol Biol Cell 13 (2002) 1722-1734.
    [87] N.N. Nupponen, K. Porkka, L. Kakkola, M. Tanner, K. Persson, A. Borg, J. Isola and T. Visakorpi Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer, Am J Pathol 154 (1999) 1777-1783.
    [88] O. Saramaki, N. Willi, O. Bratt, T.C. Gasser, P. Koivisto, N.N. Nupponen, L. Bubendorf and T. Visakorpi Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer, Am J Pathol 159 (2001) 2089-2094.
    [89] H. Okamoto, K. Yasui, C. Zhao, S. Arii and J. Inazawa PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas, Hepatology 38 (2003) 1242-1249.
    [90] K.J. Savinainen, M.A. Helenius, H.J. Lehtonen and T. Visakorpi Overexpression of EIF3S3 promotes cancer cell growth, Prostate 66 (2006) 1144-1150.
    [91] S. Ramaswamy, K.N. Ross, E.S. Lander and T.R. Golub A molecular signature of metastasis in primary solid tmnors, Nat Genet 33 (2003) 49-54.
    [92] Y.Z. Gu, J.B. Hogenesch and C.A. Bradfield The PAS superfamily: sensors of environmental and developmental signals, Annu Rev Pharmacol Toxicol 40 (2000) 519-561.
    [93] A. Poland, E. Glover and A.S. Kende Stereospecific, high affmity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase, J Biol Chem 251 (1976) 4936-4946.
    [94] C. Keshava, R.L. Divi, D.L. Whipkey, B.L. Frye, E. McCanlies, M. Kuo, M.C. Poirier and A. Weston Induction of CYP 1A1 and CYP 1B1 and formation of carcinogen-DNA adducts in normal human mammary epithelial cells treated with benzo[a]pyrene, Cancer Lett 221(2005) 213-224.
    [95] B.K. Meyer, M.G. Pray-Grant, J.P. Vanden Heuvel and G.H. Perdew Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity, Mol Cell Biol 18 (1998) 978-988.
    [96] E. Kashuba, V. Kashuba, K. Pokrovskaja, G. Klein and L. Szekely Epstein-Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with Hepatitis B virus X antigen, Oncogene 19 (2000) 1801-1806.
    [97] O. Vierimaa, M. Georgitsi, R. Lehtonen, P. Vahteristo, A. Kokko, A. Raitila, K. Tuppurainen, T.M. Ebeling, P.I. Salmela, R. Paschke, S. Gundogdu, E. De Menis, M.J. Makinen, V. Launonen, A. Karhu and L.A. Aaltonen Pituitary adenoma predisposition caused by germline mutations in the AIP gene, Science 312 (2006) 1225-1230.
    [98] F.C. Ramaekers and F.T. Bosman The cytoskeleton and disease, J Patbol 204 (2004) 351-354.
    [99] N.O. Ku, X. Zhou, D.M. Toivola and M.B. Omary The cytoskeleton of digestive epithelia in health and disease, Am J Physiol 277 (1999) G1105-1137.
    [100] E. Friedman, M. Verderame, S. Winawer and R. Pollack Actin cytoskeletal organization loss in the benign-to-malignant tumor transition in cultured human colonic epithelial cells, Cancer Res 44 (1984) 3040-3050.
    [101] A. Gomez-Mendikute, A. Etxeberria, I. Olabarrieta and M.P.Cajaraville Oxygen radicals production and actin filament disruption in bivalve haemocytes treated with benzo(a) pyrene, Mar Environ Res 54 (2002) 431-436.
    [102] K.Zatloukal, C. Stumptner, M. Lehner, H. Denk, H. Baribault, L.G. Eshkind and W.W. Franke Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies, Am J Pathol 156 (2000) 1263-1274.
    [103] N.O. Ku, J. Liao and M.B. Omary Apoptosis generates stable fragments of human type Ⅰ keratins, J Biol Chem 272 (1997) 33197-33203.
