用户名: 密码: 验证码:
微生物发酵制备2,3-丁二醇及其双水相萃取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,3-丁二醇(2,3-Butanediol)是一种重要的化工原料和液体燃料,被广泛应用于化工、食品、医药、燃料及航空航天等多个领域,其生产方法主要为生物转化法。目前生物转化法生产2,3-丁二醇大多用葡萄糖作为碳源,而葡萄糖的价格较高,且存在与人争粮、与粮争地的问题。此外,由于2,3-丁二醇具有较强的亲水性和较高的沸点,且发酵液成分复杂,因而该产品下游分离比较困难。原料成本高、产品分离困难已经成为2,3-丁二醇大规模工业化生产的瓶颈。针对这些问题,本论文研究了生物转化法生产2,3-丁二醇的工艺,并采用新型双水相体系对发酵液中的2,3-丁二醇进行分离萃取,最后考察了利用廉价的非粮原料菊芋作为底物发酵2,3-丁二醇的可行性。
     首先,以Klebsiella pneumoniae DSM 2026为菌种,通过批式发酵实验,确定了生物转化法生产2,3-丁二醇的最适条件为:初始底物浓度8%,微氧发酵,通气量为0.04vvm,pH值为5.5。在该条件下进行批式流加发酵,可以获得目标产物浓度为42.60 g/L,生产强度为0.76g/(L·h),葡萄糖的质量转化率为23%。在此基础上,考察了微氧条件下K.pneumoniae DSM 2026在连续发酵中的动态行为,结果表明,较大程度地扰动底物浓度并不能诱发长周期振荡现象的产生,但却在底物浓度没有扰动情况下出现了CO_2短周期振荡现象,且仅当稀释速率在0.20~0.25 h~(-1)范围内才能出现这种振荡,振荡周期为9.3~15.0 min。
     其次,以K.pneumoniae CICC 10011为菌种,通过批式发酵实验,确定了生物转化法生产2,3-丁二醇的最适通气量为0.10 vvm,最适pH为5.8。在该条件下进行批式流加发酵,可以获得目标产物浓度为85.61 g/L,生产强度为1.53 g/(L·h),葡萄糖的质量转化率为45%。
     通过对批式流加发酵过程中两株克雷伯氏菌代谢流量的分析表明,K.pneumoniaeCICC 10011代谢产生的各种有机酸和乙醇浓度均明显低于K.pneumoniae DSM 2026,而目标产物浓度以及产物转化率却相对较高,是发酵2,3-丁二醇的优良菌株。
     再次,对新型双水相分离体系—异丙醇/硫酸铵体系从发酵液中萃取分离2,3-丁二醇进行了研究。结果表明,目标产物2,3-丁二醇和乙偶姻主要富集在上相中,而葡萄糖主要富集在下相中;当异丙醇和硫酸铵的质量浓度分别是34%和20%时,2,3-丁二醇和乙偶姻的分配系数分别为8.29和8.98,回收率分别达到91%和92%;采用该条件对发酵液直接进行萃取,细胞的去除率在99%以上,可溶性蛋白去除率可达85%。双水相萃取2,3-丁二醇除去了部分水和一些大分子物质,将固液分离和浓缩两步集成化,降低了后续蒸馏时的粘度,极大地简化了分离工艺。而且经过双水相萃取后所得的菌体,可以直接作为下一批发酵的种子继续使用。细胞循环发酵可以减少种子培养步骤,节约发酵时间。
     最后,探索了利用非粮廉价的菊芋为原料生物转化法生产2,3-丁二醇的可行性。通过摇瓶发酵实验考察了不同底物、不同水解方式以及微量元素对发酵的影响,结果表明,菊芋是良好的发酵生产2,3-丁二醇的底物,采用酸水解或酶水解两种方式制得的糖液发酵效果基本一致,菊芋中含有的微量元素完全能够满足发酵的需要,发酵过程中无需添加微量元素。在此基础上,在5L发酵罐中分别采用分步糖化发酵和同步糖化发酵两种工艺发酵生产2,3-丁二醇,结果表明,同步糖化发酵不但省去了单独糖化步骤,而且还提高了产物浓度和生产效率,采用批式流加发酵方式,发酵40 h,目标产物浓度和生产强度分别达到91.63 g/L和2.29g/(L·h)。与分步糖化发酵相比,发酵时间从56h缩短到40h,产物浓度提高了30%,生产强度提高了83%。实验结果表明以菊芋为原料发酵生产2,3-丁二醇具有一定的产业化前景。
2,3-Butanediol(2,3-BD) is one of important bulk chemicals and liquid fuels,which exhibits a wide range of potential utilizations in cosmetics,foods,medicines,as well as polymers.2,3-BD is mainly manufactured with microbial method by using glucose currently as the most common feedstock.While the fermentation of 2,3-butanediol from glucose takes high costs,moreover,it competes with grain supplies and takes up arable land.In addition,a major difficulty still exists in downstream processing because 2,3-BD has a high-boiling point and a high affinity with water.It is clear that a large-scale production of 2,3-BD will require low-cost raw materials and effective downstream process.In this paper,microbial production of 2,3-BD was performed by Klebsiella pneumoniae using glucose or Jerusalem artichoke tubers as carbon source.Additionally,a novel aqueous two-phase system(ATPS) for the recovery of 2,3-BD from fermentation broth was developed employing short chain alcohol/inorganic salt.
