用户名: 密码: 验证码:
斑马鱼bok基因在性腺发育中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑马鱼的繁殖力强、胚胎透明,是发育生物学、分子生物学和遗传学方面研究中重要的模式生物。Bcl-2(B cell lymphoma/lewkmia-2)家族是决定真核细胞存活或凋亡的关键调控因子。bok (Bcl-2-related ovarian killer)是Bcl-2家族成员中的促凋亡成员,斑马鱼中含有bokl和bok2两种亚型。本研究通过使斑马鱼bok基因在性腺中特异表达,以确定bok在性腺发育中的功能。
     本研究以斑马鱼为实验材料,首先采用RT-PCR技术和荧光定量PCR技术检测bokl和bok2在斑马鱼不同组织器官、胚胎发育时期的表达模式。结果表明bokl除不能在斑马鱼的肝中表达在其他组织中均能检测到,如在眼、卵巢、精巢、脑、肠中表达量较高,在心、肾、脾也有表达;bok2在斑马鱼的卵巢、精巢、眼睛、肝中表达,且在眼睛和卵巢中表达量最高,而在其它的组织器官如脑、肠、心、脾、肾中均未检测到其表达。检测胚胎早期发育的不同时期,发现bokl在发育早期持续低水平低的表达;bok2从受精后即有较高水平的表达,一直持续到30%外包期,之后表达量降低,从90%外胞期表达量开始升高。荧光定量PCR检测。结果显示,未受精胚胎中bok2远高于bokl的表达。说明bok1、bok2都为母源性基因,除了在性腺中表达外还在其它组织中表达,推测这两个基因功能,除了影响性腺发育和配子发生,也对其它组织器官发育有作用。
     构建beta-actin-bokl-GFP-nanos和beta-actin-bok2-GFP-nanos重组质粒与tol2转座酶mRNA共同注射斑马鱼1细胞期受精卵,荧光显微镜观察发现得到除性腺特外其它组织也有绿色荧光的转基因鱼。得到P0代阳性转基因鱼,与野生鱼交配后得到转beta-actin-bok2-GFP-nanos的F1代饲养至性成熟,解剖F1代发现卵巢中较小的细胞有绿色荧光,而成熟的细胞没有荧光,并对卵巢进行冰冻切片观察,认为转基因鱼与野生鱼在在形态学上几乎没有差异。我们最后得到可育的转基因鱼,认为bok2的过表达对抑制性腺发育的作用不大。还需要进一步染色或凋亡分析来确定过表达bok的转基因鱼的性腺是否发生异常凋亡,或者利用特异性的启动子使bok特异在性腺中表达,进而深入确定bok的功能。
Zebrafish which has strong fertility, the embryo transparent and development speed, is an important model of molecular biology, developmental biology and genetics study. Members of the Bcl-2family are critical mediators of the delicate balance between survival and apoptosis in eucaryotic cells. Bcl-2family is a kind of very conservative protein, can be divided into three categories:anti-apoptotic Bcl-2family, pro-apoptosis Bax subfamily, and BH3-only the family. Bok (Bcl-2-related ovarian killer) is considered a pro-apoptotic member of the Bcl-2family, zebrafish contains bokl and bok2two subtype. In this study, we over-expression Bok in zebrafish, to understand the function of bok in the gonadal development, if we could get gonadal infertility of genetically modified fish,we can controlling genetically modified (GM) fish breeding and meet the standards of biological and environment safety for other GM species.
     The experimental materials is zebrafish, firstly,we use the RT-PCR technology and fluorescence quantitative PCR technology detection bokl and bok2expression in zebrafish different organs and embryonic development period of representation. The results show that bokl in zebrafish eyes, brain, intestine, ovarian, testis could detect the bokl mRNA high expressions; heart, kidney, and spleen also has weak expressed and no expression in liver; bok2expressions in zebrafish ovarian, testis, eyes, liver can be detected, and expression in the highest amount, and in other organs such as the brain, heart, spleen and kidney were not detected its expression. detection different early embryo developmental period, show that bokl in512cells begin to express, until90%epiboly it began to appear to high expression;after fertilization bok2has a high level of expression, after30%epiboly bok2expression reduction, until to90%epiboly the expression began to rise. Fluorescence quantitative PCR detection showed that in unfertilized embryo, bok2expression is much higher than bokl. Together, the bokl and bok2are maternal gene. bok mRNA expression is most abundant in the testis and ovaries, bok was, however, also readily detected in many additional organs. This indicates that bok may have a wider role rather than being limited to the godan developmet and form gamete.