    [104] S.D. Lucas, B. Ek, L. Rask, J. Rastad, G. Akerstrom and C. Juhlin Aberrantly expressed cytokeratin 1, a tumor-associated autoantigen in papillary thyroid carcinoma, Int J Cancer 73 (1997) 171-177.
    [105] H. Clevers Wnt/beta-catenin signaling in development and disease, Cell 127 (2006)469-480.
    [106] S. Zolnierowicz Type 2A protein phosphatase, the complex regulator of numerous signaling pathways, Biochem Pharmaco160 (2000) 1225-1235.
    [107] M. Hart, J.P. Concordet, I. Lassot, I. Albert, R. del los Santos, H. Durand, C. Perret, B. Rubinfeld, F. Margottin, R. Benarous and P. Polakis The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell, Curr Biol 9 (1999) 207-210.
    [108] E. Latres, D.S. Chiaur and M. Pagano The human F box protein beta-Trcp associates with the Cull/Skp1 complex and regulates the stability of beta-catenin, Oncogene 18 (1999) 849-854.
    [109] C. Gilles, M. Polette, M. Mestdagt, B. Nawrocki-Raby, R Rugged, P. Birembaut and J.M. Foidart Transactivation of vimentin by beta-catenin in human breast cancer cells, Cancer Res 63 (2003) 2658-2664.
    [110] A. Ougolkov, B. Zhang, K. Yamashita, V. Bilim, M. Mai, S.Y. Fuchs and T. Minamoto Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer, J Natl Cancer Inst 96 (2004) 1161-1170.
    [111] A. Lin and M. Karin NF-kappaB in cancer: a marked target, Semin Cancer Biol 13 (2003) 107-114.
    [112] M.W. Wang, Y.M. Hsiao, C.J. Chen, J.P. Wang, W.C. Chan and J.L. Ko Benzo[a]pyrene diol epoxide up-regulates COX-2 expression through NF-kappaB in rat astrocytes, Toxicol Lett 151(2004) 345-355.
    [113] S.H. Lecker, A.L. Goldberg and W.E. Mitch Protein degradation by the ubiquitinproteasome pathway in normal and disease states, J Am Soc Nephrol 17 (2006) 1807-1819.
    [114] C.M. Pickart Ubiquitin enters the new millennium, Mol Cell 8(2001) 499-504.
    [115] M.J. Nam, J. Madoz-Gurpide, H. Wang, P. Lescure, C.E. Schmalbach, R. Zhao, D.E. Misek, R. Kuiek, D.E. Brenner and S.M. Hanash Molecular profiling of the immune response in colon cancer using protein mieroarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3, Proteomies 3 (2003) 2108-2115.
    [116] K. Hibi, W.H. Westra, M. Borges, S. Goodman, D. Sidransky and J. Jen PGP9.5 as a candidate tumor marker for non-small-cell lung cancer, Am J Pathol 155 (1999) 711-715.
    [117] E. Tezel, K. Hibi, T. Nagasaka and A. Nakao PGPg.5 as a prognostic factor in pancreatic cancer, Clin Cancer Res 6 (2000) 4764-4767.
    [118] L.J. Kurihara, T. Kikuchi, K. Wada and S.M. Tilghman Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia, Hum Mol Genet 10 (2001) 1963-1970.
    [119] E.M. Hol, D.F. Fischer, H. Ovaa and W. Scheper Ubiquitin proteasome system as a pharmacological target in neurodegeneration, Expert Rev Neurother 6 (2006) 1337-1347.
    [120] M.A. Wood, M.P. Kaplan, C.M. Brensinger, W. Guo and T. Abel Ubiquitin C-terminal hydrolase L3 (Uchl3) is involved in working memory, Hippocampus 15 (2005) 610-621.
    [121] A.L. Mah, G. Perry, M.A. Smith and M.J. Monteiro Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation, J Cell Biol 151 (2000)847-862.