     Firstly,batch fermentation for 2,3-BD by K.pneumoniae DSM 2026 was investigated to obtain the optimized fermentative conditions.The results showed that the optimum conditions were 8%of initial glucose concentration,0.04 vvm of air flow,and pH 5.5.The final concentration of target products(2,3-BD and acetoin) in a fed-batch fermentation carried out under the optimized conditions was 42.60 g/L with a productivity of 0.76 g/L·h in 56 h, corresponding to 23%of yield from glucose.Continuous fermentations were carried out under micro-aerobic conditions.The dynamic behavior of fermentation was studied by a large perturbation of substrate concentration.The results showed that no long period oscillation was observed,but a short oscillatory behavior in CO_2 was occurred when dilution rate was between 0.20 and 0.25 h~(-1),and the period was about 9.3~15.0 minutes.
     Secondly,the optimum conditions for 2,3-BD production by K.pneumoniae CICC 10011 were investigated.The results showed that the optimum conditions for fermentation were 0.10 vvm of air flow,5.8 of pH value.The final concentration of target products (2,3-BD and acetoin) in a fed-batch fermentation carried out under the optimized conditions was 85.61 g/L with a productivity of 1.53 g/L.h in 56 h,corresponding to 45%of yield from glucose.
     Comparison of the metabolic flux distributions between K.pneumoniae CICC 10011 and DSM 2026 showed that the strain CICC 10011 produced less organic acids and ethanol,but more target products and more yield could be obtained than those of DSM 2026.Therefore,K. pneumoniae CICC 10011 is a potential strain for 2,3-BD production.
     Thirdly,a novel aqueous two-phase system for the recovery of 2,3-BD from fermentation broth was developed employing isopropanol/(NH_4)_2SO_4 system.The results showed that most of target products(2,3-BD and acetoin) can be partitioned efficiently into the top phase,while most of glucose can be partitioned into the bottom phase.The optimized system was composed of 34%(w/w) isopropanol and 20%(w/w)(NH_4)_2SO_4,yielding the partition coefficients of 8.29 and 8.98 for 2,3-BD and acetoin,respectively.The recoveries for 2,3-BD and acetoin were 91%and 92%,respectively.Aqueous two-phase extraction of 2,3-BD from real fermentation broth,the removal ratio of cells was above 99%,and the soluble proteins were about 85%in the top phase,which resulted in easy recovery of 2,3-BD from the top phase by vaporization because a viscous slurry was not formed by glucose,cells and soluble proteins at high temperature as in traditional separation methods.In addition,the cells recovered from the fermentation broth could be used as inoculum for further fermentation.Subsequent fed-batch fermentation eliminated the need for separately prepared inoculums,saving the cost and time of fermentation.
     Lastly,2,3-BD production from Jerusalem artichoke tubers was investigated by K. pneumoniae CICC 10011.Shake flask cultures were performed in order to study the effects of different carbon sources,different hydrolysis modes and trace elements on the fermentation of 2,3-BD.The results showed that Jerusalem artichoke was an excellent carbon source for the production of 2,3-BD.There was no distinct difference between enzyme hydrolysis and acid hydrolysis for the 2,3-BD fermentation.Moreover,no difference was observed between trace elements added and not added into the medium,which proved that the trace elements contained in Jerusalem artichoke tubers are sufficient for 2,3-BD production.On the basis of the results,separate hydrolysis and fermentation(SHF) and simultaneous saccharification and fermentation(SSF) were performed,respectively.The results showed that SSF process was preferable for high concentration and high efficiency of 2,3-BD production.Without considering hydrolysis(12 h in SHF) outside the bioreactor,fermentation time decreased from 56 h for SHF to 40 h for SSF.Regardless of the time for enzymatic hydrolysis,a remarkable increase in productivity for SSF was observed.For example,fed-batch SSF provides 30%higher concentration of target products and 83%higher productivity than fed-batch SHF.The results show that Jerusalem artichoke tuber is a potential material for industrial production of 2,3-BD.
引文
[1]Syu M J.Biological Production of 2,3-Butanediol[J].Applied Microbiology and Biotechnology,2001,55:10-18.
    [2]Garg S K,Jain A.Fermentative Production of 2,3-Butanediol:A Review[J].Bioresource Technology,1995,51:103-109.
    [3]秦加阳,肖梓军,张兆斌,等.一种简单的高产2,3-丁二醇发酵生产方法[J].生物加工过程,2005,3(4):71-73.
    [4]马成伟,杜彤,孙亚琴,等.生物转化法生产2,3-丁二醇的研究[J].精细与专用化学品,2006,114,(15):15-18.
    [5]Geckil H,Barak Z,Chipman D M,et al.Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene[J].Bioprocess and Biosystems Engineering,2004,26:325-330.
    [6]纪晓俊,黄和,杜军,等.3-羟基丁酮的合成及应用进展[J].现代化工,2008,28(4):18-22.
    [7]戎志梅.生物化工新产品与新技术开发指南[M].北京:化学工业出版社,2002.
    [8]王迪,王凡强,王建华.发酵法生产2,3-丁二醇[J].精细与专用化学品,2000,(7):20-21.
