用户名: 密码: 验证码:
基于D1蛋白酶结构的抑制剂先导化合物的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
D1蛋白酶(CtpA)是广泛存在于绿色植物叶绿素中的一种多肽加工酶。D1蛋白酶的功能是剪切D1蛋白前体(pD1)8~16个氨基酸延伸端,形成用于PSⅡ氧释放中心(OEC)锰簇原子组装的成熟D1蛋白(mD1)。现有研究表明,D1蛋白酶是绿色植物进行光合作用所必需,并且具有低含量,高同源性,分布广的特点,可以作为新型广谱高效除草剂的新型靶标。基于D1蛋白酶结构开展新型除草剂先导化合物的设计和合成,对于满足当前农业生产对高效低毒除草剂的需求和解决除草剂使用出现的越来越严重的抗性问题具有重要意义。
     目前仅仅有一篇D1蛋白酶抑制剂的研究报道,尚没有关于D1蛋白酶抑制剂的商业化品种。本文的前期工作在斜生栅藻D1蛋白酶晶体结构数据的基础上,同源模建高等植物菠菜D1蛋白酶的三维结构,通过虚拟筛选获得了多个系列的化合物作为D1蛋白酶抑制剂先导化合物的结构信息。本文通过合理设计和合成,得到四大类化合物合计90个,所有目标化合物经~1H NMR、MS验证,部分化合物同时经元素分析,~(13)C NMR验证,并获得了结构较为复杂的异嗯唑噻唑哌啶脲类部分代表性化合物的晶体,通过单晶X-射线衍射进一步确证了其分子结构。对全部化合物进行了活体生物活性测试,部分化合物进行了离体生物活性研究,初步确认了异噁唑噻唑哌啶脲化合物具有D1蛋白酶抑制剂先导化合物的特征,为进一步的研究奠定了良好的基础。本文具体内容如下:
     1、阐述了基于靶标大分子结构的农药研发策略,系统综述了D1蛋白酶及其抑制剂的研究现状,提出了本论文的研究思路和研究方案。
     2、利用1,3-偶极环加成形成异噁唑环,以酰胺键与赖氨酰脲连接,获得了异噁唑酰赖氨酰脲类目标化合物共21个(ILU 1~21)。采用平皿法测定了这些化合物对两种模式植物油菜和稗草的抑制活性,初步探讨了这个系列化合物的分子结构与生物活性的关系。研究发现,化合物脲端取代基不变,异噁唑苯基取代基邻对位都为氯时,化合物除草活性较高;异噁唑苯基取代基不变,脲端中含有杂环吗啡啉时,化合物具有比较好的生物活性。该骨架化合物中,改变脲基的取代基对化合物活性影响较大。
     3、利用β-二酮酯与羟胺环化得到异噁唑甲酸酯,酯氨解后,通过Lawesson试剂转化为硫酰胺,与卤代酮反应得到异噁唑噻唑甲酸酯,经过肼解,与相应的酰氯或异氰酸酯反应得到异噁唑基噻唑甲酰肼类目标化合物共14个(ITH 1~14)。活体生物活性测试表明,酰肼脲类化合物活性普遍优于比酰肼酰基类。该骨架部分化合物对油菜和稗草的除草活性表现出一定的选择性。该两类化合物溶解性都较差,需要进一步优化其结构来提高这类化合物的生物利用度。
     4、利用1,3-偶极环加成和Hansztch噻唑合成法得到异噁唑基噻唑基哌啶衍生物,与酰氯、异氰酸酯或异硫氰酸酯反应,得到两类合计43个异噁唑基噻唑基哌啶基碳酰胺或硫代碳酰胺目标化合物(ITP 1~43)。第二类化合物为刚性结构的异噁唑并环己烷并噻唑的哌啶碳酰胺化合物。活体生物活性测试表明,第二类目标化合物的除草活性有普遍的提高。综合比较两类化合物的生物活性与结构的关系,可知在异噁唑苯环上有取代基时,苯环2,4位是比较重要的取代基引入位置,且氟原子的引入能提高化合物活性;在脲端,对氟苯基的引入能够改善化合物活性;异噁唑环及哌啶酰胺的结构可能是比较重要的结构单元。刚性六元环连接异噁唑和噻唑环也在一定程度上提高化合物对油菜的抑制率。
     5、利用咪唑啉三酮与胺偶联,亚胺基还原后与相应的酰氯反应得到5-氨基咪唑啉2,4-二酮类化合物共12个(H1~12)。活性测试显示,环上3位甲酰基取代的化合物活性优于苯基取代的化合物活性。环外5位NH上取代基变化对化合物活性有较大影响。咪唑啉-2,4-二酮环上3位和环外5位NH可能是重要的衍生位置。
     6、在实验室前期生物提纯天然菠菜D1蛋白酶和重组菠菜D1蛋白酶的工作基础上,利用HPLC技术,测定异噁唑噻唑哌啶类化合物ITP 16,ITP 21,ITP 22,ITP 26,ITP 29,ITP 42,ITP43对D1蛋白酶水解24肽的抑制作用,其中ITP21对D1蛋白酶的抑制常数K_i值为1.3μM,属竞争性抑制。利用表面等离子共振(SPR)技术测定了化合物ITP21与D1蛋白酶的抑制作用。数据显示,在0.1 mM浓度下,化合物对酶的抑制率为47%。经过两种离体活性方法的测定,初步确定了异噁唑噻唑类化合物的作用靶标为D1蛋白酶。
D1 protease(CtpA),a kind of C-terminal processing protease,widely exists in the chloroplast of green plants.It cleaves 8~16 amino acid residues of the precursor D1 protein(pD1) to form mature D1 protein(mD1),and this process is necessary for assembling the manganese cluster in the oxygen-evolving center of PSⅡ.Because of its necessary for the photosynthetic reaction in plants, low amount,high homology in organisms,D1 protease has been predicted to be an ideal herbicidal target.To meet the need of high-efficient and environment-friendly herbicides in modern agriculture and solve the problem of herbicidal resistance,it will possess great significance for rational design and synthesis of hit compounds targeting D1 protease.
     At present there is only one report concerning the D1 protease inhibitors,and there are no commercial inhibitors targeting D1 protease.In our previous work,the homology model of spinach D1 protease was built on the basis of the crystal structure of D1 protease from Scenedesmus obliquus. With the three-dimension structure of this spinach D1 protease model,virtual screening was performed by docking of small molecules from various compound libraries into the active site of the Dlprotease model and subsequent evaluating of the predicted bioactivities with scoring functions. Thus several types of hit compounds were identified.In this thesis,four series of compounds were rationally designed on the basis of the hit compounds for chemical synthesis,and total 90 compounds were synthesized.The molecular structures of all the target compounds were verified with ~1HNMR and MS,and some were also confirmed with ~(13)CNMR and elemental analysis.With X-ray crystallography,the complex structures of isoxazolythiazolyl piperidine derivatives were determined. The herbicidal activities of the target compounds were tested and showed moderate and good herbicidal efficacies.In order to validate the hit,some compounds were also tested their in vitro inhibition effects against the native or recombinant D1 protease with HPLC and SPR methodologies.
     This dissertation may be summarized as followings.
     1.This dissertation first made an investigation of the strategy for the structure-based design of pesticide.A systematic review was made on the research of D1 protease as the herbicidal target and progress on the inhibitors targeting D1 protease.The research strategies and plans were proposed for this dissertation.
     2.By taking use of the isoxazolecarboxylic acid formed via 1,3-dipolar cycloaddition followed by oxidation and the subsequent amidation withε-lysinylurea units,totally 21 compounds(ILU 1~21) were synthesized.The herbicidal efficacies of these compounds were tested against the growth rates of two model plants rape and barnyard grass.The structure-activity relationship was preliminarily discussed.Among these compounds,when the urea moieties were same,the compound with 2,4-dichloro substituent on the phenyl of isoxazole had better herbicidal activity.While when the isoxazole moieties had the same substituent,the urea moiety containing morpholine possessed better herbicidal efficacies.Changing the substituent of urea moiety will influence the biological activity of compounds to a great extent.
