用户名: 密码: 验证码:
内吗啡肽-1衍生多肽的设计合成、生物学活性及血脑屏障通透性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿片肽一直以来用于缓解疼痛,且其镇痛机制主要通过中枢神经系统介导。1997年,从牛脑中分离出的两个对μ阿片受体(MOR)有着高亲和性和选择性的内源性阿片肽,内吗啡肽-1(EM-1,Tyr-Pro-Trp-Phe-NH_2)和内吗啡肽-2(EM-2,Tyr-Pro-Trp-Phe-NH_2),被公认为MOR的内源性配体。它们都能产生与吗啡等效的镇痛作用而缺少部分吗啡样副作用。然而,内吗啡肽同时又具有酶解稳定性差、不易透过血脑屏障(BBB)和镇痛作用不能持久等缺点,从而限制了其在临床上的应用。改进办法之一即对其做系统改造。研究表明EM-1具有优于EM-2的治疗学特性,更适于作为新的安全镇痛药物进行开发研究,因此本研究中我们选择了EM-1为母体,旨在通过引入当前阿片肽设计中的成功化学修饰对其加以改造,希望能够提高EM-1的酶解稳定性和血脑屏障通透性,使之能够通过外周注射产生中枢介导的强效镇痛作用;通过研究不同化学修饰对EM-1理化性质以及生物学活性的影响,还将有利于我们深入理解多肽镇痛药物发挥药理学活性的必需结构,为将来基于EM-1结构的镇痛药物的发展和研究提供重要依据。
     引入的化学修饰包括N-末端Tyr~1N~α胍基化修饰(阳离子化),非天然氨基酸或二肽片段(D-Ala,Sar,D-Pro-Gly)替换L-Pro~2以及C-末端Phe芳香环对位氯化修饰。通过以上三类化学修饰的单独应用或不同组合,通过经典液相法合成了10个EM-1新型衍生多肽。我们检测了EM-1及其衍生多肽的受体结合活性,比较了不同化学修饰对多肽整体脂溶性、酶解稳定性、血浆蛋白结合、镇痛活性、跨血脑屏障转运入脑能力、小鼠结肠运动功能的调节和大鼠离体支气管上活性的影响。受体结合实验结果提示胍基化修饰和氯化修饰都不同程度地降低了EM-1与MOR的结合亲和力与选择性,同时这两种改造也导致了多肽与血浆蛋白结合的提高。所有EM-1衍生多肽在小鼠脑质膜和血清中的离体酶解稳定性较母体显著提高。通过比较各组对应衍生多肽在小鼠脑质膜和血清中的降解半衰期,发现N-末端胍基化修饰和2位非天然氨基酸替换都导致了衍生多肽抗酶解能力的显著提高,而C-末端氯化修饰对多肽的血清稳定性的提高作用显著。EM-1及其衍生多肽的正辛醇/缓冲液分配系数的比较结果表明C-末端氯化修饰确实提高了多肽的整体脂溶性,同时它还减弱了N-末端胍基化修饰引起的药物整体脂溶性的降低。2位D-Ala和D-Pro-Gly替换也可部分地导致衍生多肽脂溶性的提高,但Sar替换则没有这种作用。在所有测试多肽中,侧脑室注射GDAPC表现出最佳的镇痛效果,镇痛效力较母体提高3倍。所有衍生多肽的镇痛作用时间都较母体明显延长。静脉和皮下注射四个D-Ala~2替换的衍生多肽(HDAPC,HDADC,GDAPC,GDADC)以及氯化修饰的2位D-Pro-Gly替换的五肽(GBDPC)均可产生明显的长时程中枢介导的镇痛作用,提示可能有相对多的多肽可透过BBB进入中枢神经系统(CNS)发挥镇痛活性。给小鼠静脉注射上述五个EM-1衍生多肽,结果显示它们的在体稳定性较母体显著提高,且在脑实质中可检测到它们的存在,脑血管渗透常数K_(in)介于0.241到0.894μl/g·min之间,证明这些衍生多肽确实跨过了BBB进入大脑,从而为阐明镇痛活性分析中提出的中枢介导机制提供了重要证据。EM-1及其衍生多肽在小鼠近端及远端结肠上的在体活性与母体相似。它们都不同程度地延长了小鼠排珠时间以及抑制了标记染料在近端结肠上的推进速率,该抑制作用呈剂量依赖性,且可被纳洛酮拮抗,提示阿片受体参与了此作用。胍基化修饰更多的影响了多肽在小鼠结肠上的活性,而氯化修饰则影响不大。离体组织上的实验结果表明,吗啡、EM-1及其五个衍生多肽均能剂量依赖地诱导小鼠离体结肠纵形肌的自主收缩,纳络酮、β-FNA、河豚毒素和吲哚美辛均能显著拮抗此收缩效应。另外,它们均能浓度和频率(1,2,4 Hz)依赖地抑制电刺激(EFS)引起的大鼠离体支气管胆碱能收缩反应,且该抑制作用可被纳洛酮显著拮抗。在相同频率刺激时,EM-1的抑制作用强于等浓度的吗啡和五个衍生多肽。比较结果显示氯化修饰和胍基化修饰分别减弱和加强了多肽对大鼠支气管收缩反应的抑制作用。
Opioid peptides have been designed for the treatment of pain, and the mediation of opioid analgesia has long been thought to occur exclusively within the central nervous system (CNS). In 1997, two tetrapeptides, endomorphin (EM)-1 (Tyr~1-Pro~2-Trp~3-Phe~4-NH_2) and EM-2 (Tyr~1-Pro~2-Phe~3-Phe~4-NH_2), have been isolated from bovine frontal cortex and were reported to be the endogenous ligands to u-opioid receptors. With high affinity and selectivity for the u-opioid receptors, these two neuropeptides were found to elicit equipotent analgesia to morphine but without some of its undesirable side effects. Unfortunately, both EM-1 and EM-2 undergo metabolic degradation by peptidases. Besides, the existence of the blood-brain barrier (BBB) also limits the transit of peptides into the CNS, thus further reducing their therapeutic benefits. One solution to these problems is to design and synthesize new and improved EM analogues by chemical modification. Herein, EM-1 was chosen as the parent peptide because there were evidences that EM-1 had a more favorable therapeutic profile than EM-2 and otherμ-opioids. The aim of the present study is to make EM-1 overcome the problems of enzymatic degradation and limited entry into the CNS by systematic chemical modification, thus being able to produce analgesia after systemic administration. A clear understanding of the potential contribution of these modifications to the physicochemical properties and biological activity of EM-1 will further our knowledge of the structural requirements that is necessary for its pharmacological effects, and will provide important evidences for the development of novel analgesics based on EM-1.
     Three groups of modification approaches, including N-terminal cationization by N~α-amidination on Tyr~1, unnatural amino acid (D-Ala, D-Pro and Sar) substitutions in position 2 and C-terminal chloro-halogenation, were introduced into the primary structure of EM-1. Ten EM-1 derived peptides were synthesized. Effects of each modification on enzymatic breakdown, lipophilicity and protein binding were determined and compared. For the determination of the biological activity profiles, we used a battery of test systems, including receptor binding assays, isolated tissue assays and in vivo assays. Both N-terminal cationization and C-terminal chloro-halogenation caused a decrease of affinity for the u-opioid receptor, but they increased protein binding ability of peptides. All of the synthetic peptides exhibited increased in vitro metabolic stability to the parent in both mouse brain homogenate and serum. The N~α-amidination contributed to the majority enhancement of brain stability, whereas chloro-halogenation, together with amino acid substitution in position 2, was more important for the serum stability enhancement. Determination of the octanol/buffer coefficient revealed that chloro-halogenation did compromise the decreased lipophilicity caused by N~α-amidination, and introduction of D-Ala as well as D-Pro-Gly, but not Sar, in place of L-Pro~2, also increased the overall lipophilicity to some extent. In the antinociceptive activity test, intracerebroventricular injection of GDAPC showed the strongest analgesia among all of the peptides tested, being 3 times more potent than EM-1. In addition, all of the synthetic peptides showed an increased duration of action compared with the parent peptide. We also found that in comparison with EM-1, the four D-Ala-containing tetrapeptides and the chloro-halogenated D-Pro-Gly-containing pentapeptide elicited significant and prolonged central-mediated analgesia upon both subcutaneous and intravenous administration, indicating that more peptides might reach the CNS, eliciting greater analgesic effect. When given intravenously to mice, these five EM-1 derived peptides exhibited different pharmacokinetic properties and had significantly increased elimination half-lives compared with the parent. They showed an apparent distribution to the brain after intravenous administration, with the blood-to-brain influx rates ranging from 0.241 to 0.894μl/g·min, thus providing preliminary evidence for the central mechanism in the antinociception test. We extended to explore the pharmacological characteristics of EM-1 and its five derived peptides in mouse colon. The five EM-1 derived peptides displayed a profile similar to the parent on the mouse colon in vivo. When given centrally, they all dose-dependently inhibited colonic bead expulsion and retarded the rate of large intestinal transit in mice in a naloxone-sensitive manner. They also induced dose-dependent contraction on the isolated longitudinal muscle strips of mouse distal colon, which were significantly antagonized by naloxone,β-funaltrexamine, tetrodotoxin and indomethacin. Differences among the synthetic tetrapeptides in both in vivo and in vitro studies suggested that N-terminal cationization had a greater influence on the regulation of the colonic motor actions relative to the C-terminal halogenation. We compared the inhibitory effects of morphine and these peptides on the electrical field stimulation (EFS)-induced cholinergic bronchoconstriction in normal rats. All of the drugs tested inhibited the EFS-induced cholinergic constriction in rat isolated bronchus in a concentration- and frequency-dependent and naloxone-sensitive manner. The inhibitory effect of EM-1 on the EFS-induced bronchoconstriction was stronger than that of the same dose of morphine as well as the five EM-1 derived peptides at the same frequency. Our results indicated that N-terminal cationization and C-terminal halogenation showed opposite influences on the inhibitory effects of the four D-Ala-containing peptides in rat isolated bronchus.
引文
1.Pollay M, Roberts PA (1980). Blood-brain barrier: a definition of normal and altered function. Neurosurgery 6:675-685.
    