    [122] L. Bertram, M. Hiltunen, M. Parkinson, M. Ingelsson, C. Lange, K. Ramasamy, K. Mullin, R. Menon, A.J. Sampson, M.Y. Hsiao, K.J. Elliott, G. Velicelebi, T. Moscarillo, B.T. Hyman, S.L. Wagner, K.D. Becker, D. Blacker and R.E. Tanzi Family-based association between Alzheimer's disease and variants in UBQLN1, N Engl J Med 352 (2005) 884-894.
    [123] H.S. Ko, T. Uehara and Y. Nomura Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmie reticulum in stress-induced apoptotie cell death, J Biol Chem277 (2002) 35386-35392.
    [124] A.V. Sorokin, A.A. Selyutina, M.A. Skabkin, S.G. Guryanov, I.V. Nazimov, C. Richard, J. Th'ng, J. Yau, P.H. Sorensen, L.P. Ovchinnikov and V. Evdokimova Proteasome-mediated cleavage of the Y-box-binding protein 1 is linked to DNA-damage stress response, Embo J 24 (2005) 3602-3612.
    [125] B. Vogelstein, D. Lane and A.J. Levine Surfing the p53 network, Nature 408 (2000)307-310.
    [126] J.A. Pietenpol, T. Tokino, S. Thiagalingam, W.S. el-Deiry, K.W. Kinzler and B. Vogelstein Sequence-specific transcriptional activation is essential for growth suppression by p53, Proc Natl Aead Sci U S A 91 (1994) 1998-2002.
    [127] R. Zhao, K. Gish, M. Murphy, Y. Yin, D. Notterman, W.H. Hoffman, E. Tom, D.H. Mack and A.J. Levine Analysis of p53-regulated gene expression patterns using oligonueleotide arrays, Genes Dev 14 (2000) 981-993.
    [128] C. Keshava, D. Whipkey and A. Weston Transcriptional signatures of environmentally relevant exposures in normal human mammary epithelial cells: benzo[a]pyrene, Cancer Lett 221 (2005) 201-211.
    [1] A. Gorg, W. Weiss and M.J. Dunn Current two-dimensional electrophoresis technology for proteomics, Proteomics 4 (2004) 3665-3685.
    [2] B. Herbert and P.G. Righetti A turning point in proteome analysis: sample prefractionation via multicompartment electrolyzers with isoelectric membranes, Electrophoresis 21 (2000) 3639-3648.
    [3] J.A. Westbrook, J.X. Yan, R. Wait, S.Y. Welson and M.J. Dunn Zooming-in on the proteome: very narrow-range immobilised pH gradients reveal more protein species and isoforms, Electrophoresis 22 (2001) 2865-2871.
    [4] G. Zhou, H. Li, D. DeCamp, S. Chen, H. Shu, Y. Gong, M. Flaig, J.W. Gillespie, N. Hu, P.R. Taylor, M.R. Emmert-Buck, L.A. Liotta, E.F. Petricoin, 3rd and Y. Zhao 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers, Mol Cell Proteomics 1 (2002) 117-124.
    [5] R. Aebersold and M. Mann Mass spectrometry-based proteomics, Nature 422 (2003)198-207.
    [6] E.T. Fung, G.L. Wright, Jr. and E.A. Dalmasso Proteomic strategies for biomarker identification: progress and challenges, Curr Opin Mol Ther 2 (2000) 643-650.
    [7] S.P. Gygi, B. Rist, S.A. Gerber, F. Turecek, M.H. Gelb and R. Aebersold Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat Biotechnol 17 (1999) 994-999.
    [8] R. Tonge, J. Shaw, B. Middleton, R. Rowlinson, S. Rayner, J. Young, F. Pognan, E. Hawkins, Ⅰ. Currie and M. Davison Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology, Proteomics 1 (2001) 377-396.
    [9] M.P. Washburn, D. Wolters and J.R. Yates, 3rd Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat Biotechnol 19 (2001) 242-247.