     3.Totally 21 compounds(ITH 1~14),namely isoxazolylthiazolecarbohydrazine derivatives, were rational designed and synthesized.The synthesis was accomplished via the subsequent formation of isoxazole ring,thiazole ring,and carbohydrazine.The isoxazole moieties were formed via the condensation of P-diketone ester and hydroxylamine,while the isoxazolylthiazolecarboxylic esters were formed via amidation and thiolation with the Lawesson's reagent and subsequent condensation with 2-chloroacetoacetic ester(Hansztch reaction).The isoxazolylthiazolecarboxylic esters were subjected to react with hydrazines followed by acylation or aminocarbohydrazine,and finally the isoxazolylthiazolecarbohydrazine derivatives were obtained.Biological test showed that the title compounds with urea moieties possessed better activities.Some compounds show good biological selectivity.However,since the water solubilities of these compounds were relatively low and the redesign is necessary for these compounds to improve their bioavailability.
     4.With the use of 1,3-dipolar cycloaddition and Hansztch reaction as like as the procedures mentioned above,the 4-isoxazolylthiazolylpiperidines as intermediates were obtained.The piperidine moieties in these intermediates were subjected to react with acyl chlorides,isocyantes or isothiocyanate to afford two classes of target compounds,totally 43 compounds(ITP 1~43).The second class of compounds possesses an isoxazolocyclohexanothiazole rigid moiety,which was expected to endow these compounds with higher bioactivities,and the bioassays demonstrated this expectation.The structure-activity relationship shows that the ortho- and para- position of phenyl on the isoxazole ring are important and the fluorine atom located at the ortho-position will promote the bioactivity of compounds;The p-F phenyl possessing the urea motiey alsohas the same effect.The isoxazole and piperidine moieties should be important units of the compounds,and the rigid cyclohexanyl connecting the isoxazole and thiazole will increase the compounds inhibiting efficiency to the growth of rape.
     5.A series of 5-aminoimidazoline-2,4-dione derivatives were rationally designed and synthesized. The synthesis was accomplished via the coupling of triones with amine,followed by reduction of the imine group and acylations with acyl chlorides.Thus totally twelve 5-aminoimidazoline-dione derivatives(H1~12) were obtained.The hydantoin with N-acyl aryl group had the better biological activities than N-aryl substituented compounds.The substitutents of 5-NH will influence the herbicidal activities of compounds.In order to get higher bioactivity of compounds the 3th position of the ring and the 5-NH will be important positions to vary different substituents.
     6.On the basis of our previous work for the isolation,purification and expression of spinach D1 protease,the isoxazolylthiazolyl piperidine carboxamides,ITP 16,ITP 21,ITP 22,ITP 26,ITP 29, ITP 42,ITP 43,were measured their in vitro inhibition efficacies against D1 protease by the HPLC method.One of these compounds,ITP 21,was demonstrated to possess an inhibitor constant(K_i) 1.3μM.The result showed the compound possessed effective inhibition to CtpA with a competitive inhibition.On the other hand,the inhibiting efficacy ratio of the compound ITP 21 was tested with the competitive strategy by surface plasmon resonance technology,and it was shown that this compound possessed an in vitro inhibition efficacy 47%at the concentration of 0.1 mM.All the results from the in vivo and in vitro tests show that the compounds containing isoxazolylthiazolyl piperidine carboxamides may be the potential compounds targeting D1 protease directly.
引文
[1]贺红武.华中师范大学学报(自然科学版).2005,39,83-84.
    [2]苏少泉.农药.1998,37,1-7.
    [3]Mallory-Smith C.A.Weed Technol,2003,17,605-619.
    [4]Wakabayashi,K.Pest Manag Sci.,2002,58,1149.
    [5]宋倩,梅向东,宁君,袁会珠.农药.2008,47,703-705.
    [6]张荣升.农药译丛.1999,1,60-61。
    [7]Heap,I.M.The occurrence of herbicide-resistant weeds worldwide,Pestici.Sci.,1999,51,235-243.
    [9]Daniell,H.;Datta,R.;Varma,S.;Gray,S.;Lee,S.B.Containment of herbicide resistance through genetic engineering of the chloroplast genome,Nature Biotechnology,1998,16,345-348.
    [10]Menendez,J.;Gonzalez-Gutierrez,J.;Prado,R.D.Characterisation of a triazine-resistant biotype of Bromus tectorwn found in Spain,Weed Research,2007,47,113-121.
    [11]李洪林,沈建华,罗小民,沈旭,朱维良,王希诚,陈凯先,蒋华良.生命科学.2005,17,125-131.
    [12]张一宾,张怿.世界农药新进展.化学工业出版社,2007,pp 141.
    [13]Mestres,J.Vitrual screening:a real screening complement to high-thoughput screening,Biochem.Soc.Trans.,2002,30,797-799.
    [14]Von Itzstein,M.;Wu,W.-Y.;Kok,G.B.;Pegg,M.S.;Dyason,J.C;Jin,B.;van Phan,T.;Smythe,M.L.;White,H.F..;Oliver,S.W.;Colman,P.M.;Varghese,J.N.;Ryan,D.M.et.al Rational design of potent sialidase-based inhibitors of influenza virus replication,Nature,1993,363,418-423.
    [15]Vangrevelinghe,E.;Zimmermann,K.;Schoepfer,J.;Portamann,R.;Fabbro,D.;Furet,P.Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking,J.Med.Chem.,2003,46,2656-2662.
    [16]Kracmer,O.;Hazemann,I.;Podjamy,A.D.;Klebe,G.Virtural screening for inhibitors of human aldose reductase,Protein:Struct.Funct.Bioinf.,2004,55,814-823.
    [17]Lyne,P.D.Structure-based virtual screening:an overview,Drug Discover Today,2002,7,1047-1055.
    [18]Halperin,I.;Ma,B.;Wolfson,H.;Nussinov,R.Principles of docking:an overview of search algorithms and a guide to scoring functions,Protein Struct.Funct.Genet.,2002,47,409-443.
    [19]徐筱杰,侯廷军,乔学斌,章威.计算机辅助药物分子设计,化学工业出版社,2004,pp 14.
    [20]杨华铮.农药分子设计,科学出版社,2003,pp 150-153.
    [21]Fonne-Pfister,R.;Chemla,P.;Ward,E.;Girardet,M.;Kreuz,K.E.;Honzatko,R.B.;Fromm,H.J.;Schar,H.-P.;Grutter,M.G;Cowan-Jacob,S.W.The mode of action and the structure of a herbicide in complex with its target:binding of activated hydantocidin to the feedback regulation site of adenylosuccinate synthetase,Proc.Natl.Acad.Sci.U.S.A.,1996,93,9431-9436.
    [22]Poland,B.W.;Fromm,H.J.;Honzatko,R.B.Crystal structures of adenylosuccinate synthetase form Escherichia coli complexed with GDP,IMP,Hadacidin,NO_3~-,and Mg~(2+),J.Mol.Biol.,1996,264,1013-1027.
    [23]Hanessian,S.;Lu,P.-P.;Sanceau,J.-Y.;Chemla,P.;Gohda,K.;Fonne-Pfister,R.;Prade,L.;Cowan-Jacob,S.W.An enzyme-bound bisubstrate hybrid inhibitor of adenylosuccinate synthetase,Angew.Chem.Int.Ed.,1999,38,3160-3162.
    [24]Personeni-Doucet,C;Bentley,P.D.;Fletcher,R.J.;Kinkaid,A.;Kryger,G;Pirard,B.;Taylor,A.;Taylor,R.;Talyor,J.;Viner,R.;Siman,I.;Sussman,J.L.;Greenblatt,H.M.;Lewis,T.A structure-based design approach to the development of novel,reversible AChE inhibitors,J.Med.Chem.,2001,44,3203-3215.
    [25]Sussman,J.L.;Harel,M;Frolow,F.;Oefher,C;Goldman,A.;Toker,L.;Silaman,I.Atomic structure of acetylcholinesterase from Torpedo Californica:a prototypic acetylcholine-binding protein,Science,1991,253,872-879.
    [26]Harel,M.;Schalk,I.;Ehret-Sabatier,L.;Bouet,F.;Goeldner,M.;Hirth,C;Axelsen,P.H.;Silman,I.;Sussman,J.L.Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase,Proc.Natl.Acad.Sci.U.S.A.,1993,90,9031-9035.
    [27]Harel,M.;Quinn,D.M.;Nair,H.K.;Silman,I.;Sussman,J.L.The X-ray structure of a transition state ananlog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase,J.Am.Chem.Soc,1996,118,2340-2346.