    [9]Yang C H,Li Y J,Wen T C.A mixture design approach to PEG-PPG-PTMG ternary polyol-based waterborne polyurethanes[J].Industrial & Engineering Chemistry Research,1997,36:1614-1621
    [10]绍雄,刘益军.聚氨酯树脂及其应用[M].化学工业出版社,2002.
    [11]Biomqvist K,Nikkola M,Lehtovaara P,et al.Characterization of the Genes of the 2,3-Butanediol Operons from Klebsiella terrigena and Enterobacter aerogenes[J].The Journal of Bacteriology,1993,175:1392-1404.
    [12]纪晓俊,朱建国,高振,等.微生物发酵法生产2,3-丁二醇的研究进展[J].现代化工,2006,26(8):23-27.
    [13]Ragauskas A J,Williams C K,Davison B H,et al.The path forward for biofuels and biomaterials[J].Science,2006,311(5760):484-498.
    [14]Magee R J,Kosaric N.The microbial production of 2,3-butanediol[J].Advances in Applied Microbiology,1987,32:89-161.
    [15]Biebl H,Zeng A P,Menzel K,et al.Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae[J].Applied Microbiology and Biotechnology,1998,50:24-29.
    [16]Ji X J,Huang H,Li S,et al.Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca[J].Biotechnology Letters,2008,30(4):761-734
    [17]杜军,纪晓俊,胡南,等.耐高糖高产2,3-丁二醇产酸克雷伯氏杆菌的选育[J].中国生物工程杂志,2008,28(6):89-92.
    [18]赵世敏,严群,阮文权,等.产2,3一丁二醇的产气肠杆菌株的诱变和筛选[J].食品发酵与工业,2008,34(3):25-28,32.
    [19]Saha B C,Bothast R J.Production of 2,3-butanediol by newly isolated Enterobacter cloacae[J].Applied Microbiology and Biotechnology,1999,52(3):321-326
    [20]Ma C Q,Wang A L,Qin J Y,et al.Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM[J].Applied Microbiology and Biotechnology,2009,82:49-57.
    [21]Blomqvist K,Nikkola M,Lehtovaara P,et al.Characterization of the Genes of the 2,3-Butanediol Operons from Klebsiella terrigena and Enterobacter aerogenes[J].Journal of Bacteriology,1993,175:1392-1404.
    [22]Peng W L,Yang Y S,Deng W L,et al.Identification and characterization of acoK:a regulatory gene of the Klebsiella acoABCD Operon[J].Journal of Bacteriology,1997,175:1497-1504.
    [23]Ui S,Okajima Y,Mimura A,et al.Sequence analysis of the gene for and characterization of D-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsieila pneumoniae expressed in Escherichia coli [J].Journal of Fermentation and Bioengineering,1997,83:32-37.
    [24]Ui S,Okajima Y,Mimura A,et al.Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol[J].Journal of Fermentation and Bioengineering,1997,84(3):185-189.
    [25]Ui S,Otagiri M,Mimura A,et al.Cloning,expression and nucleotide sequence of the L-2,3-butanediol dehydrogenase gene from Brevibacterium saccharolyticum C-1012[J].Journal of Fermentation and Bioengineering,1998,86:290-295.
    [26]Ui S,Takusagawa Y,Ohtsuki T,et al.Stereochemical applications of the expression of the L-2,3-butanediol dehydrogenase gene in Escherichia coli[J].Letters in applied Microbiology,2001,32:93-98.
    [27]Ui S,Takusagawa Y,Sato T,et al.Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli[J].Letters in applied Microbiology,2004,39(6):533-537.
    [28]Qureshi N,Cheryan M.Production of 2,3-butanediol by Klebsiella oxytoca[J].Applied Microbiology and Biotechnology,1989,30:440-443.
    [29]Qin J Y,Xiao Z J,Ma C Q,et al.Production of 2,3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate[J].The Chinese Journal of Chemical Engineering,2006,14(1):132-136.
    [30]Mas C D,Jansen N B,Tsao G T.Production of optically active 2,3-butanediol by Bacillus polymyxa [J].Biotechnology and Bioengineering,1988,31:366-337.
    [31]Olson B H,Johnson M J.The production of 2,3-butylene glycol by Aerobacter aerogenes[J].Journal of Bacteriology,1948,55:209-222.
    [32]Champluvier B,Cecalionne J,Rouxhet P G.Influence of sugar source(lactose,glucose,galactose) on 2,3-butanediol production by Klebsiella oxytoca NRRL-B199[J].Archivers of Microbiology,1989,152:411-414.
    [33]Lee H K,Maddox I S.Microbial production of 2,3-butanediol from whey permeate[J].Biotechnology Letters,1984,6(12):815-818.
    [34]Lee H K,Maddox I S.Continuous production of 2,3-butanediol from whey permeate using Klebsiella pneumoniae immobilized in calcium alginate[J].Enzyme and Microbial Technology,1986,8(7):409-411.
    [35]Martinez S B,Speckman R A.2,3-Butanediol production from hydrolyzed whey permeate by immobilized cells of Bacillus polymyxa[J].Applied Biochemistry and Biotechnology,1988,18:303-313.