     Then build beta-actin-bokl-GFP-nanos and beta-actin-bok2-GFP-nanos restructuring plasmid and with tol2mRNA co-injection zebrafish1-cell fertilized egg, fluorescence microscope observed that all the organs can detect green fluorescent, beta-actin promoter drive random integration. Get P0transgenic fish, mating with WT, feeding F1offspring to sexual maturity. Dissection the F1ovary, find that there is green fluorescence in the smaller cells, while not in the mature cells. Ovarian frozen sections observed that there was no morphology difference between the transgenic fish and wild fish. We need further study by staining, apoptosis analysis or using of specific gonad promoters to determine the function of the bok.
引文
[1]Zhu Z, L i G, He L, et al. Novel genen transfer into fertilized eggs of gold fish (Carassius auratus L)[J]. ZAngew tchthyol,1985(1):31-34.
    [2]Behrooz D, Amin E, C. Neal S, et al. Methods to produce marker-free transgenic plants[J]. Biotechnol,2007,2:83-90.
    [3]Jianru Z, Qi WN, Simon GM,etal.Chemical-regulated site-specific DNA excision in transgenic plant[J]. nature biotechnology,2001,19:157-161.
    [4]Mc CB. The origin and behavior of mutable loci in maize[J].Proc Natl Acad Sci USA 1950,36:344-55.
    [5]Kodama K, Takagi S, Koga A. The Toll element of the medaka fish, a member of the hAT transposable element family, jumps in Caenorhabditis elegans[J]. Heredity 2008,101:222-227.
    [6]Davidson AE, Balciunas D, Mohn D, et al.Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon[J]. Dev Biol,2003, 263:191-202.
    [7]Parinov S, Kondrichin I, Korzh V, et al.Tol2 transposon-mediated enhancer trap to identify developmentally regu-lated zebrafish genes in vivo[J]. Dev Dyn,2004, 231:449-459.
    [8]Emelyanov A, Gao Y, Naqvi NI, et al.Trans-kingdom transposition of the maize Dissociation element[J]. Genetics,2006,174:1095-1104.
    [9]Kawakami K, Koga A, Hori H, et al. Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio[J]. Gene,1998,225:17-22.
    [10]Urasaki A, Morvan G, Kawakami K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition[J]. Genetics,2006,174:639-649.
    [11]Balciunas D, Davidson AE, Sivasubbu S, et al. Enhancer trapping in zebrafish using the Sleeping Beauty transposon[J]. BMC Genomics,2004,5:62.
    [12]Ma X, Dong Y, Matzuk MM, et al. Targeted disruption of luteinizing hormone beta-subunit leads to hypogonadism, defects in gonadal steroidogenesis and infertility[J]. PNAS,2004,101(49):17294-17309.
    [13]Ma J, Zeng F, Schultz RM, et al. Basonuclin:a novel mammalian maternal-effect gene[J]. Development,2006,133:2053-2062.
    [14]Coussens M, Maresh JG, Yanagimachi R, et al. Sirtl deficiency attenuates spermatogenesis and germ cell function[J]. PLoS One,2008,3:e1571.
    [15]Liu Z, Zhou S, Liao L, et al. Jmjdla demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis[J]. Biol Chem,2010,285:2758-2770.
    [16]Adelman CA, Petrini JH. ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over[J]. PLoS Genet,2008, 4:e1000042.
    [17]Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice[J]. Nat Med,2000,6:29-34.
    [18]Shen F, Zhang C, Zheng H, et al. Long-term culture and transplantation of spermatogonial stem cells from BALB/c mice[J]. Cells Tissues Organs,2010,191: 372-381.
    [19]Schlatt S, Ehmcke J, Jahnukainen K. Testicular stem cells for fertility preservation: preclinical studies on male germ cell transplantation and testicular grafting [J]. Pediatr Blood Cancer,2009,53:274-280.