    [28]Chen,J.M.;Xu,S.L.;Wawrzak,Z.;Basarab,G.S.;Jordan,D.B.Structure-based design of potent inhibitors of Scytalone dehydratase:displacement of a water molecule from the active site,Biochem.,1998,37,17735-17744.
    [29]Lundqvist,T.;Rice,J.;Hodge,C.N.;Basarab,G S.;Pierce,J.;Lindqvist,Y.Crystal structure of scytalone dehydratase - a disease determinant of the rice pathogen,Magnaporthe grisea,Structure,1994,2,937-944.
    [30]肖勇军,王建国,刘幸海,李永红,李正名.高等学校化学学报,2007,28,1280-1282.
    [31]Cole,D.;Pallett,K.;Rodgers,M.Discovering new modes of action for herbicides and the impact of genomics,Pesticide Outlook,2000,12,223-229.
    [32]Ke,B.Photosynthesis:photobiochemistry and photobiophysics,Kluwer Academic,Dordrecht,2001.
    [33]Rogner,M.;Boekema,E.J.;Barber,J.How does photosystem 2 split water? The structural basis of efficient energy conversion,Trends Biochem.Sci.,1996,21,44-49.
    [34]Zouni,A.;Witt,H.-T.;Kern,J.;Fromme,P.;Krauss,N.;Saenger,W.;Orth,P.Crystal structure of photosystem Ⅱ from Synechococcus elongates at 3.8 A resolution,Nature,2001,409,739-743.
    [35]Kamiya,N.;Shen,J.-R.Crystal structure of oxygen-evolving photosystem Ⅱ from Thermosyne -chococcus vulcanus at 3.7 A resolution,Proc.Natl.Acad.Sci.U.S.A.,2003,700,98-103.
    [36]Biesiadka,J.;Loll,B.;Kern,J.;Irrgang,K.-D.;Zouni,A.Crystal structure of cyanobacterial photo- system Ⅱ at 3.2 A resolution:a closer look at the Mn-cluster,Phys.Chem.Chem.Phys.,2004,6,4733-4736.
    [37]Ferreira,K.N.;Iverson,T.M.;Maghlaoui,K.;Barber,J.;Iwata,S.Architecture of the photo-synthetic oxygen-evolving center,Science,2004,303,1831-1838.
    [38]Loll,B.;Kern,J.;Saenger,W.;Zouni,A.;Biesiadka,J.Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem Ⅱ,Nature,2005,438,1040-1044.
    [39]Guskov,A.;Kern,J.;Gabdulkhakov,A.;Broser,M.;Zouni,A.;Saenger,W.Cyanobacterial photosystem Ⅱ at 2.9 A resolution and the role of quinones,lipids,channels and chloride,Nature Struct.Mol.Biol,2009,16,334-342.
    [40]王镜岩,朱圣庚,徐长法.生物化学(第三版,上册).高等教育出版社,2002,351-373.
    [41]Grebanier,A.E.;Coen,D.M.;Rich,A.;Bogorad,L.Membrane proteins synthesized but not processed by isolated maize chloroplasts,J.Cell Biol.,1978,78,734-746.
    [42]Reisfeld,A.;Mattoo,A.K.;Edelman,M.Processing of a chloroplast-translated membrane protein in vivo:analysis of the rapidly synthesized 32000-dalton shield protein and its precursor in Spirodela Oligorrhiza,Eur.J.Biochem.,1982,124,125-129.
    [43]Minami,E.;Watanabe,A.Detection of a precursor polypeptide of the rapidly-synthesized 32000-dalton thylakoid protein in spinach chloroplasts,Plant Cell Physiol,1985,26,839-846.
    [44]Metz,J.G;Bishop,N.I.Identification of a chloroplast membrane polypeptide associated with the oxidizing side of photosystem Ⅱ by the use of select low-fluorescent mutants of Scenedesmus,Biochem.Biophys.Res.Commun.,1980,94,560-566.
    [45]Rutherford,A.W.;Seibert,M.;Metz,J.G.Characterisation of the low-fluorescent(LF1) mutant of Scenedesmus by EPR,Biochim.et Biophys.Acta - Bioenergetics,1988,932,171-176.
    [46]Diner,B.A.;Ries,D.F.;Cohen,B.N.;Metz,J.G.COOH-terminal processing of polypeptide D1of the photosystem Ⅱ reaction center of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving complex,J.Biol.Chem.,1988,263,8972-8980.
    [47]Marder,J.B.;Goloubinoff,P.;Edelman,M.Molecular architecture of the rapidly metabolized 32-kilodalton protein of photosystem Ⅱ:indications for COOH-terminal processing of a chloroplast membrane polypeptide,J.Biol.Chem.,1984,259,3900-3908.
    [48]Nixon,P.J.;Trost,J.T.;Diner,B.A.Role of the carboxy terminus of polypeptide D1 the assembly of a function water-oxidizing manganese cluster in photosystem Ⅱ of the cyanobacterium Synechocystis sp.PCC 6803:assembly requires a free carboxyl group at C-terminal position 344,Biochem.,1992,31,10859-10871.
    [49]Yamamoto,Y.;Satoh,K.Competitive inhibition analysis of the enzyme-substrate interaction in the carboxy-terminal processing of the precursor Dl protein of photosystem Ⅱ reaction center using substituted oligopeptide,FEBS Lett.,1998,430,261-265.
    [50]Taguchi,F.;Yamamoto,Y.;Inagaki,N.;Satoh,K.Recognition signal for the C-terminal process -ing protease of D1 precursor protein in the photosystem Ⅱ reaction centre:an analysis using synthetic oligopeptide,FEBS Lett.,1993,326,227-231.
    [51]Ivleva,N.B.;Shestakov,S.V.;Pakrasi,H.B.The carboxyl-terminal extension of the precursor D1 protein of photosystem Ⅱ is required for optimal photosynthetic performance of the cyanobacter -ium Synechocystis sp.PCC 6803,Plant PhysioL,2000,124,1403-1411.
    [52]Kuvikova,S.;Tichy,M.;Komenda,J.A role of the C-terminal extension of the photosystem ⅡD1 protein in sensitivity of the cyanobacterium Synechocystis PCC 6803 to photoinhibition,Photochem .Photobiol.Sci.,2005,4,1044-1048.
    [53]Mattoo,A.K.;Pick,U.;Hoffman-Falk,H.;Edelman,M.The rapidly metabolized 32000-dalton polypeptide of the chloroplast is the "proteinaceous shield" regulating photosystem Ⅱ electron transport and mediating diuron herbicide sensitivity,Proc.Natl.Acad.Sci.U.S.A.,1981,78,1572-1576.
    [54]Mattoo,A.K..;Marder,J.B.;Edelman,M.Dynamics of the photosystem Ⅱ reaction center,Cell,1989,56,241-246.
    [55]Eaglesham,A.R.J.;Ellis,R.J.Protein syntheisis in chloroplasts light-driven synthesis of membrane proteins by isolated pea chloroplasts,Biochim.Biophys.Acta,1974,335,396-407.
    [56]Bottomley,W.;Spencer,D.;Whitfeld,P.R.Protein synthesis in isolated chloroplast:comparison of light-driven and ATP-driven synthesis,Arch.Biochem.Biophys.,1974,164,106-117.
    [57]Satoh,K.Identification of the photosystem Ⅱ reaction centre:a personal story,Photosynth.Res.,2003,76,233-240.
    [58]Nixon,P.J.;Sarcina,M.;Diner,B.A.Photosystem Ⅱ:the light-driven water:plastoquinone oxidoreductase,Wydrzynski,T.J.,Satoh,K.(Eds.) Springer,Dordrecht,2005,pp.71-93.
    [59]Edelman,M.;Mattoo,A.K.Photoprotection,photoinhibition,gene regulation and environment,Demming-Adams,B.,Adams,WW,Mattoo,A.K.(Eds.),Springer,Dordrecht,2006,pp.23-38.
    [60]Nanba,O;Satoh,K.Isolation of a phototsystem Ⅱ reaction center consisting of D-1 and D-2polypeptides and cytochrome b-599,Proc.Natl.Acad.Sci.U.S.A.,1987,84,109-112.