    2.Ehrlich P (1885). Das sauerstoff-bedurfnis des organismus: eine farbenanalytische studies. Hirschwald, Berlin.
    
    3.Goldman E (1913). Vitalfarbung am zentralnervensystem. Abh. Preuss. Akad. Wiss.Phys. Math. K1:1-60.
    
    4.Broman M (1941). The possibilities of the passage of substances from the blood to the central nervous system. Acta. Psych. Neurol.:1-25.
    
    5.Pardridge WM, Triguero D, Buciak J, Yang J (1990). Evaluation of cationized rat albumin as a potential blood-brain barrier drug transport vector. J. Pharmacol. Exp. Ther. 255:893-899.
    
    6.Pardridge WM, Triguero D, Yang J, Cancilla PA (1990). Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J. Pharmacol. Exp. Ther. 253:884-891.
    
    7.Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G (1991). Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res. Rev. 16:65-82.
    
    8.Oldendorf WH, Cornford ME, Brown WJ (1977). The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol. 1:409-417.
    
    9.Pardridge WM (1998). CNS drug design based on principle of blood-brain barrier transport. J. Neurochem. 70:1781-1792.
    
    10. Chikhale EG, Burton PS, Borchart RT (1995). The effect of verapamil on the transport of peptides across the blood-brain barrier in rats: kinetic evidence for an apically polarized efflux mechanism. J. Pharmacol. Exp. Ther. 273:298-303.
    
    11.Chikhale EG, Ng KY, Burton PS, et al. (1994). Hydrogen bonding potential as a determinant of the in vitro and in situ blood-brain barrier permeability of peptides. Pharm. Res. 11:412-419.
    
    12. Jones HC, Keep RG, Butt AM (1992). The development of ion regulation at the blood-brain barrier. Prog. Brain Res. 91:123-131.
    
    13. Jones DR, Hall SD, Jackson EK, et al. (1988). Brain uptake of benzodiaze pines: effects of lipophilicity and plasma protein binding. J. Pharmacol. Exp. Ther. 245:816-822.
    
    14. Pardridge WM (1987). Plasma protein-mediated transport of steroid and thyroid hormones. Am. J. Physiol 252:E157-164.
    
    15. Banks WA, Kastin AJ (1990). Peptide transport systems for opiates across the blood-brain barrier. Am. J. Physiol. 259:E1-10.
    
    16. Banks WA, Kastin AJ (1989). Effect of neurotransmitters on the system that transports Tyr-MIF-1 and the enkephalins across the blood-brain barrier: a dominant role for serotonin. Psychopharmacology (Berlin) 98:380-385.
    
    17. Tsuju A, Tamai II (1999). Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev. 36:277-290.
    
    18. Pollay M, Roberts PA (1980). Blood-brain barrier: a definition of normal and altered function. Neurosurgery 6:675-685.
    
    19. Spector R (1988). Myo-inositol transport through the blood-brain barrier. Neurochem Res. 13:785-787.
    
    20. Cordon-Cardo C, O'Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989). Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA. 86:695-698.
    
    21. Schinkel AH (1999). P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv. Drug Deliv. Rev. 36:179-194.
    
    22. Jette L, Tetu B, Belyveau R, et al. (1993). High levels of P-glycoprotein detected in isolated brain capillaries. Biochem. Biophys. Acta. 1150:147-154.
    
    23. Beauliet Z, Demeule M, Cetpescu L, et al. (1997). P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem. J. 326:539-544.
    
    24. Gaillard PJ, van der Sandt IC, Voorwinden LH, et al. (2000). Astrocytes increase the functional expression of P-glycoprotein in an in vitro model of the blood-brain barrier. Pharm. Res. 17:1198-1205.
    
    25. Aquilante CL, Letrent SP, Pollack GM, et al. (2000). Increased brain P-glycoprotein in morphine tolerant rats. Life Sci. 66:47-51.
    
    26. Lovekamp T, Cooper PS, Hardison J, et al. (2001). Inhibition of human multidrug resistance P-glycoprotein 1 by analogues of a potent delta-opioid??antagonist. Brain Res. 902:131-134.
    
    27. Callaghan R, Riordan JR (1993). Synthetic and natural opiates interact with P-glycoprotein in multidrug-resistant cells. J. Biol. Chem. 268:16059-16064.
    
    28. Dagenais C, Graff CL, Pollack GM (2004). Variable modulation of opioid brain uptake by P-glycop rotein in mice. Biochem. Pharmacol. 67: 269-276.
    
    29. Borst P, Evers R, Kool M, Wijnholds J (2000). A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst. 92: 1295-1302.
    
