用户名: 密码: 验证码:
淇河鲫肌肉营养成分分析及生长激素基因cDNA克隆和表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淇河鲫(Carassius auratus gibelio var)原产于河南省淇河,以生长快、味道美和效益高等优点而久负盛名,河南省人民政府已正式行文将其列入《河南省重点保护野生动物名录》并以第一名予以公布。为了繁荣市场,丰富人民生活,发展池塘养殖已变得日益迫切,对淇河鲫的生物学特性、生长变化规律等方面的研究已成为重要的课题。而动物的生长和发育受多种因素的调节和控制,包括遗传,营养,环境和内分泌等。在内分泌系统中,生长激素(GH)占据着中心调节作用的位置,它是由脑垂体间叶细胞分泌的一种多肽激素,具有调节生长发育,参与体内代谢调节,增进食欲,提高食物转化率等作用,然而垂体中GH含量极低,分离纯化比较困难,使得GH生理功能的进一步研究和应用受到限制。随着现代生物技术的发展,已有研究表明基因重组的GH与天然的GH一样具有生物活性,基因重组GH应用于研究和生产已经成为可能。因此,我们以淇河鲫作为研究对象,通过含肉率测定、肌肉生化成分分析,对其品质、营养价值作出初步评定,为淇河鲫营养生理的研究提供理论基础;用RT-PCR和RACE技术从淇河鲫垂体总RNA中扩增获得了淇河鲫GH全长cDNA序列,并对核苷酸和氨基酸序列进行了分析,构建了淇河鲫GH基因的原核和真核表达载体,获得了相应的重组基因工程菌,并对基因工程菌进行了诱导表达研究,为下一步开展淇河鲫GH的生物活性检测、转基因鱼研究以及研制开发成为安全、高效的新型调节鱼类生长的基因制剂奠定坚实的基础。主要结果如下:
     1)淇河鲫肌肉营养成分分析及营养价值评定
     淇河鲫是含肉率(65.72%)较高的鱼类;肌肉水分、蛋白质、脂肪、灰分含量分别为75.56%、19.39%、2.96%、1.17%;氨基酸分析表明,淇河鲫肌肉氨基酸总量(18.22%)、必需氨基酸量(7.37%)均较高,必需氨基酸占氨基酸总量的百分比(40.45%)和必需氨基酸与非必需氨基酸的比值(0.68)均符合WHO/FAO提出的40%左右和在0.60以上的要求,而且必需氨基酸含量高于婴儿需要量为底限的WHO/FAO评分模式;尤其是赖氨酸含量较丰富,达到鸡蛋蛋白质评分模式标准,较WHO/FAO评分模式高出30.0%,可以认为淇河鲫是一种营养丰富的优质鱼。
     2)克隆并获得了淇河鲫GH全长cDNA序列
     淇河鲫GH cDNA序列全长1191 bp,其中含Poly(A) 14 bp, 5’端非编码区长55 bp (含有在真核生物中高度保守的Kozak序列),阅读框长633 bp,3’端非编码区长503bp(含真核生物mRNA前体3’剪切和加poly(A)尾的信号ATTAAA序列),共编码210个氨基酸;编码的蛋白的分子量为23.78 ku。蛋白质结构分析表明淇河鲫GH信号肽为前22个氨基酸,成熟肽为188个氨基酸,成熟肽中有四个半胱氨酸(C),形成两个二硫键,对GH的正常折叠、维持空间结构以发挥有效的生理功能有着重要作用。
     3)分析并揭示了淇河鲫GH基因结构和脊椎动物进化的关系
     通过对不同分类地位脊椎动物GH基因的核苷酸序列和氨基酸序列深入分析发现:①GH家族有三个非常保守的区域,以淇河鲫GH氨基酸序号为标准,第28位到第44位、第70位到第111位、第180位到第210位;特别是从第180位到第210位这个区域高度保守,含有的非极性氨基酸达10个(其中3个半胱氨酸),为分子的疏水区,与GH分子的结构及稳定性有关;此外,除去信号肽部分,有30个氨基酸在所比较的动物中完全相同,可以认为这30个氨基酸残基对GH专一性、生物活性及空间构象有重要的作用。②成熟的GH是从一个共同的祖先进化而来,随着生物的进化过程,GH趋异进化成不同物种的GH分子;淇河鲫和鲤形目鱼类GH分歧较早,鲶形目鱼类的GH分歧次之,鲑鳟鱼类的GH分歧较晚,两栖类、禽类和哺乳类动物GH分歧最晚。
     4)构建了淇河鲫GH基因的原核表达载体并获得了重组蛋白本研究在原核表达载体pQE30上成功插入了淇河鲫GH基因,成功构建获得了pQE30-GH原核表达载体,通过测序验证构建的表达载体结构和序列正确无误。该载体经IPTG诱导后,SDS-PAGE电泳检测在约24 ku处获得了表达产物,经薄层扫描分析重组蛋白表达量较低,占菌体蛋白的6.6%。
     5)构建了淇河鲫GH基因毕赤酵母真核表达载体pPIC9K-GH,并获得了基因工程菌和重组蛋白。
     构建了淇河鲫GH基因真核表达载体pPIC9K-GH,该载体经电转化获得了整合有淇河鲫GH基因的重组毕赤酵母基因工程菌,重组菌经甲醇诱导后,成功获得了重组蛋白;表达条件优化试验结果表明,培养液的pH值、甲醇诱导浓度、诱导时间均对重组蛋白的表达有较大影响,其中诱导重组菌表达的适宜甲醇浓度为0.5~0.75%,适宜在弱偏碱性的培养液中表达,表达的最适pH值为7.0~7.5;诱导2天即达到最大表达量。
Carassius auratus gibelio var originated in Qi-river of Henan Province. It is very famous for its many advantages such as rapid growth, delicious flavor, good effectiveness and so on. As the first name it has formally been listed in the“List of the protection of wild animals in Henan Province”by Henan Province People's Government. In order to boom market and enrich people's lives, it is increasingly urgent to develop aquaculture in ponds. It has become an important subject for the research of the biological characteristics, the law of growth and so on. But the growth and development of animals were