    [61]Satoh,K.;Fujii,Y.;Aoshima,T.;Tado,T.,Immunological identification of the polypeptide bands in the SDS-poly acrylamide gel electrophoresis of photosystem II preparation,FEBS Lett.,1987,216,7-10.
    [62]Marder,J.B.;Chapman,D.J.;Telfer,A.;Nixon,P.J.;Barber,J.Identification of psbA and psbD gene products,D1 and D2,as reaction centre proteins of photosystem Ⅱ,Plant Mol.Biol,1987,9,325-333.
    [63]Kern,J.;Biesiadka,J.;Loll,B.;Saenger,W.;Zouni,A.Structure of the Mn4-Ca cluster as derive -ed from X-ray diffraction,Photosynth.Res.,2007,92,389-405.
    [64]Dasgupta,J.;Ananyev,G.M.;Dismukes,G.C.Photoassembly of the water-oxidizing complex in photosystem Ⅱ,Cooridinalion Chemistry Reviews,2008,252,347-360.
    [65]Bowyer,J.R.;Packer,J.C.L.,McCormack,B.A.;Whitelegge,J.P.;Robinson,C;Taylor,M.A.Carboxyl-terminal processing of the Dl protein and photoactivation of water-splitting in photosystem Ⅱ:partial purification and characterization of the processing enzyme from Scenedesmus obliquus and Pisum sativum,J.Biol.Chem.,1992,267,5424-5433.
    [66]Metz,J.G;Wong,J.;Bishop,N.I.Changes in electrophoretic mobility of a chloroplast membrane polypeptide associated with loss of the oxidizing side of photosystem Ⅱ in low fluorescent mutants of Scenedesmus,FEBS Lett.,1980,114,61-66.
    [67]Chu,H.-A.;Hillier,W.;Debus,R.J.Evidence that the C-Terminus of the Dl polypeptide of photosystem Ⅱ is ligated to the manganese ion that undergoes oxidation during the S1 to S2 transition:an isotope-edited FTIR study,Biochem.,2004,43,3152-3166.
    [68]Strickler,M.A.;Walker,L.ML;Hillier,W.;Debus,R.J.Evidence from biosynthetically incorp -orated Strontium and FTIR difference spectroscopy that the C-Terminus of the D1 polypeptide of photosystem Ⅱ does not ligate calcium,Biochem.,2005,44,8571-8577.
    [69]Fujita,S.;Inagaki,N.;Yamamoto,Y;Taguchi,F.;Matsumoto,A.;Satoh,K.Identification of the carboxyl-terminal processing protease for the D1 precursor protein of the photosystem Ⅱ reaction centre of spinach,Plant Cell Physiol.,1995,36,1169-1177.
    [70]Zak,E.;Norling,B.;Maitra,R.;Huang,F.;Andersson,B.;Pakrasi,H.B.The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes,Proc.Natl.Acad.Sci.U.S.A., 2001,98,13443-13448.
    [71]Silber,K.R.;Keiler,K.C;Sauer,R.T.Tsp:a tail-specific protease that selectively degrades proteins with nonpolar C termini,Proc.Natl.Acad.Sci.U.S.A.,1992,89,295-299.
    [72]Keiler,K.C;Sauer,R.T.Identification of active site residue of the Tsp protease,J.Biol.Chem.,1995,270,28864-28868.
    [73]Chaal,B.K.;Mould,R.M.;Barbrook,A.C;Gray,J.C;Howe,C.J.Characterization of a cDNA encoding the thylakoidal processing peptidase from Arabidopsis thaliama,implications for the origin and catalytic mechanism of the enzyme,J.Biol.Chem.,1998,273,689-692.
    [74]Paetzel,M.;Dalbey,R.E.;Strynadka,N.C.J.Crystal structure of a bacterial signal peptidase in complex with a p-lactam inhibitor,Nature,1998,396,186-190.
    [75]Paetzel,M.;Dalbey,R.E.Catalytic hydroxyl/amine dyads within serine proteases,Trends Biochem .Sci.,1997,22,28-31.
    [76]Trost,J.T.;Chishom,D.A.;Jordan,D.B.;Diner,B.A.The D1 C-terminal processing protease of photosystem Ⅱ from Scenedesmus obliquus,J.Biol.Chem.,1997,272,20348-20356.
    [77]Takahashi,M;Shiraishi,T.;Asada,K.COOH-terminal residues of D1 and the 44-kDa CPa-2 at spinach photosystem Ⅱ core complex,FEBS Lett.,1988,240,6-8.
    [78]Takahashi,Y.,Nakane,H.;Kojima,H.,Satoh,K.Chromatographic purification and determina -tion of the carboxyl-terminal sequences of photosystem Ⅱ reaction centre proteins,D1 and D2,Plant Cell Physiol,1990,31,273-280.
    [79]Takahashi,Y.;Utsumi,K.;Yamamoto,Y;Hatano,A.;Satoh,K.Genetic engineering of the processing site of D1 precursor protein of photosystem Ⅱ reaction center in Chlamydomonas reinhard -tii,Plant Cell Physiol,1996,37,161-168.
    [80]Taylor,M.A.;Packer,J.C.L.;Bowyer,J.R.Processing of the D1 polypeptide of the photo -system Ⅱ reaction centre and photoactivation of a low fluorescence mutant(LF-1) of Scenedesmus obliquus,FEBS Lett.,1988,237,229-233.
    [81]Inagaki,N.;Fujita,S.;Satoh,K.Solubilization and partial puricification of a thylakoidal enzyme of spinach involved in the processing of Dl protein,FEBS Lett,1989,246,218-222.
    [82]Inagaki,N.;Yamamoto,Y;Mori,H.;Satoh,K.Carboxyl-terminal processing protease for the D1precursor protein:cloning and sequencing of the spinach cDNA,Plant Mol.Biol.,1996,30,39-50.
    [83]von Heijne G Protein targeting signals,Curr.Opin.Cell Biol,1990,2,604-608.
    [84]Chia,C.P.;Arntzen,C.J.Evidence for two-step processing of nuclear-encoded chloroplast proteins during membrane assembly.J.Cell Biol,1986,103,725-731.
    [85]Hageman,J.;Robinson,C;Smeekens,S.;Weisbeek,P.A thylakoid processing protease is requir -ed for complete maturation of the lumen protein plastocyanin,Nature,1986,324,567-569.
    [86]Fabbri,B.J.;Duff,S.M.G.;Remsen,E.E.;Chen,Y.-C.S.;Anderson,J.C;Cajacob,C.A.The carboxyterminal processing protease of D1 protein:expression,purification and enzymology of the recombinant and native spinach proteins,Pest Manag.Sci.,2005,61,682-690.
    [87]Satoh,K..;Yamamoto,Y.The carboxyl-terminal processing of precursor Dl protein of the photosystem Ⅱ reaction center,Photosynth.Res.,2007,94,203-215.
    [88]Metz,J.G;Pakrasi,H.;Arntzen,C.J.;Siebert,M.Prog.Photosynth.Res.Proc.Int.Congr.Photosynth.7th,1987,4,679-682.
    [89]Roose,J.L.;Pakrasi,H.B.Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem Ⅱ,J.Biol.Chem.,2004,279,45417-45422.
    [90]Takahashi,Y;Nakane,H.;Kojima,H.;Satoh,K.Chromatographic purification and determination of the carboxy-terminal sequences of photosystem Ⅱ reaction center proteins,D1 and D2,Plant Cell Physiol,1990,31,273-380.
    [91]Svensson,B.;Vass,I.;Styring,S.Sequence analysis of the D1 and D2 reaction centre proteins of photosystem Ⅱ,Z.Naturforsch.,C:Biosci.,1991,46,765-766.
    [92]Satoh,K.in The photosynthetic Reaction Center.Deisenhofer,J.;Norris,J.R.(Eds.),Academic Press,New York,1993,Vol 1,pp 289-318.
    [93]Rogers,M.B.;Gilson,P.R.;Su,V.,Mcradden,G.I.;Keeling,P.J.The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans:evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts,Mol.Biol.Evol,2007,24,54-62.
    [94]Takishita,K.;Nakano,K.;Uchida,A.Preliminary phylogenetic analysis of plastid-encoded genes from an anomalously pigmented dinoflagellate Gymnodinium mikimotoi(Gymnodiniales,Dinophyta),Phycological Res.,1999,47,257-262.