    [36]Afschar A S,Bellgardt K H,Rossell C E,et al.The production of 2,3-butanediol by fermentation of high test molasses[J].Applied Microbiology and Biotechnology,1991,34(5):582-585.
    [37]Perego P,Converti A,Borghi A D,et al.2,3-Butanediol production by Enterobacter aerogenes:selection of the optimal conditions and application to food industry residues[J].Bioprocess Engineering,2000,23:613-620.
    [38]Marilia A,Berbert-Molina,Sunao S,et al.Ammonium phosphate as a sole nutritional supplement for the fermentative production of 2,3-butanediol from sugar cane juice[J].Naturforsch,2001,56:787-791.
    [39]Fages J,Mulard D,Rouquet J J,et al.2,3-Butanediol production from Jerusalem artichoke,Helianthus tuberosus,by Bacillus polymyxa ATCC 12321.Optimization of k_La profile[J].Applied Microbiology and Biotechnology,1986,25:197-202.
    [40]Yu E K C,Deschatelets L,Louis-Seize G,et al.Butanediol production from cellulose and hemicellulose by Klebsiella pneumoniae grown in sequential coculture with Trichoderma harzianum [J].Applied and Environmental Microbiology,1985,50(4):924-929.
    [41]Hespell R B.Fermentation of xylan,corn fiber,or sugars to acetoin and butanediol by Bacillus polymyxa Strains[J].Current Microbiology,1996,32:291-296.
    [42]Cao N,Xia Y,Gong C S,et al.Production of 2,3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulose[J].Applied Biochemistry and Biotechnology,1997,63/65:129-39.
    [43]Alam S,Capit F,Weigand W A,et al.Kinetics of 2,3-butanediol fermentation by Bacillus amyloliquefaciens:effect of initial substrate concentration and aeration[J].Journal of Chemical Technology & Biotechnology,1990,47(11):71-84.
    [44]Yu E K,Saddker J N.Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid[J].Applied and Environmental Microbiology,1982,44(4):777-784.
    [45]Yu E K,Saddker J N.Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations[J].Applied and Environmental Microbiology,1983,46(3):630-635.
    [46]张刚,杨光,李春,等.生物法生产2,3-丁二醇研究进展[J].中国生物工程杂志,2008,28(6):133-140.
    [47]Demas C,Jansen N B,Tsao G T.Production of optical active 2,3-butanediol by Bacillus polymyxa[J].Biotechnology and Bioengineering,1988,31(4):366-377.
    [48]Juni E,Heym G A.A cyclic pathway for the bacterial dissimilation of 2,3-butanediol,acetylmethylcarbibol,and diacetyl.I:General aspects of the 2,3-butanediol cycle[J].The Journal of Bacteriology,1956,71:425-432.
    [49]Zeng A P,Biebl H,Dechwer W D.Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture[J].Applied Microbiology and Biotechnology,1990,33(5):485-489.
    [50]Nakashimada Y,Kanai K,Nishio N.Optimization of dilution rate,pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chemostat culture[J].Biotechnology Letters,1998,20(12):1133-1138.
    [51]Jansen N B,Flickinger M C,Tsao G T.Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724[J].Biotechnology and Bioengineering,1984,26(4):362-369.
    [52]Mickelson M N,Werkman C H.Influence of pH on the dissimilation of glucose by Aerobacter indologenes[J].The Journal of Bacteriology,1938,36:67-76.
    [53]Perlman D.Production of 2,3-butylene glycol from wood hydrolyzates[J].Industrial and Engineering Chemistry Research,1944,36:803-804.
    [54]Voloch M,Jansen N B,Ladisch M R,et al.2,3-Butanediol.In:Industrial chemicals,biochemicals and fuels[M].Pergamon Press,Oxford,1985,pp.934-947.
    [55]Zeng A P,Byun T G,Possten C,et al.Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions[J].Biotechnology and Bioengineering,1994,44:1107-1114.
    [56]沈亚领,魏东芝,曹学,等.一种发酵生产2,3-丁二醇的方法:中国,200610027146.0[P].2007.05.31.
    [57]Beronio P B,Tsao G T.Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control[J].Biotechnology and Bioengineering,1993,42:1263-1269.
    [58]Ramachandran K B,Goma G.Effect of oxygen supply and dilution rate on the production of 2,3-butanediol in continuous bioreactor by Klebsiella pneumoniae[J].Enzyme and Microbial Technology,1987,9:107-111.
    [59]Zeng A P,Biebl H,Deckwer W D.2,3-Butanediol production by Enterobacter aerogenes in continuous culture:role of oxygen supply[J].Applied and Environmental Microbiology,1990,33(3):264-268.
    [60]Moes J,Griot M,Keller J,et.al.A microbial culture with oxygen-sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport[J].Biotechnology and Bioengineering,1985,27:482-489.
    [61]Ji X J,Huang H,Du J,et al.Dissolved oxygen control strategy for efficient fermentative production of 2,3-butanediol by Klebsiella oxytoca[J].Journal of Biotechnology,2008,136S:506-518.
    [62]马成伟,孙亚琴,修志龙.葡萄糖和木糖双底物生物转化生产2,3-丁二醇和氢气的代谢计量分析[J].生物加工过程,2004,4(3):44-49.