    30. Potschka H, Fedrowitz M, Loscher W (2001). P-Glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 12: 3557-3560.
    
    31. Loscher W, Potschka H (2002). Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J. Pharmacol. Exp. Ther. 301:7-14.
    
    32. Potschka H, Fedrowitz M, Loscher W (2003). Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J. Pharmacol. Exp. Ther. 306:124-131.
    
    33. Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM (2004). Expression, up-regulation, and transport activity of the multidrugresistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res. 64: 3296-3301.
    
    34. Gao B, Hagenbuch B, Kullak-Ublick GA, et al (2000). Organic anion transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J. Pharmacol. Exp. Ther. 294: 73-79.
    
    35. Shu C, Shen H, Teuscher NS, et al. (2002). Role of PEPT2 in peptide/mimetic trafficking at the blood cerebrospinal fluid barrier: studies in rat choroid plexus epithelial cells in primary culture. J. Pharmacol. Exp. Ther. 301:820-829.
    
    36. Duffy KR, Pardridge WM (1987). Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420:32-38.
    
    37. Duffy KR, Pardridge WM, Rosenfeld RG (1988). Human blood-brain barrier insulin-like growth factor receptor. Metabolism 37:136-140.
    
    38. Banks WA, Kastin AJ (1996). Passage of peptides across the blood-brain barrier: pathophysiological perspectives. Life Sci. 59:1923-1943.
    
    39. Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE (1987).??Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J. Neurosci. Res. 18:299-304.
    
    40. Pardridge WM (1999). Vector-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 36:299-321.
    
    41. Pardridge WM, Triguero D, Bucia J, Yang J (1990). Evaluation of cationized rat albumin as a potential blood-brain barrier drug transport vector. Exp. Neurol. 255:893-899.
    
    42. Deguchi Y, Miyakawa Y, Sakurada S, Naito Y, Morimoto K, Ohtsuki S, Hosoya K, Terasaki T (2003). Blood-brain barrier transport of a novel μ_1-specific opioid peptide, H-Tyr-D-Arg-Phe-β-Ala-OH (TAPA). J. Neurochem. 84:1154-1161.
    
    43. Carvey PM, Maag TJ, Lin D (1994). Injection of biologically active substances into the brain. Methods Neuroscience 214-234.
    
    44. Ermisch A (1992). Peptide receptors of the blood-brain barrier and bubstate transport into the brain. Prog. Brain Res. 91:155-161.
    
    45. Cool WM, Kurtz NM, Chu G (1990). Transnasal delivery of systemic drugs, in Advances in Pain Research and Therapy (Benedetti C, Chapamn CR and Giron Geds). Raven, New York.
    
    46. Gross PM, Teasdale GM, Graham DI et al. (1982). Intra-arterial histamine increases blood-brain transport in rats. Am. J. Physiol. 243:307-317.
    
    47. Rapoport SI (2000). Osmotic opening of the blood-brain barrier: principles mechanism and therapeutic applications. Cell Mol. Neurobiol. 20:217-230.
    
    48. Rapoport SI, Fredericks WR, Ohno K, et al (1980). Quantitative aspects of reversible osmotic opening of the blood brain barrier. Am. J. Physiol. 238:421-431.
    
    49. Sanovich E, Bartus RT, Friden PM, et al (1995). Pathway across blood brain barrier opened by the bradykinin agonist RMP-7. Brain Res. 705:125-135.
    
    50. Schirmacher A, Winters S, Ficher S, Goeke J, Galla HJ, Kullnick U, Ringelstein EB, Stfgbauer F (2000). Electromagnetic fields (1.8 GHz) increases the permeability to sucrose of the blood-brain barrier in vitro. Bioelectromagnetics 21:338-345.
    
    51. Cho CW, Liu Y, Cobb WN, Henthorn TK, Lillehei K, Uwe Christians KYN (2002). Ultrasound-induced mild hyperthermia as a novel approach to increase drug uptake in brain microvessel endothelial cells. Pharm. Res. 19:1123-1129.
    52. Yoshikawa T, Pardridge WM (1992). Biotin delivery to brain with a covalent conjugate of avidin and a monoclonal antibody to the transferrin receptor. J. Pharmacol Exp. Ther. 263:897-903.
    53. Zhang Y, Pardridge WM (2001). Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injections of the neurotrophin. Brain Res. 889:49-56.
    54. Deguchi Y, Kurihara A, Pardridge WM (1999). Retention of biologic activity of human epidermal growth factor following conjugation to a blood-brain barrier drug delivery vector via an extended poly (ethylene glycol) linker. Bioconjugate Chem. 10:32-37.
    55. Pardridge WM, Kang YS, Buciak JL (1994). Transport of human recombinant brain-derived neurotrophic factor (BDNF) through the rat blood-brain barrier in vivo using vector-mediated peptide drug delivery. Pharm. Res. 11:738-746.
    56. Freiden PM, Walus LR, Watson P, Doctorow SR, Kozarich JW, Backman C, Bergman H, Hoffer B, Bloom F, Granholm A-C (1993). Blood-brain barrier conjugation and in vivo activity of an NGF conjugate. Science 259:373-377.
    57. Boada RJ, Zhang Y, Zhang Y, Xia C-F, Pardridge WM (2007). Fusion antibody for Alzheimer's disease with bidirectional transport across the blood-brain barrier and Aβ fibril disaggregation. Bioconjugate Chem. 18:447-455.
    58. Teichberg VI (2007). From the liver to the brain across the blood-brain barrier. Proc. Natl. Acad. Sci. USA 104:7315-7316.
    59. Rousselle C, Clair P, Smirnova M, Kolesnikov Y, Pasternak GW, Gac-Breton S, Rees AR, Scherrmann J-M, Temsamani J (2003). Improved brain uptake and pharmacological activity of dalargin using a peptide-vector-mediated strategy. J. Pharmacol. Exp. Ther. 306:371-376.
    60. Green M, Loewenstein PM (1988). Autonomous functional domains of chemically synthesized, Human Immuno-deficiency Virus Tat trans-activator protein. Cell 55:1179-1188.
    61. Frankel AD, Pabo CO (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell 5:1189-1193.
    62. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA (1995). Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 674:171 -174.
    
    63. Schroeder U, Sommerfeld P, Sabel BA (1998). Efficacy of oral dalargin-loaded nanoparticle delivery across the blood-brain barrier. Peptides 19:777-780.
    64. Reddy KR (2000). Controlled-release, PEGylation, liposomal formulations: new mechanisms in the delivery of injectable drugs. Ann. Pharm. 34:915-923.
    65. Gabizon A, Martin F (1997). Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumors. Drugs 54:15-21.
    66. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y (1994). Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54:987-992.
    67. Sakane T, Pardridge WM (1997). Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic acitity. Pharm. Res. 14:1085-1091.
    68. Prokai-Tatrai K, Prokai L, Bodor N (1996). Brain-targeted delivery of a leu-enkephalin analogue by retrometabolic design. J. Med. Chem. 39:4775-4782.
    69. Habgood MD, Begley DJ, Abbott NJ (2000). Determinants of passive drug entry into the central nervous system. Cell Mol. Neurobiol. 20:231-253.
    70. Ashwood VA, Field MJ, Horwell DC, Julien-Larose C, Lewthwaite RA, McCleary S, Pritchard MC, Raphy J, Singh L (2001). Utilization of an intramolecular hydrogen bond to increase the CNS penetration of an NK1 receptor antagonist. J. Med. Chem. 44:2276-2285.
    71. Fischer E, Spatz H, Heller B, Reggiani H (1972). Phenethylamine content of human urine and rat brain, its alterations in pathological conditions and after drug administration. Experientia 28:307-308.
    72. Batrakova EV, Vinogradov SV, Robinson SM, Niehoff ML, Banks WA, Kabanov AV (2005). Polypeptide point modifications with fatty acid and amphiphilic block copolymers for enhanced brain delivery. Bioconjugate Chem. 16:793-802.
    73. Oldendorf WH, Hyman S, Braun L, Oldendorf SZ (1972). Blood-brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science 178:984-986.
    