    [95]Barbrook,A.C;Visram,S.;Douglas,A.E.;Howe,C.J.Molecular diversity of dinoflagellate symbionts of Cnidaria:the psbA minicircle of Symbiodinium,Protist,1999,157,159-171.
    [96]Liao,D.I.;Qian,J.;Chisholm,D.A.;Jordan,D.B.;Diner,B.A.Crystal structure of the photosystem Ⅱ D1 C-terminal processing protease,Nature Structural Biol,2000,7,749-753.
    [97]Inagaki,N.;Maitra,R.;Satoh,K.;Pakrasi,H.B.Amino acid residues that are critical for in vivo catalytic activity of CtpA,the carboxyl-terminal processing protease for the D1 protein of photosystm Ⅱ,J.Biol.Chem.,2001,276,30099-30105.
    [98]Inagaki,N.;Yamamoto,Y.;Satoh,K.A sequential two-step proteolytic process in the carboxyl -terminal truncation of precursor D1 protein in Synechocystis sp.PCC 6803,FEBS Lett.,2001,509,197-201.
    [99]Jansen,T.;Kanervo,E.;Aro,E.-M.;Maenpaa,P.Localisation and processing of the precursor form of photosystem Ⅱ protein D1 in Synechocystis 6803,J.Plant Physiol.,2002,159,1205-1211.
    [100]Tichy,M.;Lupinkova,L.;Sicora,C;Vass,I.;Kuvikova,S.;Prasil,O.;Komenda,J.Synec -hocystis 6803 mutants expressing distinct forms of the photosystem Ⅱ D1 protein from Synecho -coccus 7942:relationship between the psbA coding region and sensitivity to visible and UV-B radiation,Biochim.Biophys.Acta Bioenergetics,2003,1605,55-66.
    [101]Komenda,J.;Reisinger,V.;Miiller,B.C;Dobakova,M.;Granvogl,B.;Eichacker,L.A.Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem Ⅱ reaction center complex in Synechocystis PCC 6803,J.Biol.Chem.,2004,279,48620-48629.
    [102]Komenda,J.;Kuvikova,S.;Granvogl,B.;Eichacher,L.A.;Diner,B.A.;Nixon,P.J.Cleavage after residue AIa352 in the C-terminal extension is an early step in the maturation of the D1 subunit of photosystem Ⅱ in Synechocystis PCC 6803,Biochim.Biophys.Acta Bioenergetics,2007,1767,829-837.
    [103]Fujita,S.;Inagaki,N.;Ono,T.;Inoue,Y.;Satoh,K.Cleavage of a synthetic COOH-terminal oligopeptide of D1 precursor protein by a purified processing enzyme,FEBS Lett.,1989,255,1-4.
    [104]Taguchi,R;Yamamoto,Y;Satoh,K.Recognition of the structure around the site of cleavage by the carboxyl-terminal processing protease for D1 precursor protein of the photosystem Ⅱ reaction center,J.Biol.Chem.,1995,270,10711-10716.
    [105]Taguchi,R;Takahashi,Y.;Satoh,K.Viability of Chlamydomonas mutants with amino acid substitutions in the precursor D1 protein at the carboxyl-terminal processing site:an analysis by mixed-culture growth experiments,Plant Cell Physiol,1998,39,1324-1329.
    [106]Yamamoto,Y;Inagaki,N.;Satoh,K.Overexpression and characterization of carboxy-terminal processing protease for precursor D1 protein,regulation of enzyme-substrate interaction by molecular environments,J.Biol.Chem.,2001,276,7515-7525.
    [107]Pointing,C.P.Evidence for PDZ domains in bacteria,yeast,and plants,Protein Sci.,1997,6,464-468.
    [108]Kim,J.L.;Morgenstern,K.A.;Lin,C;Fox,T.;Dwyer,M.D.;Landro,J.A.;Chambers,S.P.;Markland,W.;Lepre,C.A.;O'Malley,E.T.;Harbeson,S.L.;Rice,C.M.;Murcko,M.A.;Caron,P.R.;Thomson,J.A.Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide,Cell,1996,87,343-355.
    [109]Anbudurai,P.R.;Mor,T.S.;Ohad,I.;Shestakov,S.V.;Pakrasi,H.B.The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem Ⅱ reaction center complex,Proc.Natl.Acad.Sci.U.S.A.,1994,91,8082-8086.
    [110]Chisholm,D.A.;Diner,B.A.;Hershey,H.P.;Tang,X.S.;Wang,S.J.;Trost,J.T.;Warren,P.V.WO 24934,1998.
    [111]Duff,S.M.G;Chen,Y.-C.S.;Fabbri,B.J.;Yalamanchili,G;Hamper,B.C;Walker,D.M.;Brookfield,F.A.;Boyd,E.A.;Ashton,M.R.;Yarnold,C.J.;Cajacob,C.A.The carboxyterminal processing protease of D1 protein:herbicidal activity of novel inhibitors of the recombinant and native spinach enzymes,Pestici.Biochem.Physiol,2007,88,1-13.
    [112]Al-Lazikani,B.;Jung,J.;Xiang,Z.;Honig,B.Protein structure prediction,Curr.Opin.Chem.Biol.,2001,5,51-56.
    [1]Gilchrist,T.L.Heterocyclic Chemistry,世界图书出版公司,Third Edition,1997,pp.328-335.
    [2]Kobinata,K.;Sekido,S.;Uramoto,M.;Ubukata,M.;Osada,H.;Yamaguchi,I.;Isono,K.Isoxazole-4-carboxylic acid as a metabolite of Streptomyces sp.and its herbicidal activity,Agric.Biol.Chem.,1991,55,1415-1416.
    [3]Yukinaga,H.;Ueyama,Y.;Ide,K.;Ishizuka,I.;Sumimoto,S.Herbicidal properties of new urea herbicide isuouron,In Proceeding of the 7~(th) Asian-Pacific Weed Science Society Conference,Sydney,Australia,1979.
    [4]Anderson,J.;Mcgregor,W.R.;Irvine,A.R.;Schafsma,A.W.;Glasgow,G.M.;Turnbull,G.C.Isoxaben:Canadian field research summary,In Proceeding of North Central Weed Sci.Soc.,1984,39,28.
    [5]Pieter,J.Coating compositions comprising busoxinone,WO 46683,1998.
    [6]郭胜.辽宁化工.2000,2,25-27.
    [7]Duke,S.O;Kenyon,W.H.;Paul R N.,FMC 57020 effects on chloroplast development in pitted morning glory(Ipomoealacunosa) cotyledons.Weed Sci,1985,33,786-794.
    [8]贺红武,李美强,黄刚良.农药.2000,39,4-7.
    [9]洪艳平,宋宝安,刘楠,颜贤仔,龙小艺.安徽农业科学,2006,34,281-288.
    [10]Pallett,K.E.;Cramp,S.M.;Little,J.P.;Veerasekaran,P.;Crudace,A.J.;Slater,A.E.Isoxaflutole:the background to its discovery and the basis of its herbicidal properties,Pest Manag.Sci.,2001,57,133-142.
    [11]Niel,J.;Hans,K.A.;Jens,C.Synthesis of 3-isoxazolols revisited.Diketene and(β-ketoesters as starting materials,Can.J.Chem.,1984,62,1940-1944.
    [12]Krogsgaard-Larsen,P.Synthesis and synthetic utility of 3-isoxazolols,Org.Prep.Proc.Int.,2001,33,515-564.
    [13]Guy,B.;Curt,W.Nitrile imines:From matrix characterization to stable compounds,Angew.Chem.Int.Ed.Engl.,1994,33,527-545.
    [14]Trond,V.H.;Peng,W.;Valery,V.F.One pot copper(Ⅰ)-catalyzed synthesis of 3,5-disubstituted isoxazoles,J.Org.Chem.,2005,70,7761-7764.
    [15]Scott,E.D.;Jeffrey,M.K.Synthesis of 3,4,5-trisubstituted isoxazoles via sequential[3+2]cycloaddition silicon-based cross-coupling reactions,J.Org.Chem.,2005,70,2839-2842.