    [63]纪晓俊,黄和,李玲,等.2,3-丁二醇发酵过程中葡萄糖碳流分配数学模型[J].化学与生物过程,2007,24(2):32-36.
    [64]李元芳,徐勤,曹学,等.粘质沙雷氏菌产2,3-丁二醇培养基的优化[J].工业微生物,2007,37(3):24-28.
    [65]黄和,纪晓俊,李霜,等.外源添加因子促进微生物合成2,3-丁二醇的方法:中国,200710024498.5[P].2007.06.20.
    [66]Yu E K,Saddker J N.Power solvent production by Klebsiella pneumoniae grown on sugar present in wood hemicellulose[J].Biotechnology letters,1982,4:121-126.
    [67]Nakashimada Y,Marwoto B,Kashiwamura T,et al.Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa[J].Journal of Bioscience and Bioengineering,2000,90(6):661-664.
    [68]Eiteman M A,Miller J H.Effect of succinic acid on 2,3-butanediol production by Klebsiella oxytoca [J].Biotechnology letters,1995,17(10):1057-1062.
    [69]Qureshi N,Cheryan M.Effect of lactic acid on growth and butanediol production by Klebsiella oxytoca[J].Journal of Industrial Microbiology,1989,4:453-456.
    [70]Nilegaonkar S,Bhosale S B,Kshirsagar D C,et al.Production of 2,3-butanediol from glucose by Bacillus licheniformis[J].Word Journal of Microbiology and Biotechnology,1992,8(4):378-381.
    [71]Laube V M,Groleau D,Martin S M.2,3-butanediol production from xylose and other hemicellulosic components by Bacillus polymyxa[J].Biotechnology Letters,1984,6(4):257-262.
    [72]Laube V M,Groleau D,Martin S M.The effect of yeast extract on the fermentation of glucose to 2,3-butanediol by Bacillus polymyxa[J].Biotechnology Letters,1984,6(8):535-540.
    [73]Frazer F R,McCaskey T A.Effect of components of acid-hydrolysed hardwood on conversion of d-xylose to 2,3-butanediol by Klebsiella pneumoniae[J].Enzyme and Microbial Technology,1991,13:110-115.
    [74]Menzel K,Zeng A P,Biebl H,et al.Kinetic,dynamic,and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:I.The phenomena and characterization of oscillation and hysteresis[J].Biotechnology and Bioengineering,1996,52:549-560.
    [75]修志龙,曾安平.微生物细胞连续培养过程中振荡和混沌行为的研究进展[J].生物工程进展,1999,19(6):58-63.
    [76]Zeng A P,Menzel K,Deckwer W D.Kinetic,dynamic,and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅱ.Analysis of metabolic rates and pathways under oscillation and steady-state conditions[J].Biotechnoiogy and Bioengineering,1996,52:561-571.
    [77]Ahrens K,Menzel K,Zeng A P,et al.Kinetic,dynamic and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅲ.Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation[J].Biotechnology and Bioengineering,1998,59:544-552.
    [78]Menzel K,Ahrens K,Zeng A P,et al.Kinetic,dynamic and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅳ.Enzymes and fluxes of pyruvate metabolism[J].Biotechnology and Bioengineering,1998,60:617-626.
    [79]Zeng A P,Biebl H,Deckwer W D.Production of 2,3-butanediol in a membrane bioreactor with cell recycle[J].Applied Microbiology and Biotechnology,1991,34:463-468.
    [80]Ghosh S,Swaminathan T.Optimization of the phase system composition of aqueous two-phase system for extraction of 2,3-butanediol by theoretical formulation and using response surface methodology [J].Chemical and Biochemical Engineering,2004,18(3):263-271.
    [81]练敏,纪晓俊,胡南,等.气相色谱法快速测定产酸克雷伯氏杆菌发酵液中的代谢产物[J].分析实验室.2008,27:S19-S21.
    [82]牟英,王元好,修志龙,等.高效液相色谱法测定1,3-丙二醇发酵液中的有机酸[J].分析化学,2006,34:S183-S186.
    [83]杨光,郝健,李季伦.产酸克氏杆菌1,3-丙二醇发酵液中2,3-丁二醇的定性和定量分析[J].分析化学,2007,35:1039-1042.
    [84]Xiu Z L,Zeng A P.Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol[J].Applied Microbiology and Biotechnology,2008,78:917-926.
    [85]Jiang B,Li Z G,Dai J Y,et al.Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/phosphate system[J].Process Biochemistry,2009,44:112-117.
    [86]修志龙,李志刚,张江红,等.一种从发酵液中分离2,3-丁二醇的双水相萃取方法:中国, 200710010203.9[P].2007.01.24.
    [87]张江红,江波,李志刚,等.2,3-丁二醇发酵液的双水相萃取[J].过程工程学报,2008,8(5):897-990.
    [88]张江红,孙丽慧,修志龙.2,3-丁二醇发酵液的絮凝除菌与絮凝细胞的循环利用[J].过程工程学报,2008,8(4):779-783.
    [89]Wheat J A,Leslie J D,Tomkins R V,et al.Production and properties of 2,3-butanediol.ⅩⅩⅧ.Pilot plant recovery of levo-2,3-butanediol from whole wheat mashes fermented by Aerobacillus polymyxa [J].Canadian Journal of Forest Research,1948,26F:469-496.