    [20]Liu, S. J., Liu, Y., Zhou, G. et al. The formation of tetraploid stocks of red crucian carp × common carp hybrids as an effect of interspecific hybridization[J]. Aquaculture,2001,192(3-4):171-186.
    [21]Uzbekova, S., Chyb, J., Ferriere, F., et al.Transgenic rainbow trout expressed transgenic rainbow trout expressed sGnRH-antisense RNA under the control of sGnRH promoter of Atlantic salmon[J]. Mol Endocrinol,2000,25(3):337-350.
    [22]Maclean, N. Hwang, G, Molina, A., et al.Reversibly-Sterile Fish Via Transgenesis [M]. ISB News Report,2003.
    [23]Devlin, R. H., Nagahama, Y, Sex determination and sex differentiation in fish:an overview of genetic, physiological, and environmental influences [J]. Aquaculture. 2002,208:191-364.
    [24]Slanchev K, Stebler J, dela Cueva M G, et al. Development without germ cells:The role of the germ line in zebrafish sex differentiation[J]. PNAS,2005,102: 4074-4079.
    [25]von Hofsten, J., Olsson, P. E. Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes[J]. Reprod Biol Endocrinol,2005,3:63.
    [26]Hamaguchi S. A light-and electron-microscopic study on the migration of primor-dial germ cells in the teleost, Oryzias latipes[J]. Cell Tissue Res,1982,227: 139-151.
    [27]Strome S, Lehmann R. Germ versus soma decisions:lessons from flies and worms[J]. Science,2007,316:392-393.
    [28]Knaut H, Pelegri F, Bohmann K, et al. Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification[J]. Cell Biol,2000,149:875-888.
    [29]Theusch E V, Brown K J, Pelegri F. Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germ plasm[J]. Dev Biol,2006,292: 129-141.
    [30]Bontems F, Stein A, Marlow F, et al. Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol,2009,19:414-422.
    [31]Hardisty M W. The vertebrate ovary [M]. New York. Jones R E ed Plenum,1978:1281.
    [32]Raz E. Primordial germ-cell development:the zebrafish perspective[J]. Nat Rev Genet,2003,4:690-700.
    [33]Koprunner M, Thisse C, Thisse B, et al. A zebrafish nanos-related gene is essential for the development of primordial germ cells[J]. Genes Dev,2001,15:2877-2885.
    [34]Weidinger G, Stebler J, Slanchev K, et al. dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival [J]. Curr Biol,2003,13:1429-1434.
    [35]Blaser H, Eisenbeiss S, Neumann M, et al. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish[J]. Cell Sci,2005, 118:4027-4038.
    [36]Weidinger G, Wolke U, Koprunner M, et al. Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells[J]. Development,1999,126:5295-5307.
    [37]Koprunner M, Thisse C, Thisse B, et al. A zebrafish nanos-related gene is essential for the development of primordial germ cells[J]. Genes Dev,2001,15:2877-2885.
    [38]Kuersten S, Goodwin EB.The power of the 3'UTR:translational control and development[J]. Nat Rev Genet,2003,4:626-637.
    [39]Wang C, Dickinson LK, Lehmann R. Genetics of nanos localization in Drosophila [J].Dev Dynam 1994,199:103-115.
    [40]Gavis, E.R. and Lehmann, R. Translational regulation of nanos by RNA localization [J]. Nature,1994,369:315-318.
    [41]Subramaniam, K and Seydoux, G.nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans[J]. Development,1999,126:4861-4871.
    [42]Mosquera, L., Forristall, C., Zhou, Y., et al. A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain[J]. Development,1993,117:377-386.
    [43]Kloc, M., Bilinski, S., Pui-Yee Chan, et al. The targeting of Xcat2 mRNA to the germinal granules depends on a cis-acting germinal granule localization Element within the 3'UTR[J]. Dev. Biol,2000,217:221-229.
    [44]Ruggiu, M., Speed, R., Taggart, M., et al.The mouse Dazl a gene encodes a cytoplasmic protein essential for gametogenesis[J]. Nature,1997,389:73-77.
    [45]Houston, D. and King, M. A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus[J]. Development,2000, 127:447-456.