    [16]Duff,S.M.G.;Chen,Y.-C.S.;Fabbri,B.J.;Yalamanchili,G.;Hamper,B.C.;Walker,D.M.; Brookfield,F.A.;Boya,E.A.;Ashton,M.R.;Yarnold,C.J.;Cajacob,C.A.The carboxyterminal processing protease of D1 protein:herbicidal activity of novel inhibitors of the recombinant and native spinach enzymes,Pestcide Biochem.Physiol.,2007,88,1-13.
    [17]Aicher,T.D.;Balkan,B.;Bell,P.A.;Brand,L.J.;Cheon,S.H.;Deems,R.O.;Fell,J.B.;Fillers,W.S.;Fraser,J.D.;Gao,J.-R;Knorr,D.C;Kahle,G.G;Leone,C.L.;Nadelson,J.;Simpson,R.;Smith,H.C.Substituted tetrahydropyrrolo[2,1-b]oxazol-5(6H)-ones and tetrahydropyrrolo[2,1-6]thiazol-5(6H)-ones as hypoglycemic agents,J.Med.Chem.,1998,41,4556-4566.
    [18]Luca,L.D.;Giacomelli,G.;Riu,A.Solid-phase synthesis of isoxazole-based amino acids:a new scaffold for molecular diversity,J.Org.Chem.,2001,66,6823-6825.
    [19]Nyitrai,J.;Nagyszekes,U.;Budapest,N.,Jozsef,E.WO 15541,1998.
    [20]王厚勇,刘方明,阎琴,郭群胜.有机化学.2005,25,75-80.
    [21]刘利军,雍建平,戴小军,贾炯,王西照,王建武.高等学校化学学报.2006,27,1669-1672.
    [22]Wiejak,S.;Masiukiewicz,E.;Rzeszotarska,B.Improved scalable syntheses of mono- and bisurethane derivatives of ornithine,Chem.Pharm.Bull.,2001,49,1189-1191.
    [23]Sigma-aldrich product,m.p.130-135 ℃.
    [24]Ayelet,N.;Yosi,B.;Eliezer,F.;Bilha,F.;Barry,A.W.;Abraham,N.Acetyl chloride-Methanol as a convenient reagent for:a) quantitative formation of amine hydrochlorides b) carboxylate ester formation c) mild removal of N-t-Boc-protective group,Syn.Commun.,1995,28,471-474.
    [25]Echert,H.;Forster,B.Triphosgene,a crystalline phosgene substitute,Angew.Chem.Int.Ed.Engl,1987,26,894-895.
    [26]Livius,C.Comment on "chemical safety.Safe handling of triphosgene[bis(trichloromethyl)carbonate]",Organic Process Research Development,1999,3,377-378.
    [27]Zhang,X.W.;Rodrigues,J.;Evans,L.;Hinkle,B.;Ballantyne,L.;Pena,M.Formation of urea dipeptides form carbonyldiimidazole:application toward the protease inhibitors GE 20372 and MAPI,J.Org.Chem.,1997,62,6420-6423.
    [28]James,S.N.;Noel,A.P.;Tram,M.N.;Glenn,N.,An improved method for the synthesis of enantiomerically pure amino acid ester isocyanates,J.Org.Chem.,1992,57,7364-7366.
    [29]James,S.N.;Darren,L.H.;Glenn,N.;Eric,M.S.;Tram,M.N.;Sheng-Lin,H.,Synthesis of peptide isocyanates and isothiocyanates,J.Org.Chem.,1996,61,3929-3934.
    [1]Bollag,D.M.;McQueney,P.A.;Zhu,J.;Hensens,O.;Koupal,L.;Leisch,J.;Geotz,M.;Lazarides,E.;Woods,C.M.Epothilones,a new class of microtubule-stabilizing agents with a taxol-like mechanism of action,Cancer Res.,1995,55,2325-2333.
    [2]张一宾,张怿.世界农药新进展.化学工业出版社,第一版,2007,pp.90
    [3]朱伟清,吴霞.世界农药.2003,25,
    [4]陈启辉.农药.2004,43,515-517.
    [5]i) Tietjen,K.G;Kluth,J.R;Andree,R.;Haug,M.;Lindig,M.;Mller,K.H.;Wroblowsky,H.J.;Trebst,A.The herbicide binding niche of photosystem Ⅱ-A model,Pestic.Sci.,1991,31,65-72;
    ii)Draber,W.;Tietjen,K.;Kluth,J.R;Trebst,A.Herbicides in photosynthesis research.Angew.Chem.Int.Ed.Engl.,1991,30,1621-1633.
    [6]Niedermann,H.;Gutheil,D.WO 27983,1994.
    [7]Brookes,R.R;Leafe,E.L.Structure and plant growth regulating activity of some 2-benzothiaol -yloxyacetic acids and 2-oxo-benzothiazolin-3-ylacetic acids,Nature(London),1963,198,589-590.
    [8]Shridhar,G.H.;Martin,D.M.Synthesis and herbicidal activity of 5-(haloalkyl)-substituted thiazolo [4,5-b]pyridine-3(2H)-acetic acid derivatives,J.Agric.Food Chem.,1993,41,2131 -2134.
    [9]Wang,Q.-M.;Li,H.;Li,Y.-H.;Huang,R.-Q.Synthesis and herbicidal activity of 2-cyano-3-(2-chlorothiazol-5-yl)methylaminoacrylates,J.Agric.Food Chem.,2004,52,1918-1022.
    [10]Franck,E.D.;Armelle,C.V.;Joanne,G R.;Stacy,N.A.;Stephen,O.D.;Mary,V.D.;John,J.B.;Jordan,K.Z.Amino- and urea-substituted thiazoles inhibit photosynthetic electron transfer,J.Agric.Food Chem.,2000,48,3698-3693.
    [11]Cecile,B.;Giovanni,R;Philippe,L.;Alois,H.;Hubert,B.Synthesis and photosynthetic inhibition activity of substituted 5-(bis-trifluoromethyl)methyl)-2-aminothiazoles,J.Fluorine Chem.,2006,127,1522-1527.
    [13]Roush,D.M.;Davis,S.G;Lutomski,K.A.US Patent 5073564,1991.
    [14]Dekeyser,M.A.;Mcphee,D.J.;Mcdonald,P.T.US Patent 5567723,1995.
    [15]Steven,R;Peter,R.M.WO 9406783,1994.
    [16]Sawada,Y.;Yanai,T.;Nakagawa,H.Synthesis and insecticidal activity of benzoheterocyclic analogues of N'-benzoyl-N-(t-butyl)benzohydrazide,Pest Manage.Sci.,2003,59,25-35.
    [17]Mahran,M.A.;El-nassry,S.M.R;Allam,S.R.Synthesis of some new benzothizole derivatives as potential antimicrobial and antiparasotic agents,Pharmazie,2003,58,527-530.
    [18]Qiao,Q.;So,S.-S.;Goodnow,R.A.Stereochemical control factors in the Hantzsch thiazole synthesis,:A Hammett substitution correlation analysis,Org.Lett.,2001,3,3655-3658.
    [19]Ikemoto,N.;Liu,J.C;Brands,K.M.J.;McNamara,J.M.;Reider,P.J.Practical routes to the triarylsulfonyl chloride intermediate of a β~3 adrenergic receptor agonist,Tetrahedron,2003,59,1317-1325.
    [20]Ochiai,M;Nishi,Y.;Hashimoto,S.;Tsuchimoto,Y.;Chen,D.-W.Synthesis of 2,4-disubstituted thiazole from(Z)-(2-acetoxyvinyl)phenyl-λ~3-iodanes:nucleophilic substituted of α-λ~3-iodanyl ketones with thioureas and thioamides,J.Org.Chem.,2003,68,7887-7888.
    [21]Gilchrist,T.L.Heterocyclic Chemistry,世界图书出版公司,third edition,320-322.
    [22]Freeman,F.;Kim,D.S.H.L.Reaction of aminopropanedinitrile 4-methylbenzenesulfonate (aminomalononitrile p-toluenesulfonate(tosylate)) with isothiocyanates,J.Org.Chem.,1991,56,4645-4648.
    [23]Pd催化:Lipshutz,B.H.;Frieman,B.;Birkedal,H.Scavenging and reclaiming phosphines associated with group 10 metal-mediated coupling,Org.Lett.,2004,6,2305-2308.
    [24]Cu 催化:Do,H.-Q.;Daugulis,O.Copper-catalyzed arylation of heterocycle C-H bonds,J.Am.Chem.Soc,2007,129,12404-12405.