    
    74. Gentry CL, Egelton RD, Gillespie TJ, Abbruscato TJ, Bechowski HB, Hruby VJ, Davis TP (1999). The effects of halogenation on blood-brain barrier permeability of a novel peptide drug. Peptides 20:1229-1238.
    
    75. Weber SJ, Greene DL, Sharma SD, Yamamura HI, Kramer TH, Burks TF, Hruby VJ, Hersh LB, Davis TP (1991). Distribution and analgesia of [~3H][D-Pen~2,D-Pen~5]enkephalin and two halogenated analogs after intravenous administration. J. Pharmacol. Exp. Ther. 259:1308-1316.
    
    76. Tsuzuki N, Hama T, Kawada M, Hasui A, Konishi R, Shiwa S, Ochi Y, Futaki S, Kitagawa K (1994). Adamantane as a brain-directed drug carrier for poorly absorbed drug. 2. AZTderivatives conjugated with the 1-adamantane moiety. J. Pharm. Sci. 83:481-484.
    
    77. Tsuzuki N, Hama T, Hibi T, Konishi R, Futaki S, Kitagawa K (1991). Adamantane as a brain-directed drug carrier for poorly absorbed drug: antinociceptive effects of [D-Ala~2]Leu-enkephalin derivatives conjugated with the 1-adamantane moiety. Biochem. Pharmacol. 41:5-8.
    
    78. Greene DL, Hau VS, Abbruscato TJ, Bartosz H, Misicka A, Lipkowski AW, Horn S, Gillespie TJ, Hruby VJ, Davis TP (1996). Enkephalin analog prodrugs: assessment of in vitro conversion, enzyme cleavage characterization and blood-brain barrier permeability. J. Pharmacol. Exp. Ther. 277:1366-1375.
    
    79. Egleton RD, Mitchell SA, Huber JD, Janders J, Stropova D, Polt R, Yamamura HI, Hruby VJ, Davis TP (2000). Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res. 881:37-46.
    
    80. Bilsky EJ, Egleton RD, Mitchell SA, Palian MM, Davis TP, Huber JD, Jones H, Yamamura HI, Janders J, Davis TP, Porreca F, Hruby VJ, Polt R (2000). Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability. J. MedChem. 43:2586-2590.
    
    81. Polt R, Porreca F, Szabo LZ, Bilsky EJ, Davis P, Abbruscato TJ, Davis TP, Horvath R, Yamamura HI, Hruby VJ (1994). Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Pharmacology 91:7114-7118.
    
    82. Poduslo JF, Curran GL (1993). Glycation increases the permeability of proteins across the blood-nerve and blood-brain barriers. Mol. Brain Res. 23:157-162.
    
    83. Egleton RD, Mitchell SA, Huber JD, Janders J, Stropova D, Polt R,??Yamamura HI, Hruby VJ, Davis TP (2000). Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res. 881:37-46.
    
    84. Fenke H, Galla HJ, Beuckmann CT (2000). Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro. Brain Res. Prot. 5:248-256.
    
    85. Ken D Mcarthy, Jean DE Veils (1980). Preparation of separate astrogilai and oligodentrogilial cell cultures from rat cerebral tissue. J. Cell Biology 85:890-902.
    
    86. Gaillard PJ, Voorwinden LH, Nielsen JL, et al. (2001). Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur. J.Pharm.Sci. 12:215-221.
    
    87. Hurst RD, Fritz IBF (1996). Properties of an immortalized vascular endothelial/glioma cell co-culture model of the blood-brain barrier. J. Cell Physiol. 167:81-88.
    
    88. Duport S, Robert F, Muller D, et al. (1998). An in vitro blood-brain barrier model: cocultures between endothelial cells and organotypic brain slice cultures. Proc. Natl. Acad. Sci. USA 95:1840-1845.
    
    89. Reinscheid RK, Nothacker HP, Bourson A, et al (1995). Orphanin FQ: a neuropeptide that activates an opioidlike G-protein-coupled receptor. Science 270:792-794.
    
    90. Zadina JE, Hackler L, Ge L-J, Kastin AJ (1997). A potent and selective endogenous agonist for the u-opiate receptor. Nature 386:499-502.
    
    91. Zadina JE, Martin-Schild S, Gerall AA, Kastin AJ, Hackler L, Ge L-J. Zhang X (1999). Endomorphins: Novel Endogenous μ-Opiate Receptor Agonists in Regions of High μ-Opiate Receptor Density. Ann. N. Y. Acad. Sci. 897:136.
    
    92. Martin-Schild S, Gerall AA, Kastin AJ, Zadina JE (1999). Differential distribution of endomorphin 1- and endomorphin 2-like immunoreactivities in the CNS of the rodent. J. Comp. Neurol. 405:450-471.
    
    93. Terskiy A, Wannemacher KM, Yadav PN, Tsai M, Tian B, Howells RD (2007). Search of the human proteome for endomorphin-1 and endomorphin-2 precursor proteins. Life Sci. 81:1593-1601.
    
    94. Goldberg IE, Rossi GC, Letchworth SR, Mathis JP, Ryan-Moro J, Leventhal L, Su W, Emmel D, Bolan EA, Pasternak GW (1998). Pharmacological??characterization of endomorphin-1 and endomorphin-2 in mouse brain. J. Pharmacol. Exp. Ther. 286:1007-1013.
    
    95. Sakurada S, Zadina JE, Kastin AJ, et al (1999). Differential involvement of mu-opioid receptor subtypes in endomorphin-1-and-2-induced antinociception. Eur. J. Pharmacol. 372:25-30.
    
    96. Botros M, Hallberg M, Johansson T, Zhou Q, Lindeberg G, Frandberg PA, Tomboly C, Toth G, Le Greves P, Nyberg F (2006). Endomorphin-1 and endomorphin-2 differentially interact with specific binding sites for substance P (SP) aminoterminal SP1-7 in the rat spinal cord. Peptides. 27:753-759.
    
    97. Kosson P, Bonney I, Carr DB, Lipkowski AW (2005). Endomorphins interact with tachykinin receptors. Peptides. 26:1667-1669.
    
    98. Podlogar BL, Paterlini MG, Ferguson DM, et al (1998). Conformational analysis of the endogenous μ-opioid agonist endomorphin-1 using NMR spectroscopy and molecular modeling. FEBS Lett. 439:13-20.
    
    99. Otvos F, Kortvelyesi T, Toth G (2003). Structure-activity relationships of endomorphin-1, endomorphin-2 and morphiceptin by molecular dynamics methods. J. Mol. Struct. (Theochem) 666-667:345-353.
    