    [90]Sun L H,Jiang B,Xiu Z L.Aqueous two-phase extraction of 2,3-butanediol from fermentation broths by isopropanol/ammonium sulfate system[J].Biotechnoiogy Letters,2009,31:371-376.
    [91]Othmer D F,Berger W S,Shlechter N,et al.Liquid-liquid extraction data:system used in butadiene manufacture from butylenes glycol[J].Industrial and Engineering Chemistry Research,1945,37:890-894.
    [92]Afschar A S,Vaz Rossell C E,Jonas R,et al.Microbial production and downstream processing of 2,3-butanediol[J].Journal of Biotechnology,1993,27:317-329.
    [93]Senkus M.Recovery of 2,3-butanediol produced by fermentation[J].Industrial and Engineering Chemistry Research,1946,38:913-916.
    [94]Qureshi N,Meagher M M,Hutjins R W.Recovery of 2,3-butanediol by vacuum membrane distillation [J].Separation Science and Technology,1994,29(13):1733-1748.
    [95]Shao P,Kumar A.Recovery of 2,3-butanediol from water by a solvent extraction and pervaporation separation scheme[J].Journal of Membrane Science,2009,329:160-168.
    [96]Ghosh S,Swaminathan T.Optmization of process variables for the extractive fermentation of 2,3-butanediol by Klebsiella oxytoca in aqueous two-phase system using response surface methodology[J].Chemical and Biochemical Engineering,2003,17:319-325.
    [97]Anvari M,Khayati G.In situ recovery of 2,3-butanediol from fermentation by liquid-liquid extraction [J].Journal of Industrial Microbiology and Biotechnology,2009,36:313-317.
    [98]刘茉娥,陈欢林.新型分离技术基础:第2版[M].浙江:浙江大学出版社,1999.
    [99]张宏康.双水相萃取技术及其在食品与发酵工业中的应用[J].粮油食品科技,2001,9(2):17-19.
    [100]Benavides J,Rito-Palomares M.Practical experiences from the development of aqueous two-phase processes for the recovery of high value biological products[J].Journal of Chemical Technology and Biotechnology,2008,83:133-142.
    [101]Aguilar O,Rito-Palomares M.Processing of soybean(Glycine max) extracts in aqueous two-phase systems as a first step for the potential recovery of recombinant proteins[J].Journal of Chemical Technology and Biotechnology,2008,83:286-293.
    [102]林东强,朱自强,姚善泾.生物分离过程的新探索-双水相分配与相关技术的集成化[J].化工学报,2000,51(1):1-6.
    [103]刘波,王英锋,郭雪清.新型萃取分离技术在生物技术中的应用[J].首都师范大学学报,2005,26(2):49-53.
    [104]杨善升,陆文聪,包伯荣.双水相萃取技术及其应用[J].化学工程师,2004,103(4):37-38.
    [105]李伟,朱自强,梅乐和.双水相萃取技术在药物分离提纯中的应用[J].化工进展,1998,1:26-29.
    [106]董军芳,林金清,黄晓东.异丙醇-水-硫酸铵的溶解度和液-液相平衡[J].吉首大学学报,2003,24(1):83-85.
    [107]霍清,林强,赵玉娥.利用双水相乙醇-磷酸氢二钾体系萃取甘草有效成分的研究[J].精细化工,2002,19(2):65-67.
    [108]林金清,金春英,谭平华,等.亲水有机相-含盐水两相体系的形成机理与分相能力[J].应用化学,2005.22(11):1203-1207.
    [109]陆强,邓修.提取与分离天然产物中有效成分的新方法-双水相萃取技术[J].中成药,2000,22(9):653-655.
    [110]王志华,马会民,马泉莉,等.双水相萃取体系的研究[J].应用化学,2001,18(3):173-175.
    [111]Hasmann F A,Santos V C,Gurpilhares D B,et al.Aqueous two-phase extraction using thermoseparating copolymer:a new system for phenolic compounds removal from hemicellulosic hydrolysate[J].Journal of Chemical Technology and Biotechnology,2008,83:167-173.
    [112]谭平华,林金清,肖春妹,等.双水相萃取技术研究进展及应用[J].化工生产与技术,2003,10(1):19-23.
    [113]成坚.双水相体系萃取分离技术及其在生物技术中的应用[J].仲恺农业技术学院学报,2000,13(2):52-58.
    [114]黎四方,丁富新,袁乃驹.双水相电泳分离蛋白质的研究[J].生物工程学报,1996,12(1):87-90.
    [115]Rito-Palomares M,Middelberg A P J.Aqueous two-phase systems for the recovery of a recombinant viral coat protein from Escherochia coli[J].Journal of Chemical Technology and Biotechnoiogy,2002,77:1025-1029.
    [116]Patil G,Raghavarao K S M S.Aqueous two phase extraction for purification of C-phycocyanin[J].Biochemical Engineering Journal,2007,34:156-164.
    [117]Saravanan S,Rao J R,Murugesan T,et al.Recovery of value-added globular proteins from tannery wasterwaters using PEG-salt aqueous two-phase systems[J].Journal of Chemical Technology and Biotechnology,2006,81:1814-1819.