    [25]Kaleta,Z.;Makowski,B.T.;Sos,T.;Dembinski,R.Thionation using fluorous Lawesson's reagent,Org.Lett,2006,8,1625-1628.
    [26]Lee,I.Y;Lee,J.Y;Lee,H.J.;Gong,Y.-D.Traceless solid-Phase synthesis of 2,4,5-trisubstituted thiazoles,Synlett.,2006,16,2483-2485.
    [27]Kazmaier,U.;Ackermann,S.A straightforward approach towards thiazoles and endothiopeptides via Ugi reaction,Org.Biomol.Chem.,2005,3,3184-3187.
    [28]Yavari,I.;Sayyed-Alangi,S.Z.;Hajinasiri,R.;Sajjadi-Ghotbabadi,H.A one-pot synthesis of functionalized ethyl 1,3-thiazole-5-carboxylates from thioamides or thioureas and 2-chloro-1,3-dicarbonyl compounds in an ionic liquid,Monatsh Chem.,2009,140,209-211.
    [29]Marvel,C.S.;Dreger,E.E.Ethyl acetopyruvate,Organic Syntheses,1941,Coll.Vol.1,p.238.
    [30]Thomsen,I.;Clausen,K.;Scheibye,S.;Lawesson,S.-O.Thiation with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide:N-methylthiopyrrolidone,Org.Syn.,1990,Coll vol 7,p 372.
    [31]Boehme,W.R.3-Methylcoumarone,Org.Syn.,1963,Coll vol 4,p590.
    [32]Guo,J.S.;Erickson,G.A.;Fitzgerald,R.N.;Matsuoka,R.T.;Rafferty,S.W.;Sharp,M.J.;Sickles,B.R.;Wisowaty,J.C.An efficient synthesis of a potent PPARpan agonist,J.Org.Chem.,2006,71,8302- 8305.
    [1]Gary,P.W.;Rejad,H.J.M.Thiazole carboxanilide fungicides:a new structure-activity relation -ship for suocinate dehydrogenase inhibitors,Pestic.Sci.,1993,38,1-7.
    [2]Liu,C.L.;Li,Z.M.;Zhang,B.Synthesis and biological activity of novel 2-methyl-4-trifluoro methyl-thiazole-5-carboxamide derivatives,J.Fluorine Chem.,2004,125,1287-1290.
    [3]Cramp,M.S.;Hawkins,D.W.;Geach,N.J.;Pearson,C.J.WO 35916,2000.
    [4]Hamper,B.C.;Leschinsky,K.L.;Massey,S.S.;Bell,C.L.;Brannigan,L.H.;Prosch,S.D.Synthesis and herbicidal activity of 3-aryl-5-(haloalkyl)-4-isoxazolecarboxamides and their derivatives,J.Agric.Food Chem.,1995,43,219-228.
    [5]Umesha,K.B.;Kumar,K.A.;Rai,K.M.L.A novel synthesis of isoxazoles via 1,3-dipolar cycloaddition of nitrile oxides to acetyl acetone,Syn.Commun.2002,32,1841-1845.
    [6]Tanemura,K.;Suzuki,T.;Nishida,Y.;Satsumabayashi,K.;Horaguchi,T.A mild and efficient procedure for α-bromination of ketones using N-bromosuccinimide catalysed by ammonium acetate,Chem.Commun.,2004,4,470-471.
    [7]Knox,P.;O'sullivan,M.;Lentfer,H.WO 058750,2004.
    [8]Krutoxlkova,A.;Kovac,J.Collect.Czech.Chem.Commun.1974,39,1892-1895.
    [9]Chiarino,D.;Grancini,G.;Frigeni,V.;Biasini,I.;Carenzi,A.N-(4-isoxazolylthiazol-2-yl)oxamic acid derivatives as potent orally active antianaphylactic agents,J.Med.Chem.1991,34,600-605.
    [10](a) Otte,M.T.EP Patent 1832585 Al,2006;
    (b) Otte,M.T EP Patent 1832586 A1,2006;
    (c)Knox,P.;Pappa,H.;Lam,W.WO 058751A1,2004;
    (d) Leban,J.;Baierl,M.;Mies,J.;Trentinaglia,V.;Rath,S.;Kronthaler,K.;Wolf,K.;Gotschlich,A.;Seifert,M.H.J.A novel class of potent NF-κB signaling inhibitors,Bioorg.Med.Chem.Lett.,2007,17,5858-5862;
    (e) Santora,V.J.;Covel,J.A.;Hayashi,R.;Webb,R.R.US Patent 0004263 Al,2008;
    (f) Guedat,P.;Collonges,F.;Dumas,H.;Ortholand,J.-Y.;Decerprit,J.;Barbanton,J.;Foster,R.J.;Kane,P.;Went,B.T US Patent 0054939A1,2007.
    [11]Br_2作为溴代试剂:(a) Garbisch,E.W.Cycloalk-2-enones and α,β,α',β'-Cycloalkadienones:A.Synthesis.B.on the direction of bromination of 2-substituted cycloalkanones and their ketals,J.Org.Chem.1965,30,2109-2120;
    (b) Dowd,P.;Kaufman,C.;Kaufman,P.beta.-Methylene-DL-asparagine,J.Org.Chem.1985,50,882-885;
    NBS作为溴代试剂:(a) Karimi,S.;Grohmann,K.G.;Todaro,L.Intramolecular ring-opening of cyclopropanones by enolate anions,J.Org.Chem.,1995,60,554-559;
    (b) Imanzadeh,G.K.; Zamanloo,M.R.;Eskandari,H.;Shayesteh,K.A new ring bromination method for aromatic compounds under solvent-free conditions with NBS/Al_2O_3,J.Chem.Res.,2006,151-153.(c) Jong,C.L.;Young,H.B.;Suk-Kyu,C.Efficient a-halogenation of carbonyl compounds by N-bromosuccinimide and N-chlorosuccinimde,J.Korean Chem.Soc,2003,24,407-408.
    [12]Bode,J.W.;Hachisu,Y.;Matsuura,T.;Suzuki,K.Facile constuction and divergent transformation of polycyclic isoxazoles:direct access to polyketide architectures,Org.Lett.,2003,5,391-394.
    [13]Aicher,T.D.;Balkan,B.;Bell,P.A.;Brand,L.J.;Cheon,S.H.;Deems,R.O.;Fell,J.B.;Fillers,W.S.;Fraser,J.D.;Gao,J.-P.;Knorr,D.C;Kahle,G G;Leone,C.L.;Nadelson,J.;Simpson,R.;Smith,H.C.Substituted tetrahydropyrrolo[2,1-b]oxazole-5(6H)-ones and tetrahydropyrrolo[2,1-b]thiazole-5(6H)-ones as hypoglycemic agents,J.Med.Chem.,1998,41,4556-4566.
    [1](a) Elokdah,H.;Sulkowski,T.S.;Gharbia,M.;Butera,J.A.;Chai,S.Y.;McFarlane,G.R.;McKean,M.L.;McKean,J.L.;Adelman,S.J.;Quinet,E.M.Design,synthesis,and biological evaluation of thio-containing compounds with serum HDL-cholesterol-elevating properties,J.Med.Chem.,2004,47,681-695;
    (b) Caterina,C.;Andrea,C.;Valentina,Z.;Alessio,L.;Fabrizio,B.;Pier,V.P.;Roberta,R.A.;Pier,G.P.;Marco,M.5-Benzylidene-hydantoin as new EGFR inhibitors with antiprolifer- active activity,Bioorg.Med.Chem.Lett.,2006,16,4021-4025;
    (c) Olivier,P;Siden,T.;Anne,V.;Emilie,B.;Marie-Aude,P.;Michael,J.M.;Helge,M.-B.;G(?)rard,J.Synthesis and structure-activity relationships of the first ferrocenyl-aryl-hydantoin derivatives of the nonsteroidal antiandrogen nilutamide.J.Med.Chem.,2008,51,1791-1799.
    [2]Haneishi,T.;Nakajima,M.;Torikata,T.;Okasaki,T.;Tohjigamori,T.M.;Kawakubo,K.EP Patent 0232572 A2,1987.