    100.Martin-Schild S, Zadina JE, Gerall AA, Vigh S, Kastin AJ (1997).Localization of endomorphin-2-like immunoreactivity in the rat medulla andspinal cord. Peptides 18:1641-1649.
    
    101.Schreff M, Schulz S, Wiborny D, Hollt V (1998). Immunofluorescentidentification of endomorphin-2 -containing nerve fibers and terminals in therat brain and spinal cord. Neuroreport 9:1031-1034.
    
    102.Zadina JE (2002). Recent advances in the search for the μ-opioidergic system:isolation and distribution of endomorphins in the central nervous system. Jpn.J. Pharmacol. 89:203-208.
    
    103.Tonini M, Fiori E, Balestra B, et al (1998). Endomorphin-1 andendomorphin-2 activate mu-opioid receptors in myenteric neurons of theguinea-pig small intestine. Naunyn. Schmiedebergs Arch. Pharmacol. 358:686-689.
    
    104.Jessop DS, Major GN, Coventry TL, Kaye SJ, Fulford AJ, Harbuz MS, DeBree FM (2000). Novel opioid peptides endomorphin-1 and endomorphin-2are present in mammalian immune tissues. J. Neuroimmunol. 106:53-59.
    
    105.Stone LS, Fairbanks CA, Laughlin TM, Nguyen HO, Bushy TM, Wessendorf??MW, Wilcox GL (1997). Spinal analgesic actions of the new endogenous opioid peptides endomorphin-1 and -2. Neuroreport 8:3131-3135.
    
    106.Przewlocka B, Mika J, Labuz D, Toth G, Przewlocki R (1999). Spinal analgesic action of endomorphins in acute, inflammatory and neuropathic pain in rats. Eur. J. Pharmacol. 367:189-196.
    
    107.Wang YQ, Zhu CB, Wu GC, Cao XD, Wang Y, Cui DF (1999). Effects of orphanin FQ on endomorphin-1 induced analgesia. Brain Res. 835:241-246.
    
    108.Horvath G, Szikszay M, Tomboly C, Benedek G (1999). Antinociceptive effects of intrathecal endomorphin-1 and -2 in rats. Life. Sci. 65:2635-2641.
    
    109.Tseng LF, Narita M, Suganuma C, Mizoguchi H, Ohsawa M, Nagase H, Kampine JP (2000). Differential antinociceptive effects of endomorphin-1 and endomorphin-2 in the mouse. J. Pharmacol. Exp. Ther. 292:576-583.
    
    110.Soignier RD, Vaccarino AL, Brennan AM, Kastin AJ, Zadina JE (2000). Analgesic effects of endomorphin-1 and endomorphin-2 in the formalin test in mice. Life. Sci. 67:907-912.
    
    111.Mizoguchi H, Narita M, Oji DE, Suganuma C, Nagase H, Soral, et al (1999). The μ-opioid receptor gene-dose dependent reductions in G-protein activation in the pons/medulla and antinociception induced by endomorphins in μ-opioid receptor knockout mice. Neuroscience 94:203-207.
    
    112.Wu HE, Mizoguchi H, Terashvili M, Leitermann RJ, Hung KC, Fujimoto JM, Tseng LF (2002). Spinal pretreatment with antisense oligodeoxynucleotides against exon-1, -4, or -8 of mu-opioid receptor clone leads to differential loss of spinal endomorphin-1- and endomorphin-2-induced antinociception in the mouse. J. Pharmacol. Exp. Ther. 303:867-873.
    
    113.Sakurada S, Hayashi T, Yuhki M, Orito T, Zadina JE, Kastin AJ, Fujimura T, Murayama K, Sakurada C, Sakurada T, Narita M, Suzuki T, Tan-no K, Tseng LF (2001). Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse. Eur. J. Pharmacol. 427:203-210.
    
    114.Sakurada S, Zadina JE, Kastin AJ, Katsuyama S, Fujimura T, Murayama K, Yuki M, Ueda H, Sakurada T (1999). Differential involvement of μ-opioid receptor subtypes in endomorphin-1 and -2-induced antinociception. Eur. J. Pharmacol. 372: 25-30.
    
    115.Sakurada S, Hayashi T, Yuhki M, Fujimura T, Murayama K, Yonezawa A,??Sakurada C, Takeshita M, Sato T, Zadina JE, Kastin AJ, Sakurada T (2000).Differential antagonism of endomorphin-1 and endomorphin-2 spinalantinociception by naloxonazine and 3-methylnaltrexone. Brain Res. 881:1-8.
    
    116.Tonini M, Fiori E, Balestra B, Spelta V, D'Agostino G, Di Nucci A, BrechaNC, Sternini C (1998). Endomorphin-1 and endomorphin-2 activate μ-opioidreceptors in myenteric neurons of the guinea-pig small intestine.Naunyn-Schmiedeberg's Arch. Pharmacol. 358:686-689.
    
    117.Storr M, Gaffal E, Schusdziarra V, Allescher HD (2002). Endomorphins 1 and2 reduce relaxant non-adrenergic, non-cholinergic neurotransmission in ratgastric fundus. Life Sci. 71:383-389.
    
    118.Yu Y, Cui Y, Wang X, Lai LH, Wang CL, Fan YZ, Liu J, Wang R (2007). Invitro characterization of the effects of endomorphin 1 and 2, endogenousligands for μ-opioid receptors, on mouse colonic motility. Biochem.Pharmacol. 73:1384-1393.
    
    119.Fischer A, Undem BJ (1999). Naloxone blocks endomorphin-1 and but notendomorphin-2 induced inhibition of tachykinergic contractions of guinea-pigisolated bronchus. Br. J. Pharmacol. 127:605-608.
    
    120.Patel HJ, Venkatesan P, Halfpenny J et al (1999). Modulation of acetylcholinerelease from parasympathetic nerves innervating guinea-pig and humantrachea by endomorphin-1 and -2. Eur. J. Pharmacol. 374:21-24.
    
    121.Yu Y, Cui Y, Wang X, Fan YZ, Liu J, Yan X, Wang R (2006). Endomorphinland endomorphin2, endogenous potent inhibitors of electrical field stimulation(EFS)-induced cholinergic contractions of rat isolated bronchus. Peptides27:1846-1851.
    
    122.Czapla MA, Gozal D, Alea OA, Beckerman RC, Zadina JE (2000).Differential cardiorespiratory effects of endomorphin 1, endomorphin 2,DAMGO, and morphine. Am. J. Respir. Crit.Care Med. 162:994-999.
    
    123.Asakawa A, Inui A, Ueno N, Fujimiya M, Fujino MA, Kasuga M (2000).Endomorphin-1, an endogenous u-opioid receptor-selective agonist, stimulatesoxygen consumption in mice. Horm. Metab. Res. 32:51-52.
    
    124.Horvath G (2000). Endomorphin-land endomorphin-2: pharmacology of theselective endogenous μ-opioid receptor agonists. Pharmacol. Ther.88:437-463.
    