    [46]Bashirullah, A., Halsell, S., Cooperstock, R., et al. Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster[J]. EMBO J.1999,18:2610-2620.
    [47]Kobayashi S, Yamada M, Asaoka M, et al. Essential role of the posterior morphogen nanos for germline development in Drosophila[J]. Nature,1996,380:708-711.
    [48]Seiki H, Masayuki T, Satoshi K, et al. nanos1:a mouse nanos gene expressed in the central nervous system is dispensable for normal development[J]. Mechanisms of Development,2001,120:721-731.
    [49]Masayuki T, Yumiko S, Makoto K, et al. Conserved role of nanos proteins in germ cell development[J]. Science,2003,301:1239-1241.
    [50]Haouzi D & Hamamah S. Pertinence of apoptosis markers for the improvement of in vitro fertilization (IVF)[J]. Current Medicinal Chemistry,2009,16:1905-1916.
    [51]Wang RA, Nakane PK, Koji T. Autonomous cell death of mouse male germ cells during fetal and postnatal period[J]. Biology of Repro-duction,1998,58:1250-1256.
    [52]Rodriguez I, Ody C, Araki K, et al. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis [J]. EMBO Journal,1997,1:2262-2270.
    [53]Liu, X., Kim, C. N., Yang, J.,et al. Induction of apoptotic program in cell-free extracts:requirement for dATP and cytochrome c[J]. Cell,196,86:147-157.
    [54]Susin, S. A., Lorenzo, H. K., Zamzami, N., et al. Molecular characterization of mitochondrial apoptosis-inducing factor[J]. Nature,1999,397:441-446.
    [55]Kroemer, G., Galluzzi, L. and Brenner, C. Mitochondrial membrane permeabilization in cell death[J]. Physiol. Rev,2007,87:99-163.
    [56]Green, D. R. and Kroemer, GThe pathophysiology of mitochondrial cell death. Science,2004,305:626-629.
    [57]Marzetti, E., Lawler, J. M., Hiona, A., et al. Modulation of age-induced apoptoti signaling and cellular remodeling byexercise and calorie restriction in skeletal Muscle[J]. Free Radic. Biol. Med,2008,44:160-168.
    [58]Frank, S., Gaume, B., Bergmann-Leitner, E. S.,et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis[J]. Dev. Cell,2001,1: 515-525.
    [59]Brooks, C., Wei, Q., Cho, S.Get al. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models[J].Clin. Invest,2009,119:1275-1285.
    [60]Parone, P. A., James, D. I., Da Cruz, S., et al. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis[J]. Mol. Cell. Biol,2006, 26:7397-7408.
    [61]Wasiak, S., Zunino, R. and McBride, H. M. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death[J]. Cell Biol,2007,177:439-450.
    [62]Chang,C.R. and Blackstone,C.Cyclic AMP-dependent protein kinase phosphorylation of Drpl regulates its GTPase activity and mitochondrial Morphology[J]. Biol. Chem, 2007,282:21583-21587.
    [63]Lee, Y. J., Jeong, S. Y., Karbowski, M., et al. Roles of the mammalian mitochondrial fission and fusion mediators Fisl, Drpl, and Opal in apoptosis[J]. Mol.Biol. Cell,2004,15:5001-5011.
    [64]Alirol, E., James, D., Huber, D., et al. The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis[J]. Mol.Biol, Cell,2006,17:4593-4605.
    [65]Karbowski, M., Lee, Y. J., Gaume, B., et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drpl, and Mfn2 during apoptosis[J]. Cell Biol, 2002,159:931-938.
    [66]Delivani, P., Adrain, C., Taylor, R. C.,et al. Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics[J]. Mol. Cell,2006,21:761-773.
    [67]Brooks, C., Wei, Q., Feng, L., et al. Bak regulates mitochondrial morphology and pathology during apoptosis byinteracting with mitofusins[J]. Proc. Natl. Acad. Sci. USA,2007,104:11649-11654.
    [68]Karbowski M, Norris KL., Cleland MM.et al. Role of Box and Bak in mitochondrial morphogenesis [J]. Nature,2006,443:658-662.
    [69]Seo, AY, Xu, J., Servais, S., et al. Mitochondrial iron accumulation with age and functional consequences [J]. Aging Cell,2008,7:706-716.