    [10] M. Muller, R. Gras, P.A. Binz, D.F. Hochstrasser and R.D. Appel Molecular scanner experiment with human plasma: improving protein identification by using intensity distributions of matching peptide masses, Proteomics 2 (2002) 1413-1425.
    [11] A. Moller, M. Soldan, U. Volker and E. Maser Two-dimensional gel electrophoresis: a powerful method to elucidate cellular responses to toxic compounds, Toxicology 160 (2001)129-138.
    [12] R. Ishimura, S. Ohsako, T. Kawakami, M. Sakaue, Y. Aoki and C. Tohyama Altered protein profile and possible hypoxia in the placenta of 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed rats, Toxicol Appl Pbarmacol 185 (2002) 197-206.
    [13] F.A. Witzmann, C.D. Fultz, R.A. Grant, L.S. Wright, S.E. Kornguth and F.L. Siegel Regional protein alterations in rat kidneys induced by lead exposure, Electrophoresis 20(1999) 943-951.
    [14] B. Benito, D. Wahl, N. Steudel, A. Cordier and S. Steiner Effects of cyclosporine A on the rat liver and kidney protein pattern, and the influence of vitamin E and C coadministration, Electrophoresis 16 (1995) 1273-1283.
    [15] S. Steiner, L. Aicher, J. Raymackers, L. Meheus, R. Esquer-Blasco, N.L. Anderson and A. Cordier Cyclosporine A decreases the protein level of the calcium-binding protein calbindin-D 28kDa in rat kidney, Biochem Pharmacol 51 (1996) 253-258.
    [16] M. Fratelli, H. Demol, M. Puype, S. Casagrande, I. Eberini, M. Salmona, V. Bonetto, M. Mengozzi, F. Duffieux, E. Miclet, A. Bachi, J. Vandekerckhove, E. Gianazza and P. Ghezzi Identification by redox proteomics of giutathionylated proteins in oxidatively stressed human T lymphocytes, Proc Natl Acad Sci U S A 99 (2002) 3505-3510.
    [17] M. Sethuraman, M.E. McComb, T. Heibeck, C.E. Costello and R.A. Cohen Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols, Mol Cell Proteomics 3 (2004) 273-278.
    [18] J. Jin, Z. Gao, L. Guo, J. Yang and Y. Yu Altered expression of zinc finger proteins, ADAMs, and integrin-related proteins following treatment of cultured human cells with a low concentration of N-methyl-N'-nitro-N-nitrosoguanidine, Environ Mol Mutagen 41 (2003) 344-352.
    [19] J. Jin, J. Yang, Z. Gao and Y. Yu Proteomic analysis of cellular responses to low concentration N-methyl-N'-nitro-N-nitrosoguanidine in human amnion FL cells, Environ Mol Mutagen 43 (2004) 93-99.
    [20] Z. Gao, J. Jin, J. Yang and Y. Yu Zinc finger proteins and other transcription regulators as response proteins in benzo[a]pyrene exposed cells, Murat Res 550 (2004) 11-24.
    [21] N. Kap-Soon, L. Do-Youn, C.J. Hak, W.A. Joo, E. Lee and K. Chan-Wha Protein biomarkers in the plasma of workers occupationally exposed to polycyclic aromatic hydrocarbons, Proteomics 4 (2004) 3505-3513.
    [22] C.C. Walker, K.A. Salinas, P.S. Harris, S.S. Wilkinson, J.D. Watts and M.J. Hemmer A proteomic (SELDI-TOF-MS) approach to estrogen agonist screening, Toxicol Sci 95 (2007) 74-81.
    [23] M. Wu, J. Shen, J. Zhan and Y. Yu dUTP Pyrophosphatase, its appearance in extracellular compartment may serve as a potential biomarker for N-methyl-N'-nitro-N-nitrosoguanidine exposure in mammalian cells, Proteomics 6 (2006) 3001-3007.