    125.Fichna J, Janecka A, Costentin J, Do Rego JC (2007). The endomorphin system and its evolving neurophysiological role. Pharmacol. Rev. 59:88-123.
    126.Banks WA, Kastin AJ (1984). A brain-to-blood carrier-mediated transport system for small, N-tyrosinated peptides. Pharmacol. Biochem. Behav. 21:943-946.
    127.Banks WA, Kastin AJ (1990). Peptide transport systems for opiates across the blood-brain barrier. Am. J. Physiol. 259:1-10.
    128.Banks WA, Kastin AJ, Fischman AJ, Coy DH, Strauss SL (1986). Carrier-mediated transport of enkephalins and N-Tyr-MIF-1 across blood-brain barrier. Am. J. Physiol. 251:477-482.
    129.Kastin AJ, Fasold MB, Smith RR, Homer KA, Zadina JE (2001). Saturable brain-to-blood transport of endomorphins. Exp. Brain Res. 139:70-75.
    130.Somogyvari-Vigh A, Kastin AJ, Liao J, Zadina JE, Pan WH (2004) Endomorphins exit the brain by a saturable efflux system at the basolateral surface of cerebral endothelial cells. Exp. Brain. Res. 156:224-230.
    131.Tomboly C, Peter A, Toth G (2002). In vitro quantitative study of the degradation of endomorphins. Peptides 23:1573-1580.
    132.Janecka A, Kruszynski R, Fichna J, Kosson P, Janecki T (2006). Enzymatic degradation studies of endomorphin-2 and its analogs containing N-methylated amino acids. Peptides 27:131-135.
    133.Sakurada C, Sakurada S, Hayashi T, Katsuyama S, Tan-No K, Sakurada T (2003). Degradation of endomorphin-2 at the supraspinal level in mice is initiated by dipeptidyl peptidase IV: an in vitro and in vivo study. Biochem. Pharma. 66:653-661.
    134.Shane R, Wilk S, Bodnar RJ (1999). Modulation of endomorphin-2-induced analgesia by dipeptidyl peptidase IV. Brain Res. 815:278-286.
    135.Fujita T, Kumamoto E (2006). Inhibition by endomorphin-1 and endomorphin-2 of excitatory transmission in adult rat substantia gelatinosa neurons. Neuroscience 139:1095-1105.
    136.Grass S, Xu IS, Wiesenfeld-Hallin Z, Xu X-J (2002). Comparison of the effect of intrathecal endomorphin-1 and endomorphin-2 on spinal cord excitability in rats. Neurosci. Lett. 324:197-200.
    137.Stone LS, Fairbanks CA, Laughlin TM, Nguyen HO, Bushy TM, Wessendorf MW, Wilcox GL (1997). Spinal analgesic actions of the new endogenous opioid peptides endomorphin-1 and -2. NeuroReport 8:3131-3135.
    138.Fichna J, Janecka A, Piestrzeniewicz M, Costentin J, do Rego J-C (2007). Antidepressant-like effect of endomorphin-1 and endomorphin-2 in mice. Neuropsychopharmacology, 32:813-821.
    139.Szatmari I, Biyashev D, Tomboly C, Toth G, Macsai M, Szabo G, Borsodi A, Lengyel I (2001). Influence of degradation on binding properties and biological activity of endomorphin-1. Biochem. Biophys. Res. Commun. 284:771-776.
    140.Spetea M, Monory K, Tomboly C, Toth G, Tzavara E, Benyhe S, Hanoune J, Borsodi A (1998). In vitro binding and signaling profile of the novel μ. opioid receptor agonist endomorphin 2 in rat brain membranes. Biochem. Biophys. Res. Commun. 250:720-725.
    141.Sugimoto-Watanabe A, Kubota K, Fujibayashi K, Saito K (1999). Antinociceptive effect and enzymatic degradation of endomorphin-1 in newborn rat spinal cord. Jpn. J. Pharmacol 81:264-270.
    142.Spetea M, Monory K, Tomboly C, Toth G, Tzavara E, Benyhe S, Hanoune J, Borsodi A (1998). In vitro binding and signaling profile of the novel μ, opioid receptor agonist endomorphin 2 in rat brain membranes. Biochem. Biophys. Res. Commun. 250:720-725.
    
    
    1.Temsamani J, Scherrmann JM, Rees AR, KaczorekM (2000). Brain drug delivery technologies: novel approaches for transporting therapeutics. Pharm. Sci. Technol. Today 2:49-59.
    
    2.Kramer TH, Shook JE, Kazmierski W, Ayers EA, Wire WS, Hruby VJ, Burks TF (1989). Novel peptidic mu opioid antagonists: pharmacologic characterization in vitro and in vivo. J. Pharmacol. Exp. Ther. 249:544-549.
    
    3.Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF (1983). Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc. Natl. Acad. Sci. 80:5871-5874.
    
    4.Thomas SA, Abbruscato TJ, Hau VS, Gillespie TJ, Zsigo J, Hruby VJ, Davis TP (1997). Structure-activity relationships of a series of [D-Ala~2]deltorphin Ⅰ and Ⅱ analogues; in vitro blood- brain permeability and stability. J. Pharm. Exp. Ther. 281:817-825.
    
    5.Weber SJ, Abbruscato TJ, Brownson EA, Lipkowski AW, Polt P, Misicka A, Haaseth RC, Bartosz H, Hruby VJ, Davis TP (1993). Assessment of an in vitro blood-brain barrier model using several [Met~5]enkephalin opioid analogs. J. Pharm. Exp. Ther. 266:1649-1655.
    
    6. Janecka A, Fichna J, Kruszynski R, Sasaki Y, Ambo A, Costentin J, do-Rego J-C (2005). Synthesis and antinociceptive activity of cyclic endomorphin-2 and morphiceptin analogs. Biochem. Pharmcol. 71:188-195.
    
    7.Williams SA, Abbruscato TJ, Hruby VJ, Davis TP (1996). Passage of a δ-opioid receptor selective enkephalin [D-penicillamine~(2,5)]enkephalin, across the blood-brain and blood-cerebrospinal fluid barriers.J. Neurochem. 66:1289-1299.
    
    8. Gentry CL, Egleton RD, Gillespie T, Abbruscato TJ, Bechowski HB, Hruby VJ, Davis TP (1999). The effect of halogenation on blood-brain barrier permeability??of a novel peptide drug. Peptides 20:1229-1238.
    
    9. Weber SJ, Greene DL, Sharraa SD, Yamamura HI, Kramer TH, Burks TF, Hruby VJ, Hersh LB, Davis TP (1991). Distribution and analgesia of [~3H][D-Pen~2, D-Pen~5]enkephalin and two halogenated analogs after intravenous administration. J. Pharmacol. Exp. Ther. 259:1109-1117.
    
    10. Abbruscato TJ, Williams SA, Misicka A, Lipkowski AW, Hruby VJ, Davis TP (1996). Blood-to-central nervous system entry and stability of biphalin, a unique double-enkephalin analog, and its halogenated derivatives. J. Pharm. Exp. Ther. 276:1049-1057.
    
    11. Kumagai AK, Eisenberg JB, Pardridge WM (1987). Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. J. Biol. Chem. 262:15214-15219.
    
    12. Bajusz S, Ronai AZ, Szekely JI, Miglecz E, Berzetei Ⅰ (1980). Further enhancement of analgesic activity: enkephalin analogs with terminal guanidino group. FEBS. Lett. 110:85-87.
    
    13. Hau VS, Huber JD, Campos CR, Lipkowski AW, Misicka A, Davis TP (2002). Effect of guanidino modification and proline substitution on the in vitro stability and blood-brain barrier permeability of endomorphin Ⅱ. J. Pharm. Sci. 91:2140-2149.
    