regulated by many factors including gene, environment, nutrition and endocrine. In endocrine system, growth hormone (GH) takes up a centerlly regulative place. GH is a very important protein hormone which is secreted by the anterior pituitary cells and plays many important roles on animals, such as regulating somatic growth and stimulating appetite, affecting various metabolic activities and improving the food transformation rate, etc. Although GH has so many functions, it is limited in the application and functional researches because the natural growth hormone content is very low and difficult to purify. Along with the development of modern biotechnology, studies have shown that the recombinant growth hormone has the same biological activity as the natural growth hormone. It becomes possible that the recombinant growth hormone is applied to research and production.
     Therefore, in this research, we acted Carassius auratus gibelio var as the research object. We preliminarily evaluated its quality and nutritional value through the rate of muscle determination and the muscle biochemical composition analysis, in order to provide a theoretical basis for the research of Carassius auratus gibelio var nutritional physiology. The methods of RT-PCR and RACE were used to clone the GH cDNA full-length sequence of Carassius auratus gibelio var from the pituitary. Then the amino acids and nucleotides sequence of GH were analyzed, and Prokaryotic and eukaryotic expression vector (pQE30-GH and pPIC9K-GH) were constructed to express the GH recombined protein, in order to lay a solid foundation for the next growth hormone detection of biological activity, the study of transgenic fish and the development of a safe, efficient, new-type gene product regulating fish growth. The results showed that:
     1) Analysis of nutritional composition and evaluation of nutritional Quality in muscle of Carassius auratus gibelio var
     Carassius auratus gibelio var is the fish that its rate of muscle content is higher (65.72%). Its moisture, protein, fat content and ash were 75.56%, 19.39%, 2.96% and 1.17% respectively. Total content of 17 amino acids was 18.22%. Total content of 7 essential amino acids was 7.37%. Essential amino acids concent (40.45%) and the ratio of essential amino acids and non-essential amino acids (0.68) are in line with the standards about 40 percent and above 0.60 respectively required by WHO/FAO. Essential amino acid content is higher than the baby minimum requirement of the WHO/FAO score pattern. Particularly lysine is abundant, coincidence to egg protein score pattern standards and 30.0% higher than the WHO/FAO score pattern. It can be considered that Carassius auratus gibelio var is a nutrient-rich quality fish.