    [1] A.H. Conney, R.L. Chang, D.M. Jerina and S.J. Wei Studies on the metabolism of benzo[a] pyrene and dose-dependent differences in the mutagenic profile of its ultimate carcinogenic metabolite, Drug Metab Rev 26 (1994) 125-163.
    [2] H. Bartsch DNA adducts in human carcinogenesis: etiological relevance and structureactivity relationship, Mutat Res 340 (1996) 67-79.
    [3] S. Petruzzelli, A. Celi, N. Pulera, F. Baliva, G. Viegi, L. Carrozzi, G. Ciacchini, M. Bottai, F. Di Perle, P. Paoletti and C. Giuntini Serum antibodies to benzo(a)pyrene diol epoxide-DNA adducts in the general population: effects of air pollution, tobacco smoking, and family history of lung diseases, Cancer Res 58 (1998) 4122-4126.
    [4] R.M. Santella Application of new techniques for the detection of carcinogen adducts to human population monitoring, Mutat Res 205 (1988) 271-282.
    [5] S. Frank, T. Refiner, T. Ruppert and G. Scherer Determination of albumin adducts of (+)-anti-benzo[a]pyrene-diol-epoxide using an high-performance liquid chromatographic column switching technique for sample preparation and gas chromatography-mass spectrometry for the final detection, J C hromatogr B Biomed Sci A ppl 713 (1998) 331-337.
    [6] M.T. Zenzes, R. Bielecki and T.E. Reed Detection of benzo(a)pyrene diol epoxide-DNA addccts in sperm of men exposed to cigarette smoke, Fertil Steril 72 (1999) 330-335.
    [7] O. Pelkonen and D.W. Nebert Metabolism of polycyclic aromatic hydrocarbons: etiologic role in carcinogenesis, Pharmacol Rev 34 (1982) 189-222.
    [8] R. Shukla, T. Liu, N.E. Geacintov and E.L. Loechler The major, N2-dG adduct of(+)-anti-B[a]PDE shows a dramatically different mutagenic specificity (predominantly, G-> A) in a 5'-CGT-3' sequence context, Biochemistry 36 (1997) 10256-10261.
    [9] R. Xu, B. Mao, S. Amin and N.E. Geacintov Bending and circularization of site-specific and stereoisomeric carcinngen-DNA adducts, Biochemistry 37 (1998) 769-778.
    [10] O.V. Lavrukhin and R.S. Lloyd Mutagenic replication in a human cell extract of DNAs containing site-specific and stereospecific benzo(a)pyrene-7,8-dioi-9,10-epoxide DNA adducts placed on the leading and lagging strands, Cancer Res 58 (1998) 887-891.
    [11] M.F. Denissenko, A. Pao, G.P. Pfeifer and M. Tang Slow repair of bulky DNA adducts along the nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers, Oncogene 16 (1998) 1241-1247.
    [12] D.R. Lloyd and P.C. Hanawalt p53-dependent global genomic repair of benzo[a]pyrene-7,8-diol-9,10-epoxide adducts in human cells, Cancer Res 60 (2000) 517-521.
    [13] M. Rojas, I. Cascorbi, K. Alexandrov, E. Kriek, G. Auburtin, L. Mayer, A. Kopp-Schneider, I. Roots and H. Bartsch Modulation of benzo[a]pyrene diolepoxide-DNA adduct levels in human white blood cells by CYP1A1, GSTM1 and GSTT1 polymorphism, Carcinogenesis21 (2000) 35-41.
    [14] R.C. Gupta, M.V. Reddy and K. Randerath 32P-postlabeling analysis of non-radioactive aromatic carcinogen-DNA adducts, Carcinogenesis 3 (1982) 1081-1092.
    [15] R.A. Baan, M.J. Steenwinkel, S. van Asten, R. Roggeband and J.H..van Delft The use of benzo[a]pyrene diolepoxide-modified DNA standards for adduct quantification in 32P-postlabelling to assess exposure to polycyclic aromatic hydrocarbons: application in abiomonitoring study, Mutat Res 378 (1997) 41-50.