    [118]Gautam S,Simon L.Partitioning of β-glucosidase from Trichoderma reesei in poly(ethylene glycol)and potassium phosphate aqueous two-phase systems:Influence of pH and temperature[J].Biochemical Engineering Journal,2006,30:104-108.
    [119]Wu Y T,Pereira M,Venancio A,et ai.Separation of endo-polygalacturonase using aqueous two-phase partitioning[J].Journal of Chromatography A,2001,929:23-29.
    [120]Duarte S,Fortes A G,Prazeres D M,et al.Integration of plasmid DNA purification and molecular therapy agent prearation using aqueous two-phase systems[J].Journal of Biotechnology,2007,131:S6-S7.
    [121]Kepka C,Lemmens R,Vasi J,et al.Integrated process for purification of plasmid DNA using aqueous two-phase systems combined with membrane filtration and lid bead chromatography[J].Journal of Chromatography A,2004,1057:115-124.
    [122]Chang W J,Koo Y M.Recovery of β-galactosidase from E coli double lysogen using aqueous two-phase system[J].Biotechnology Techniques,1998,12:455-457.
    [123]朱自强,关怡新,李勉.双水相系统在抗生素提取和合成中的应用[J].化工学报,2001,52(12):1039-1048.
    [124]潘杰,李佐虎,秦德华.双水相技术在抗生素分离中的应用[J].生物工程进展,1999,19(2):48-60.
    [125]Wei D Z,Zhu J H,Cao X J.Enzymatic synthesis of cephalexin in aqueous two-phase systems[J].Biochemical Engineering Journal,2002,11:95-99.
    [126]董军芳,林金清,陈钦.双水相萃取技术在分离提纯生物物质中的应用[J].江西化工,2002,2:3-6.
    [127]侯卫东,杨国宇.双水相萃取系统用于禽卵黄抗体提纯的研究[J].畜牧兽医杂志,1998,17(1):7,19.
    [128]Porto,A L F,Lima-Filho,J L,Aires-Barros M R,et al.Extraction of recombinant cytochrome b sub(5)from disrupted Escherichia coli cells with an aqueous two-phase system in a continuous perforated rotating disc contactor[J].Biotechnology Techniques,1997,11(9):641-643.
    [129]Louwrier A.Model phase separations of proteins using aqueous/ethanol components[J].Biotechnology Techniques,1998,12(5):363-365.
    [130]林金清,董军芳,李夏兰.乙醇/硫酸铵双水相体系萃取甘草酸钾的研究[J].精细化工,2004,21(3):165-167,173.
    [131]王丰莉,孙小梅,李步海.亲水醇/盐-水双液相体系萃取赤霉素的研究[J].分析化学,2007,35(3):405-408.
    [132]高云涛,王伟.丙醇-硫酸铵双水相体系中萃取Au(Ⅲ)-氯化物-罗丹明B[J].化学研究与应用,2002,12(3):320-321.
    [133]罗英,李俊刚.菊芋的酶降解及其综合利用[J].四川师范大学学报,1999,12(6):22-25.
    [134]丁红梅,董全,谭晓琼.菊芋的综合利用及发展前景[J].四川食品与发酵,2006,42(5):5-8.
    [135]华艳艳,赵鑫,赵金,等.圆红冬孢酵母发酵菊芋块茎产油脂的研究[J].中国生物工程杂志,2007.27(10):59-63.
    [136]Mullin W J,Modlerh W,Famworth E R,et al.The macronutrient content of fractions from Jerusalem artichoke tubers(Helianthus tuberosus)[J].Food Chemistry,1994,51:263-269.
    [137]Sirisansaneeyakul S,Worawuthiyanan N,Vanichsdratana W,et al.Production of fructose from inulin using mixed inulinases from Aspergillus niger and Candida guilliermondii[J].World Journal of Microbiology and Biotechnology,2007,23:543-552.
    [138]Bajpai P K,Bajpai P.Cultivation and utilization of Jerusalem artichoke for ethanol,single cell protein,and high-fructose syrup production[J].Enzyme and Microbial Technology,1991,13(4):359-362.
    [139]Ge X Y,Zhang W G.A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers[J].Food Technology and Biotechnology,2005,43:241-246.
    [140]Szambelan K,Nowak J,Czarnecki Z.Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers [J].Biotechnology Letters,2004,26:845-848.
    [141]Koren D W,Duvnjak Z.Continuous production of fructose syrup and ethanol from hydrolysed Jerusalem artichoke juice[J].Journal of Industrial Microbiology,1991,7:131-136.
    [142]Barthomeuf C,Regerat F,Pourrat H.High-yield ethanol production from Jerusalem artichoke tubers [J].World Journal of Microbiology and Biotechnology,1991,7:490-493.
    [143]Nakamura T,Ogata Y,Hamada S,et al.Ethanol production from Jerusalem artichoke tubers by Aspergillus niger and Saccharomyces cerevisiae[J].Journal of Fermentation and Bioengineering,1996,81(6):564-566.
    [144]周正,曹海龙,朱豫等.菊芋替代玉米发酵生产乙醇的初步研究[J].西北农业科学,2008,17(4):297-301.
    [145]袁文杰,任剑刚,赵心清,等.一步法发酵菊芋生产乙醇[J].生物工程学报,2008,24(11):1931-1936.