     2) GH cDNA of Carassius auratus gibelio var was cloned firstly.
     The GH cDNA full-length of Carassius auratus gibelio var was about 1191 bp,consisted of a open reading frame about 633 bp ,5’and 3’untranslated regions about 55 bp and 503 bp respectively. 5’untranslated region included one highly conserved Kozak sequence in Eukaryotes, 3’untranslated region included the signal sequence ATTAAA that has the founction of shearing and processing poly(A) tail from the mRNA precursor in Eukaryotes. It encoded 210 amino acids including one signal peptide about 22 amino acids locating in its N-termina1 and one mature peptide about 188 amino acids after analyzing by SignalP3.0. The molecular weight of GH protein was 23.78 ku. There were 4 Cysteines in mature peptide. The two disulfide bonds formed by the 4 Cysteines played an important role to the normal folding of GH and maintaining the space structures, which could make GH an effective physiological function.
     3) The relationship between GH gene structure and evolution of vertebrate was analyzed and discovered.
     After comparing nucleotide and amino acid sequence of Carassius auratus gibelio var GH with those of other animals, the results showed that:①There are three very conservative regions in GH family, to the serial number of Carassius auratus gibelio var GH amino acids as the standard, from No. 28 to No. 44, No. 70 to No. 111, No. 180 to No. 210. The highly conservative region from No. 180 to No. 210, containing 10 non-polar amino acids (including three cysteines), was the molecules hydrophobic region, which had relations to the molecular structure and stability. In addition, except for the signal peptide, there were 30 amino acids the same in the animals compared, the 30 amino acid residues could be considered to take very important action to the GH biological activity and conformational space.②Mature GH evolved from a common ancestor. Along with the process of biological evolution, GH also evolved into different GH molecules; the GH molecules of Carassius auratus gibelio var and carps differd earlier, then catfish, salmon trouts later, amphibians, birds and mammals the latest.
     4) The prokaryon expression vector pQE30-GH was constructed and the recombined protein was expressed in E.coli.
     Carassius auratus gibelio var GH gene was successfully inserted in the prokaryotic expression vector pQE30, which successfully constructed a prokaryotic expression vector pQE30-GH. The expression vector structure and sequence were correct proved by sequencing. The GH recombined protein, the molecular weight is about 24 ku, was expressed after induced by IPTG, However, the output was only 6.6% of all bacteria protein.
     5) The eukaryon expression vector pPIC9K-GH was constructed, and the recombined protein was expressed in GS115.
     The pPIC9K-GH eukaryon expression vector was successfully constructed, and the pPIC9K-GH vector was transmited into GS115 by electric conversion, and the GH recombined protein was successfully expressed induced by methanol. Experimental results of the optimum expression conditions showed that the expression level of recombined protein was closely related to methanol concentration, pH of mediumand and inducing time, and the optimum expression conditions were 0.5~0.75% methanol, pH7.0~7.5 and 2-day inducing time.
引文
[1] 林浩然. 鱼类生长和生长激素分泌活动的调节[J]. 动物学报, 1996,42:69-79.
    [2] Sire M F, Vemier J M. Intestinal absorption of protein in teleost fish[J]. Comp. Biochem. Physiol, 1992,103A:771-781.
    [3] 孟庆闻, 苏锦祥. 鱼类分类学[M]. 北京:中国农业出版社,1995. 227-228.
    [4] 谢忠明. 优质鲫鱼养殖技术[M]. 北京:中国农业出版社,1999. 110-128.
    [5] Sakamoto T, Shepherd B S, Madsen S S, et al. Osmoregulatory actions of growth hormone and prolactin in an advanced teleost[J]. Gen Comp Endocrinol, 1997,106:95-101.
    [6] Prunet P, Boeuf G, Houdebine L M. Plasma and pituitary prolactin levels in rainbow trout during adaptation to different salinities[J]. J Exp Zool, 1985,235:187-196.