    [70]Cotter TG. Apoptosis and cancer:the genesis of a research field[J]. Nat Rev Cancer, 2009,9:501-507.
    [71]Blankenberg FG. Monitoring of treatment-induced apoptosis in oncology with PET and SPECT[J]. Curr Pharm Des,2008,14:2974-2982.
    [72]Vaux, D. L. and Korsmeyer, S. J. Cell death in development[J]. Cell,1999,96:245-254.
    [73]Savill, J., Fadok, V., Henson, P. et al. Phagocyte recognition of cells undergoing apoptosis[J].Immunol. Today,1993,14:131-136.
    [74]Scaffidi, C., Fulda, S., Srinivasan, A..et al. Two CD95 (APO-1/Fas) signaling pathways[J]. EMBO J,1998,171675-1687.
    [75]Reed, J. C. and Kroemer, G. Mechanisms of mitochondrial membrane Permeabilization [J]. Cell Death Differ,2000,7:1145.
    [76]Chipuk, J. E., Bouchier-Hayes, L. and Green, D. R. Mitochondrial outer membrane permeabilization during apoptosis:the innocent bystander scenario [J]. Cell Death Differ,2006,13:1396-1402.
    [77]Soleymanlou N, Wu Y, Wang JX, et al. A novel Mtd splice isoform is responsible for trophoblast cell death in pre-eclampsia[J]. Cell Death Differ,2005,12:441-452.
    [78]Maddika S, Ande SR, Panigrahi S, et al. Cell survival,cell death and cell cycle pathways are interconnected:implications for cancer therapy[J]. Drug Resist Updat, 2007,10:13-29.
    [79]Jamil S, Sobouti R, Hojabrpour P, et al. A proteolytic fragment of Mcl-1 exhibits nuclear localization and regulates cell growth by interaction with Cdk1[J]. Biochem, 2005,387:659-667.
    [80]K. D. McCullough, J. L. Martindale, L. O. Klotz, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bc12 and perturbing the cellular redox state[J]. Molecular and Cellular Biology,2001,21(4):1249-1259.
    [81]H. Puthalakath, L. A. O'Reilly, P. Gunn et al. ER stress triggers apoptosis by activating BH3-only protein Bim[J]. Cell,2007,129(7):1337-1349.
    [82]M. C. Wei, W. X. Zong, E. H. Y. Cheng et al. Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysfunction and death[J]. Science,2001,292 (5517): 727-730.
    [83]C. Hetz, P. Bernasconi, J. Fisher et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1a[J]. Science,2006, 312(5773):572-576.
    [84]Reed, J. C. Bcl-2-family proteins and hematologic malignancies:history and future prospects[J]. Blood,2008,111,3322-3330.
    [85]Chen, Z. X. and Pervaiz, S. BCL-2:pro-or anti-oxidant?[J]. Front. Biosci.2009,1: 263-268.
    [86]Guillemin Y, Lalle P, Gillet G, et al. Oocytes and early embryos selectively express the survival factor BCL2L10[J]. Journal of Molecular Medicine,2009, 87:923-940.
    [87]Ratts VS, Flaws JA, Kolp R, et al. Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad[J]. Endocrinology,1995,136:3665-3668.
    [88]Flaws JA, Hirshfield AN, Hewitt JA, et al. Effect of bcl-2 on the primordial follicle endowment in the mouse ovary [J]. Biology of Reproduction,2001,64:1153-1159.
    [89]Nijhawan D, Fang M, Traer E, et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation [J]. Genes and Development, 2003,17(6):1475-1486.
    [90]Jamil S,Sarwat Jamil, Rafat S, et al.A proteolytic fragment of mcl-1 exhibits nuclear localization and regulates cell growth by interaction with cdk1[J]. Biol chem, 2005,587:654-667.
    [91]Hartley PS, Bayne RA, Robinson LL, et al. Developmental changes in expression of myeloid cell leukemia-1 in human germ cells during oogenesis and early folliculogenesis[J]. Journal of Clinical Endocrinology and Metabolism,2002,87: 3417-3427.
    [92]Grondahl ML, Yding Andersen C, Bogstad J, et al. Gene expression profiles of single human mature oocytes in relation to age[J]. Human Reproduction,2010,25:957-968.