    [146]华艳艳,赵宗保,刘波.一种微生物油脂的制备方法:中国,200610047225.8[P].2006.07.19.
    [147]Gao L M,Chi Z M,Sheng J,et al.Single-cell protein production from Jerusalem artichoke extract by a recently isolated marine yeast Cryptococcus aureus G7a and its nutritive analysis[J].Applied Microbiology Biotechnology,2007,77:825-832.
    [148]任玮,董晋军,郑璞,等.酶水解菊芋糖浆发酵生产琥珀酸的初步研究[J].工业微生物,2008,38(3):1-5.
    [149]董晋军,郑璞,倪晔,等.菊芋原料同步糖化发酵生产丁二酸[J].食品与生物技术学报.2008,27(5):1673-1689.
    [150]Marchal R,Blanchet D,Vandecasteele J P.Industrial optimization of acetone-butanol fermentation:a study of the utilization of Jerusalem artichokes[J].Applied Microbiology Biotechnology,1985,23:92-98.
    [151]Wei L Y,Wang J H,Zheng X D,et al.Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers[J].Jouranl of Food Engineering,2007,79:1087-1093.
    [152]赵志福,朱宏吉,于津津,等.菊粉生产新技术研究进展[J].化工进展,2008,27(10):1522-1525,1532.
    [153]胡嘉琦,高海兵,周明达.酸水解法从菊芋中提取果糖[J].广州化学,2007,32(3):46-50.
    [154]王建华,刘艳艳,姚斌等.高产菊粉酶酵母筛选、发酵和酶学性质研究[J].生物工程学报,2000,16(1):60-64.
    [155]Itoh H,Wada M,Honda Y,et al.Bioorganosolve pretreatment for simultaneous saccharification and fermentation of Beech Wood by Ethanolysis and White Rot Fungi[J].Journal of Biotechnology,2003,103:273-280.
    [156]Zhao X,Qu Y B,Gao P J.Acceleration of ethanol production from paper mill waste fiber by supplementation with β-glucosidase[J].Enzyme and Microbial Technology,1993,15:62-65.
    [157]Jeihanipour A,Taherazdeh M J.Ethanol production from cotton-based waste textiles[J].Bioresource Technology,2009,100(2):1007-1010.
    [158]Mishima D,Kuniki M,Sei K,et al.Ethanol production from candidate energy crops:water hyacinth (Eichhornia crassipes) and water lettuce(Pistia stratiotes L.)[J].Bioresource Technology,2008,99:2495-2500.
    [159]Ohgren K,Bura R,Lesnicki G,et al.A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover[J].Process Biochemistry,2007,42:834-839.
    [160]罗鹏,刘忠,杨传民,等.蒸汽爆破麦草同步糖化发酵转化乙醇的研究[J].化学工程,2007,35(12):42-45.
    [161]Nakasaki K,Adachi T.Effects of intermittent addition of cellulase for production of L-lactic acid from wastewater sludge by simultaneous saccharification and fermentation[J].Biotechnology and Bioengineering.2003,82:263-270.
    [162]Romani A,Yanez R,Garrote G,et al.SSF production of lactic acid from cellulosic biosludges[J].Bioresource Technology,2008,99:4247-4254.
    [163]Maas R H W,Bakker R R,Jansen M L A,et al.Lactic acid production from lime-treated wheat straw by Bacillus coagulans:neutralization of acid by fed-batch addition of alkaline substrate[J].Applied Microbiology Biotechnology,2008,78:751-758.
    [164]李冬敏,陈洪章.变温调控对汽爆秸秆发酵产氢的影响[J].生物质化学工程,2007,41(3):11-14。
    [165]Hommes F A.Oscillatory reductions of pyridine nucleotides during anaerobic glycolysis in brewer's yeast[J].Archives of Biochemistry and Biophysics,1964,108:36-46.
    [166]Richard P.The rhythm of yeast[J].FEMS Microbiology Reviews,2003,27:547-557.
    [167]Wolf J.Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations[J].Biophysical Journal,2000,78:1145-1153.
    [168]Zheng Z M,Xu Y Z,Liu H J,et al.Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae[J].Biotechnology and Bioengineering,2008,100(5):923-932.
    [169]Stormer F C.Evidence for induction of the 2,3-butanediol-forming enzymes in Aerobacter aerogenes [J].FEBS Letters,1968,2:36-38.
    [170]Larsen S H,Stormer F C.Diacetyl(acetoin) reductase from Aerobacter aerogenes kinetic mechanism and regulation by acetate of the reversible reduction of acetoin to 2,3-butanediol[J].European Journal of Biochemistry,1973,34:100-106.
    [171]Bradford M M.A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72:248-251.
    [172]马彬彬,张根林,徐小琳,等.甘油耐受菌klebsiella pneumonae XJPD-Li合成1,3-丙二醇的研究[J].食品发酵与工业,2008,34(3):37-39.
    [173]张婵婵,潘丽军,赵丹丹.细菌发酵产 L-乳酸优良菌株的选育[J].农产品加工,2006,7(10):23-26,43.
    [174]Miller G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Analytical Chemistry,1959,31(3):426-428.
    [175]Ewanick S M,Bum R,Saddler J N.Acid-catalyzed steam pretreatment of Lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol[J].Biotechnology and Bioengineering,2007,98:737-746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700