    14. Ogawa T, Miyamae T, Murayama K, Okuyama K, Okayama T, Hagiwara M, Sakurada S, Morikawa T (2002). Synthesis and structure-activity relationships of an orally available and long-acting analgesic peptide, N~α-amidino-Tyr-D-Arg-PheβMe-Ala-OH (ADAMB). J. Med. Chem. 45:5081-5089.
    
    15. Tamai I, Tsuji A (1996). Drug delivery through the blood-brain barrier. Adv. Drug Deliv. Rev. 19:401 -402.
    
    16. Tsuju A, Tamai II (1999). Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev. 36:277-290.
    
    17. Spampinato S, Qasem AR, Calienni M, Murari G, Gentilucci L, Tolomelli A, Cardillo G (2003). Antinociception by a peripherally administered novel endomorphin-1 analogue containing p-proline. Eur. J. Pharmacol. 469:89-95.
    
    18. Janecka A, Kruszynski R, Fichna J, Kosson P, Janecki T (2006). Enzymatic degradation studies of endomorphin-2 and its analogs containing N-methylated amino acids. Peptides 27:131-135.
    19. Dooley CT, Chung NN, Wilks BC, Schiller PW, Bidlack JM, Pasternak GW, Houghten RA (1994). An all D-amino acid opioid peptide with central analgesic activity from a combinatorial library. Science (Wash DC) 266:2019-2022.
    20. Shane R, Wilk S, Bodnar RJ (1999). Modulation of endomorphin-2-induced analgesia by dipeptidyl peptidase IV. Brain Res. 815:278-286.
    21. Okada Y, Fukumizu A, Takahashi M, Shimizu Y, Tsuda Y, Yokoi T, Bryant SD, Lazarus LH (2000). Synthesis of stereoisomeric analogues of endomorphin-2, HTyr-Pro-Phe-Phe-NH_2, and examination of their opioid receptor binding activities and solution conformation. Biochem. Biophys. Res. Commun. 216:7-11.
    22. Okumu FW, Pauletti GM, Vander Velde DG, Siahaan TJ, Borchardt RT (1997). Effect of restricted conformational flexibility on the permeation of model hexapeptides across Caco-2 cell monolayers. Pharm. Res. 14:169-175.
    23. Sorensen M, Steenberg B, Knipp GT, Wang W, Steffansen B, Frokjaer S, Borchardt RT (1997). The effect of β-turn structure on the permeation of peptides across monolayers of bovine brain microvessel endothelial cells. Pharm. Res. 14:1341-1348.
    
    
    1.Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
    
    2.Cheng YC, Prusoff WH (1973). Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 percentinhibition (150) of an enzymatic reaction. Biochem. Pharmacol. 22:3099-3102.
    3. Gillespie TJ, Konings PN, Merrill BJ, Davis TP (1992). A specific enzyme assay for aminopeptidase M in rat brain. Life Sci. 51:2097-2106.
    4. Paulus H (1969). A rapid and sensitive method for measuring the binding of radioactive ligands to proteins. Anal. Biochem. 32:91-100.
    5. Raffa RB, Mathiasen JR, Jacoby HI (1987). Colonic bead expulsion time in normal and μ-opioid receptor deficient (CXBK) mice following central (icv) administration of μ- and 5-opioid agonists. Life Sci. 41:2229-2234.
    6. Jacoby HI, Lopez JA (1984). A method for the evaluation of colonic propulsive motility in the mouse after i.c.v. administered compounds. Dig. Dis. Sci. 29:551-555.
    7. Nijs G, Witte PD, Geboes K, Mertens J, Eyssen H (1993). Conventionalization of germ-free rats reverses the disability of rhein anthrone to induce laxation. Eur. J. Pharmacol. 239:241-243.
    8. Sanchez-Blanquez P, Rodriguez-Diaz M, DeAntonio I, Garzon J (1999) Endomorphin-1 and endomorphin-2 show differences in their activation of μ opioid receptor-regulated G proteins in supraspinal antinociception in mice. J. Pharmacol. Exp. Ther. 291:12-18.
    9. Spampinato S, Qasem AR, Calienni M, Murari G, Gentilucci L, Tolomelli A, Cardillo G (2003). Antinociception by a peripherally administered novel endomorphin-1 analogue containing β-proline. Eur. J. Pharmacol. 469:89-95.
    10. Heisey SR (1968). Brain and choroid blood volumes in vertebrates. Comp. Biochem. Physiol 26:489-498.
    11. Ogawa T, Miyamae T, Murayama K, Okuyama K, Okayama T, Hagiwara M, Sakurada S, Morikawa T (2002). Synthesis and structure-activity relationships of an orally available and long-acting analgesic peptide, N~α-amidino-Tyr-D-Arg-PhepMe-Ala-OH (ADAMB). J. Med. Chem. 45:5081-5089.
    12. Marastoni M, Salvadori S, Balboni G, Borea PA, Marzola G, Tomatis R (1987). Synthesis and activity profiles of new dermorphin-(1-4) peptide analogues. J. Med. Chem. 30:1538-1542.
    13. Morley JS (1980). Structure-activity relationships of enkephalin-like peptides. Annu. Rev. Pharmacol. Toxicol. 20:81-110.
    14. Schiller PW, Nguyen TM-D, Chung NN, Lemieux C (1989). Dermorphin analogues carrying an increased positive net charge in their "message" domain display extremely high μ opioid receptor selectivity. J. Med. Chem. 32:698-703.
    
    15. Toth G, Kramer TH, Knapp R, Lui G, Davis TP, Burks TF, Yamamura HI, Hruby VJ (1990). [D-pen~2, D-pen~5lenkephalin analogues with increased affinity and selectivity for delta opioid receptors. J. Med. Chem. 33:249-253.
    
    16. Oldendorf WH (1974). Lipid solubility and drug penetration of the blood brain barrier (38444). Proc. Soc. Exp. Bio. Med. 147:813-816.
    
    17. Stein WD (1967). The movement of molecules across cell membranes. New York: Academic Press, 75-76.
    
    18. Okumu FW, Pauletti GM, Vander Velde DG, Siahaan TJ, Borchardt RT (1997). Effect of restricted conformational flexibility on the permeation of model hexapeptides across Caco-2 cell monolayers. Pharm. Res. 14:169-175.
    
    19. Sorensen M, Steenberg B, Knipp GT, Wang W, Steffansen B, Frokjaer S, Borchardt RT (1997). The effect of β-turn structure on the permeation of peptides across monolayers of bovine brain microvessel endothelial cells. Pharm. Res. 14:1341-1348.
    
    20. Chikhale EG, Ng KY, Burton PS, Borchardt RT (1994). Hydrogen bonding potential as a determinant of the in vitro, and in situ blood-brain barrier permeability of peptides. Pharm. Res. 11:412-419.
    
    21. Levin VA (1980). Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem. 23:682-684.
    
    22. Banks WA, Schally AV, Barrera CM, Fasold MB, Durham DA, Csernus VJ, Groot K, Kastin AJ (1990). Permeability of murine blood-brain barrier to some octapeptide analogs of somatostatin. Proc. Natl. Acad. Sci. USA 87:6762-6766.
    
    23. Raub TJ, Barssuhn CL, Williams LR, Decker DE, Sawada GA, Ho NF (1993). Use of a biophysical-kinetic model to understand the roles protein binding and membrane partitioning on passive diffusion of highly lipophilic molecules across cellular barriers. J. Drug. Target 1:269-286.
    