    [16] D. Tang, R.M. Santella, A.M. Blackwood, T.L. Young, J. Mayer, A. Jaretzki, S. Grantham, W.Y. Tsai and F.P. Perera A molecular epidemiological case-control study of lung cancer, Cancer Epidemiol Biomarkers Prev 4 (1995) 341-346.
    [17] C. Dickey, R.M. Santella, D. Harris, D. Tang, Y. Hsu, T. Cooper, T.L. Young and F.P. Perera Variability in PAH-DNA adduct measurements in peripheral mononuclear cells: implications for quantitative cancer risk assessment, RiskAnal 17 (1997) 649-656.
    [18] .L. Mumford, K. Williams, T.C. Wilcosky, R.B. Everson, T.L. Young and R.M. Santella A sensitive color ELISA for detecting polycyclic aromatic hydrocarbon-DNA adducts in human tissues, Murat Res 359 (1996) 171-177.
    [19] G. Motykiewicz, E. Malusecka, E. Grzybowska, M. Chorazy, Y.J. Zhang, F.P. Perera and R.M. Santella Immunohistochemical quantitation of polycyclic aromatic hydrocarbon-DNA adducts in human lymphocytes, Cancer Res 55 (1995) 1417-1422.
    [20] S. Pavanello, G. Gabbani, G. Mastrangelo, F. Brugnone, G. Maccacaro and E. Cionfero Influence of GSTMI genotypes on anti-BPDE-DNA adduct levels in mononuclear white blood cells of humans exposed to PAH, Int Arch Occup Environ Health 72 (1999) 238-246.
    [21] R. Shinozaki, S. Inoue and K.S. Choi Flow cytometric measurement of benzo[a]pyrenediol-epoxide-DNA adducts in normal human peripheral lymphecytes and cultured human lung cancer cells, Cytometry 31(1998) 300-306.
    [22] D.K. Manchester, A. Weston, J.S. Choi, G.E. Trivers, P.V. Fennessey, E. Quintana, P.B. Farmer, D.L. Mann and C.C. Harris Detection of benzo[a]pyrene diol epoxide-DNA adducts in human placenta, Proc Natl Acad Sci U S A 85 (1988) 9243-9247.
    [23] K. Alexandrov, M. Rojas, O. Geneste, M. Castegnaro, A.M. Camus, S. Petruzzelli, C. Giuntini and H. Bartsch An improved fluorometric assay for dosimetry of benzo(a)pyrene diol-epoxide-DNA adducts in smokers' lung: comparisons with total bulky adducts and aryl hydrocarbon hydroxylase activity, Cancer Res 52 (1992) 6248-6253.
    [24] R. Pastorelli, M. Guanci, A. Cerri, E. Negri, C. La Vecchia, F. Fumagalli, M. Mezzetti, R. Cappelli, T. Panigalli, R. Fanelli and L. Airoldi Impact of inherited polymorphisms in glutathione S-transferase Ml, microsomal epoxide hydrolase, cytochrome P450 enzymes on DNA, and blood protein adducts of benzo(a)pyrene-diolepoxide, Cancer Epidemiol Biomarkers Prey 7 (1998) 703-709.
    [25] C.C. Ozbal, P.L. Skipper, M.C. Yu, S.J. London, R.R. Dasari and S.R. Tannenbaum Quantification of (7S,8R)-dihydroxy-(9R,10S)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene adducts in human serum albumin by laser-induced fluorescence: implications for the in vivo metabolism of benzo[a]pyrene, Cancer Epidemiol Biomarkers Prey 9 (2000) 733-739.
    [26] D.H. Phillips, P.B.Farmer, F.A. Beland, R.G.Nath, M.C. Poirier, M.V. Reddy and K.W. Turteltaub Methods of DNA adduct determination and their application to testing compounds for genotoxicity, Environ Mol Mutagen 35 (2000) 222-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700