    [93]Melka M, Rings F, Holker M, et al. Expression of apoptosis regulatory genes and incidence of apoptosis in different morphological quality groups of in vitro-produced bovine pre-implantation embryos [J]. Reproduction in Domestic Animals,2009,45:915-921.
    [94]Rinkenberger JL, Horning S, Klocke B, et al. Mcl-1 deficiency results in peri-implantation embryonic lethality[J]. Genes and Development,2000,14:23-27.
    [95]Boisvert-Adamo K, Longmate W, Abel EV et al. Mcl-1 is, required for melanoma cel resistance to anoikis[J]. Molecular Cancer Research,2009,7: 549-556.
    [96]JMetcalfe AD, Hunter HR, Bloor DJ, et al. Expression of 11 members of the BCL-2 family of apoptosis regulatory molecules during human preimplantation embryo development and fragmentation[J]. Molecular Reproduction and Development,2004, 68:35-50.
    [97]Jurisicova A, Latham KE, Casper RF et al. Expression and regulation of genes associated with cell death during murine preimplantation embryo development[J]. Molecular Reproduction and Development,1998,51:243-253.
    [98]Chi MM, Pingsterhaus J, Carayannopoulos M et al. Decreased glucose transporter expression triggers.BAX-dependent apoptosis in the murine blastocyst[J]. Journal of Biological Chemistry,2000,275:40252-40257.
    [99]Shen XH, Han YJ, Yang BC et al. Hyperglycemia reduces mitochondrial content and glucose transporter expression in mouse embryos developing in vitro [J]. Journal of Reproduction and Development,2009,55:534-541.
    [100]Rucker EB Ⅲ, Dierisseau P, Wagner KU, et al.Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis[J]. Molecular Endocrinology,2000,14:1038-1052.
    [101]Lobascio AM, Klinger FG, DeFelici M.Isolation of apoptotic mouse fetal oocytes by AnnexinV assay [J]. International Journal of Developmental Biology,2007,51: 157-160.
    [102]Perez GI, Jurisicova A, Matikainen T, A central role for ceramide in the age-related acceleration of apoptosis in the female germline[J]. FASEB Journal,2005,19: 860-862.
    [103]Morita Y, Perez GI, Paris F, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy [J]. Nature Medicine,2000,6:1109-1114.
    [104]Perez GI, Robles R, Knudson CM, et al.Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency [J]. Nature Genetics,1999,21: 200-203.
    [105]Perez GI, Jurisicova A, Wise L, et al. Absence of the pro-apoptotic Bax protein extends fertility and alleviates age-related health complications in female mice[J]. PNAS,2007,104:5229-5234.
    [106]Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond:an overview. Oncogene,2008,27:12-19.
    [107]Ren D, Tu HC, Kim H, et al. BID, BIM, and PUMA are essential for activation of the BAX-and BAK-dependent cell death program[J]. Science,2010,330:1390-1393.
    [108]Zinkel SS, Hurov KE, Ong C, et al. A role for pro-apoptotic BID in the DNA-damage response[J]. Cell,2005,122:579-591.
    [109]Upton JP, Austgen K, Nishino M, et al. Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol, 2008,28:3943-3951.
    [110]Wang S, Shan P, et al. Mu-calpain mediates hippocampal neuron death in rats after lithium-pilocarpine-induced status epilep-ticus[J]. Brain Res Bull,2008,76:90-96.
    [111]Engel T, Caballero-Caballero A, Schindler CK, et al. BH3-only protein Bid is dispensable for seizure-induced neuronal death and the associated nuclear accumulation of apoptosis-inducing factor[J]. Neurochem,2010,115:92-101.
    [112]Concannon CG, Tuffy LP, Weisova P, et al. AMP kinase-mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis[J]. Cell Biol,2010,189:83-94.
    [113]Jabbour AM, Heraud JE, Daunt CP, et al. Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim[J]. Cell Death Differ,2009,16:555-563.
    [114]Engel T, Murphy BM, Hatazaki S, et al. Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma[J]. FASEB,2010,24:853-861.
    [115]Engel T, Hatazaki S, Tanaka K, et al. Deletion of puma protects hippocampal neurons in a model of severe status epilepticus[J]. Neuro science,2010,168: 443-450.