    [3]Hanessian,S.;Lu,P.-P.;Sanceau,J.-Y.;Chemla,P.;Gohda,K.;Fonne-Pfister,R.;Prade,L.;Cowan,J.S.W.An enzyme-bound bisubstrate hybrid inhibitor of adenylosuccinate synthetase,Angew.Chem.Int.Ed.,1999,38,3160-3162.
    [4](a) Hiromi,S.;Soji,S.Synthesis of(±)-carbocyclic analogue of spirohydantoin nucleoside,Tetrahedron,1995,51,4635-4646;
    (b) Hiromi,S.;Shigeru,M.;Naoto,T.;Soji,S.Stereocontrolled synthesis of spirosuccinimde derivatives of(+)-hydantocidin,Tetrahedron,1995,51,1387-1394;
    (c)Hiromi,S.;Soji,S.Synthesis of an optically active carbocyclic derivatives of(+)-hydantocidin,Tetrahedron Asymmetry;1995,6,1143-1150;
    (d) Masao,S.Synthesis of hydanto-cidin and C-2-thi -oxo-hydantocidin,Carbohydrate Res.,2001,335,147-150;
    (e) Masao,S.Synthesis of hydantocidin and C-2-thioxohydantocidin,Carbohydrate Res.,2002,337,2077-2088.
    [5]Barraclough,P.;Brockwell,M.;Caldwell,A.G.;Demane,D.A.;Hanis,C.J.;King,W.R.;Stepney,R.J.;Wharton,C.J.;Whittle,B.J.R.Synthesis and inhibitory activity on platelet aggregation of 13'-aza and other ω-chain modified BW245C analogues.Archiv der Pharmazie,1994,327,307-317.
    [6]Muccioli,G.G.;Poupaert,J.H.;Wouters,J.;Norberg,B.;Poppitz,W.;Scriba,G.K.E.;Lambert,D.M.A rapid and efficient microwave-assisted synthesis of hydantoins and thiohydantoins,Tetrahedron,,2003,59,1301-1307.
    [7]Jinho,L.;Jonghyun,K.;Jong S.K.;Hyun-Ho,C.;Kyoung-Hee,K.Hydantoin derivatives as non -peptideic inhibitors of Ras farnesyl transferase,Bioorg.Med.Chem.Lett.,2006,16,1954-1956.
    [8]Sarges,R.;Goldstein,S.W.;Welch,W.M.Spiro hydantoin aldose reductase inhibitors derived from 8-aza-4-chromanones,J.Med.Chem.,1990,33,1859-1865.
    [9]Smith,R.J.;Bmtovanov,S.;Bienz,S.Synthesis of silicon-containing a-amino acids and hydantoins.Tetrahedron,1997,55,13695-13702.
    [10]Evindar,G.;Batey,R.A.Peptide heterocycle conjugates:a diverted edman degradation protocol for the synthesis of N-terminal 2-iminohydantoins,Org.Lett.,2003,5,1201-1204.
    [11]Yimin,L.;Wei,Z.Fluorous parallel synthesis of a hydanton/ thiohydantoin library,Molecular Diversity,2005,9,91-98.
    [12]Zhang,D.;Xing,X.;Cuny,G.D.Enantiomerically pure hydantoins are prepared from optically pure a-amino amides utilizing triphosgene,J.Org.Chem.,2006,71,1750-1753.
    [13]Chong,P.Y.;Petillo,P.A.Solid phase hydantoin synthesis:an efficient and direct conversion of Fmoc-protected dipeptides to hydantoins,Tetrahedron Lett.,1999,40,2493-2496.
    [14]Paul,S.;Gupta,M.;Gupta,R.;Loupy,A.Microwave assisted synthesis of 1,5-disubstituted hydantoins and thiohydantoins in solvent-free conditions,Synthesis,2002,1,75-78.
    [15]Joseph,I.Parabanic acid,Org.Syn.,1963,Coll.Vol.4,744-747.
    [16]Ohta,S.;Tsuno,N.Total synthesis of a marine imidazole alkaloid,clathridine A.Tetrahedron Lett,2000,41,4623-4627.
    [17]Kurzer,F.Arylureas I.Cyanate method p-bromophenylurea,Org.Syn.,1963,Coll.Vol.4,p.49.
    [18]Ulrich,H.;Sayigh,A.A.R.The reaction of oxalyl chloride with substituted ureas and thioureas,J.Org.Chem.,1965,30,2781-2783.
    [19]Skof,M;Svete,J.;Stanovnik,B.Reactions of 5-substituted(S)-1-acyl-3-[(E)-(dimethylamino)-methylidene ]pyrrolidine-2-ones and(S)-3-[(E)-(dimethylamino)methylide]tetrahydrofuran-2-ones with amines.Preparatin of intermediate in the 'ring switching' synthesis of heteroarylalanine- and heteroaryllactic acid derivatives and their analogs,Acta Chim.Slov.,1999,46,567-586.
    [1]Duff,S.M.G;Chen,Y.-C.S.;Fabbri,B.J.;Yalamanchili,G;Hamper,B.C;Walker,D.M.;Brookfield,F.A.;Boya,E.A.;Ashton,M.R.;Yamold,C.J.;Cajacob,C.A.The carboxyterminal processing protease of D1 protein:herbicidal activity of novel inhibitors of the recombinant and native spinach enzymes,Pestcide Biochem.Physio.,2007,88,1-13.
    [2]Fabbri,B.;Duff,S.M.G;Remsen,E.E.;Chen,Y.-C.S.;Anderson,J.C;Cajacob,C.A.The carboxyterminal processing protease of Dl protein:expression,purification and enzymology of the recombinant and native spinach proteins,Pest Manag.Sci.,2005,61,682-690.
    [3]Arnell,R.;Ferraz,N.;Fornstedt,T.Analytical characterization of chiral drug-protein interactions:comparison between the optical biosensor(Surface Plasmon Resonance) assay and the HPLC perturbation method,Anal.Chem.,2006,78,1682-1689.
    [4]Lofas,S.Optimizing the hit-to-lead process using SPR analysis,Assay and Drug Development Technologies,2004,2,407-415.
    [5]Danelian,E.SPR biosensor studies of the direct interaction between 27 drugs and liposome surface:correlation with fraction absorbed in humans,J.Med.Chem.,2000,43,2083-3086.
    [6]黎江.D1蛋白酶的分离纯化及其与抑制剂先导化合物的相互作用,华中师范大学硕士论文,2008,p24.
    [7]Taguchi,F.;Yamamoto,Y;Inagaki,N.;Satoh,K.Recognition signal for the C-terminal processing protease of D 1 precursor protein in the photosystem Ⅱ reaction center An analysis using synthetic oligopeptides,FEBS Lett.,1993,326,227-231.
    [8]Taguchi,F.;Yamamoto,Y;Satoh,K.Recognition of the structure around the site of cleavage by the carboxyl-terminal processing protease for D1 precursor protein of the photosystem Ⅱ reaction center,J.Biol.Chem.,1995,270,10711-10716.
    [9]Yamamoto,Y.;Satoh,K.Competitive inhibition analysis of the enzyme-substrate interaction in the carboxy-terminal processing of the precursor D1 protein of photosystem Ⅱ reaction center using substituted oligopeptides.FEBS Lett.,1998,430,261-265.
    [10]佘守宪.导波光学物理基础.北方交通大学出版社,2002,99-111.
    [11]Kretschmann,E.The determination of the optical constants of metals by excitation of surface plasmons.Z.Physik,1971,241,313-324.
    [12]Salamon,Z.Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems Ⅰ:Theoretical principles.Biochem.Biophys. Acta,1997,1331,117-129.
    [13]Nylander,C;Liedberg,B;Lind T.Gas detection by means of surface plasmon resonance,Sensors and Actuators,1982,3,79-88.
    [14]吴世康,汪鹏飞.影像科学与光化学.2008,26,157-168.
    [15]黎江.D1蛋白酶的分离纯化及其与抑制剂先导化合物的相互作用,华中师范大学硕士论文,2008,p 32.
    [16]Dixon,M.The determination of enzyme inhibitor constants,Biochem.J.,1953,55,170-171.
    [17]Lofas,S.;Johnsson,B.A novel hydrogel matrix on gold surface in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,J.Chem.Soc.Chem.Commun.,1990,1526-1528.
    [18]陈丽华,苏忠民,王荣顺.分子科学学报.2004,20,44-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700