    24. Pardridge WM (1987). Plasma protein-mediated transport of steroid and thyroid hormones. Am. J. Physiol. 252:157-164.
    
    25. Yeung JC, Rudy TA (1980). Sites of antinociceptive action of systemically injected morphine: involvement of supraspinal loci as revealed by intracerebroventricular injection of naloxone. J. Pharmacol. Exp. Ther. 215:626-632.
    
    26. Jessop DS, Major GN, Coventry TL, Kaye SJ, Fulford AJ, Harbuz MS, De Bree
    ??FM (2000). Novel opioid peptides endomorphin-1 and endomorphin-2 are present in mammalian immune tissues. J. Neuroimmunol. 106:53-59.
    
    27. Chen CP, Pollack JM (1996). Development of a capillary zone electrophoresis assay to examine the disposition of [D-Pen~(2,5)]enkephalin in rats. J. Chromatogr. Biomed. Appl. 681:363-373.
    
    28. Weber SJ, Greene DL, Sharma SD, Yamamura HI, Kramer TH, Burks TF, Hruby VJ, Hersh LB, Davis TP (1991). Distribution and analgesia of [~3H][D-Pen~2, D-Pen~5]enkephalin and two halogenated analogs after intravenous administration. J. Pharmacol. Exp. Ther. 259:1109-1117.
    
    29. Chen C, Pollack GM (1997). Extensive biliary excretion of the model opioid peptide [D-Pen~(2,5)]enkephalin in rats. Pharm. Res. 14:345-350.
    
    30. Kastin AJ, Fasold MB, Smith RR, Homer KA, Zadina JE (2001). Saturable brain-to-blood transport of endomorphins. Exp. Brain Res. 139:70-75.
    
    31. Arhan P, Devroede G, Jehannin B, Lanza M, Faverdin C, Dornic C, Persoz B, Tetreault L, Perey B, Pellerin D (1981). Segmental colonic transit time. Dis. Colon. Rectum. 24:25-29.
    
    32. Banta CA, Clemens ET, Krinsky MM, Sheffy BE (1979). Sites of organic acid production and patterns of digesta movement in the gastrointestinal tract of dogs. J. Nutr. 109:1592-1600.
    
    33. Goldberg IE, Rossi GC, Letchworth SR, Mathis JP, Ryan-Moro J, Leventhal L, Su W, Emmel D, Bolan EA, Pasternak GW (1998). Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain. J. Pharmacol. Exp. Ther. 286:1007-1013.
    
    34. Raffa RB, Mathiasen JR, Jacoby HI (1987). Colonic bead expulsion time in normal and μ-opioid receptor deficient (CXBK) mice following central (icv) administration of μ- and δ-opioid agonists. Life Sci. 41:2229-2234.
    
    35. Gershon MD (1967). Effects of tetrodotoxin on innervated smooth muscle preparations. Br. J. Pharmacol. 29:259-279.
    
    36. Fontaine J, Grievegnee A, Reuse J (1984). Adrenoceptors and regulation of intestinal tone in the isolated colon of the mouse. Br. J. Pharmacol. 81:231-243.
    
    37. Fontaine J, Reuse J (1985). Contractor responses of the isolated colon of the mouse to morphine and some opioid peptides. Br. J. Pharmacol. 85:861-867.
    
    38. Yu Y, Cui Y, Wang X, Lai LH, Wang CL, Fan YZ, Liu J, Wang R (2007). In vitro characterization of the effects of endomorphin-1 and 2, endogenous ligands for μ-opiod receptors, on mouse colonic motility. Biochem. Pharmacol. 73:1384-1393.
    
    39. Bhargava HN, Villar VM, Cortijo J, Morcillo EJ (1997). Binding of [~3H][D-Ala~2, MePhe~4, Gly-ol~5] enkephalin, [~3H][D-Pen~2, D-Pen~5]enkephalin, and [~3H]U-69593 to airway and pulmonary tissues of normal and sensitized rats. Peptides 18:1603-1608.
    
    40. Neidle A, Manigault I, Wajda IJ (1979). Distribution of opiate-like substances in rat tissues. Neurochem. Res. 4:399-410.
    
    41. Stein C (1995). The control of pain in peripheral tissue by opioids. N. Engl. J. Med. 332:1685-1690.
    
    42. Shimosegawa T, Foda HD, Said SI (1989). Immunohistochemical demonstration of enkephalin-containing nerve fibers in guinea pig and rat lung. Am. Rev. Respir. Dis. 40:441-448.
    
    43. Belvisi MG, Stretton CD, Verleden GM, Ledingham SJ, Yacoub MH, Barnes PJ (1992). Inhibition of cholinergic neurotransmission in human airways by opioids. J. Appl. Physiol. 72:1096-1100.
    
    44. Russell JA, Simons EJ (1985). Modulation of cholinergic neurotransmission in airway by enkephalin. J. Appl. Physiol. 58:853-858.
    
    45. Kuo HP, Rohde JAL, Barnes PJ, Rogers DF (1992). Differential inhibitory effects of opioids on cigarette smoke, capsaicin and electrically-induced goblet cell secretion in guinea-pig trachea. Br. J. Pharmac. 105:361-366.
    
    46. Rogers DF, Barnes PJ (1989). Opioid inhibition of neurallymediated mucus secretion in human bronchi. Lancet. 1:930-932.
    
    47. Frossard N, Barnes PJ (1987). Mu-opioid receptors modulate non-cholinergic constrictor nerve in guinea-pig airways. Eur. J. Pharmac. 141:519-522.
    
    48. Lindstrom EG, Andersson RGG (1995). Morphine modulates contractile responses and neurokinin A-LI release elicited by electrical field stimulation or capsaicin in a guinea pig bronchial-tube preparation. Am. J. Res. Crit. Care Med. 151:1175-1179.
    
    49. Belcisi MG, Stretton CD, Barnes PJ (1990). Modulation of cholinergic neurotransmission in guinea-pig airways by opioids. Br. J. Pharmac.??100:131-137.
    
    50. Johansson IJM, Grundstrom N, Andersson RGG (1989). Both cholinergic and non-choliergic components of airway excitation are inhibited by morphine in the guinea-pig. Acta. Physiol. Scand. 135:411-415.
    
    51. Fischer A, Undem BJ (1999). Naloxone blocks endomorphin-1 and but not endomorphin-2 induced inhibition of tachykinergic contractions of guinea-pig isolated bronchus. Br. J. Pharmacol. 127:605-608.
    
    52. Zappi L, Song P, Nicosia S, Nicosia F, Rehder K (1997). Inhibition of airway constriction by opioids is different down the isolated bovine airway. Anesthesiology 86:1334-1341.
    
    53. Misawa M, Sato J, Furukawa Y, Chiba Y, Hosokawa T (1996). Abnormal modulation of cholinergic neurotransmission by opioid in hyperresponsive bronchus of rats. Gen. Pharmacol. 27 :441-444.
    
    54. Patel HJ, Venkatesan P, Halfpenny J, Yacoub MH, Fox A, Barnes PJ, et al. (1999). Modulation of acetylcholine release from parasympathetic nerves innervating guinea-pig and human trachea by endomorphin-1 and -2. Eur. J. Pharmacol. 374:21-24.
    
    55. Basso M, Risse PA, Naline E, Calo G, Guerrini R, Regoli D, Advenier C (2005). Nociceptin/orphanin FQ inhibits electrically induced contractions of the human bronthus via NOP receptor activation. Peptides 26:1492-1496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700