    [116]Niizuma K, Endo H, Nito C, et al. Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia[J]. Stroke,2008, 40:618-625.
    [117]Luo Y, Kuo CC, Shen H, et al. Delayed treatment with a p53 inhibitor enhances recovery in stroke brain. Ann Neurol,2009,65:520-530.
    [118]Hsu SY, Kaipia A, McGee E, et al. Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members[J]. PNAS,1997,94:12401-12406.
    [119]Metcalfe A. D, Helen R. H, Debra J. B, et al. Expression of 11 members of the BCL-2 family of apoptosis regulatory molecules during human preimplantation embryo development and fragmentation[J].2004, Mo.l Reprod. Dev,68:35-50.
    [120]Hemann MT, Zilfou JT, Zhao Z, et al. Suppression of tumorigenesisby the p53 target PUMA[J]. PNAS,2004,101(25):9333-9338.
    [121]Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysfunction and death[J]. Science,2001,292(5517):727-730.
    [112]Kim H, Rafiuddin-Shah M, Tu HC, et al. Hierarchical regulation of mitochondrion-depenfent apoptosis by Bcl-2 subfamilies[J]. Nat cell Biol,2006,8:1348-1358.
    [123]Inohara N, Ekhterae D, Garcia I, et al. Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl-2 and Bcl-XL[J]. Biol Chem,1998,273(15):8705-8710.
    [124]Hsu SY and Hsueh AJ. A splicing variant of the Bcl-2 member Bok with a truncated BH3 domain induces apoptosis but does not dimerize with antiapoptotic Bcl-2 proteins in vitro[J]. Biol. Chem,1998,273(46):30139-30146.
    [125]Suominen JS, Yan W, Toppari J, et al. The expression and regulation of Bcl-2-related ovarian killer(Bok) mRNA in the developing and adult rat testis[J]. Eur J Endocrinol,2001,145(6):771-778.
    [126]Brown CY, Bowers SJ, Loring G, et al. Role of Mtd/Bok in normal and neoplastic B-cell development in the bursa of Fabricius[J]. Dev Comp Immunol,2004,28(6): 619-634.
    [127]Yakovlev A. G, Di Giovanni S., Wang G, et al. Bok and Noxa are essential mediators of p53-dependent apoptosis[J]. Biol. Chem,2004,279:28367-28374.
    [128]Gross A. BID as a double agent in cell life and death[J]. Cell Cycle,2006,5(6):582-584.
    [129]Janne S Suominen, Wei Yan, Jorma Toppari et al. Nitroreductase-mediated Gonadal Dysgenesis for Infertility Control of Genetically Modified Zebrafish[J]. European Journal of Endocrinology,2001,145:771-778.
    [130]Livak KJ, Schmittgen TD:Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,2001, 25:402-408.
    [131]E Kratz, PM Eimon, K Mukhyala et al.Functional characterization of the Bcl-2 gene family in the zebrafish[J]. Cell Death and Differentiation,2006,13:1631-1640.
    [132]Gao S, Fu W, Durrenberger M, et al. Membrane translocation and oligomerization of hBok are triggered in response to apoptotic stimuli and Bnip3[J]. Cell Mol Life Sci,2005,62:1015-1024.
    [133]Zhong S, Luo DJ, Wu G, et al. The growth promoting activity of two different kinds of reconstructed terminators in transgenic common carp[J]. Yi Chuan.,2009,31(8): 831-836.
    [134]Koprunner M, Thisse C, Thisse B, et al. A zebrafish nanos-related gene is essential for the development of primordial germ cells[J]. Genes Dev,2001,15:2877-2885.
    [135]Chia CH, Min FH, Jiann RH. Inducible Male Infertility by Targeted Cell Ablation in Zebrafish Testis[J]. MarBiotechnol,2010,12(4):466-478.
    [136]Hsu SY, Kaipia A, McGee E, et al. Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members[J]. Proc Natl Acad Sci USA,1997,94: 12401-12406.
    [137]F Ke, A Voss, JB Kerr, et al. BCL-2 family member BOK is widely expressed but its loss has only minimal impact in mice[J]. Cell Death and Differentiation,2012, 19:915-925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700