    [7] Brian S, Shepherd, Tatsuya Sakamoto, et al. Somatotropic actions of the homologous growth hormone and prolactins in the euryhaline teleost, the tilapia Oreochromis mossambicus[J]. Physiology, 1997,94:2068-2072.
    [8] Fargher R C, McKeown B A. The effect of prolactin on calcium homeostasis in coho salmon (Oncorhynchus kisutch)[J]. Gen Comp Endocrinol, 1989,73:398-403.
    [9] Herrero-Turrion M J, Rodriguez R E, Velasco A, et al. Differential expression and cellular localization of somatolactin-1 and -2 during early development in the gilthead sea bream.[J]. Gen Comp Endocrinol, 2003,132:77-87.
    [10] Olivereau M, Olivereau J. Calcium-sensitive cells of the pars intermedia and osmotic balance in the eel. 1. Responses to changes in the environmental calcium and magnesium[J]. Cell Tissue Res, 1982,222:231-241.
    [11] Van Eys G J, Wendelaar Bonga S E. Responses of the PAS-positive pars intermedia cells in the cichlid fish Sarotherodon mossambicus to ambient calcium and background adaptation. Cell Tissue Res, 1984, 236(1):181-187,236:181-187.
    [12] Berghs C A, Roubos E W. Background adaptation and synapse plasticity in the pars intermedia of Xenopus laevis[J]. Neuroscience, 1996,70:833-841.
    [13] van Eys G J. Structural changes in the pars intermedia of the cichlid teleost Sarotherodon mossambicus as a result of background adaptation and illumination. II. The PAS-positive cells[J]. Cell Tissue Res, 1980,210:171-179.
    [14] Rand-Weaver M, Swanson P, Kawauchi H, et al. Somatolactin, a novel pituitary protein: purification and plasma levels during reproductive maturation of coho salmon[J]. J Endocrinol, 1992,133:393-403.
    [15] 林浩然. 鱼类生理学[M]. 广州:广东高等教育出版社,1999. P:210-212.
    [16] Xu B, Moriyama S, Zhang P, et al. The complete amino acid sequence of growth hormone and partial amino acid sequence of prolactin and somatolactin from sea perch (Lateolabrax japonicus)[J]. Aquaculture, 2001,201:117-136.
    [17] Chang Y S, Liu C S, Huang F L et al. The primary structures of growth hormones of three cyprinid species: bighead carp, silver carp, and grass carp[J]. Gen Comp Endocrinol, 1992,87.
    [18] Kawauchi H, Moriyama S, Yasuda A et al. Isolation and characterization of chum salmon growth hormone[J]. Arch Biochem Physiol, 1986,244:542-552.
    [19] Moons L, Berghma L R, Yandesande F. Immunoaffinity purification and partial characterization of sea bass(Dicentrarchus labrax) growth hormone[J]. Gen Comp Endocrinol, 1991,83.
    [20] Kishida M, Hirano T, Kubota J et al. Isolation of two forms of growth hormone secreted from eel pituitary in vitro[J]. Gen Comp Endocrinol, 1987,65:478-488.
    [21] Rand-Weaver M, Walther B T, Kawauchi H. Isolation and characterization of growth hormone from Atlantic cod (Gadus morhua)[J]. Gen Comp Endocrinol, 1989,73:260-269.
    [22] Yasuda A, Yamaguchi K, Noso T, et al. The complete amino acid sequence of growth hormone from sturgeon (Acipencer guldenstadti)[J]. Biochimica of Biophysica Acta, 1992,1120:297-304.
    [23] Rentier-Delrue F, Swennen D, Mercier L, et al. Molecular cloning and characterization of two forms of trout growth hormone cDNA: expression and secretion of tGH-II by Escherichia coli[J]. DNA, 1989:109-117.
    [24] Agellon L B, Davies S L, Lin C-M, et al. Rainbow trout has two genes for growth hormone[J]. Mol Reprod, 1988a:11-17.
    [25] Forbes S H, Knudsen K L, North T W, et al. One of two growth hormone genes in coho salmon is sex-linked[J]. Proc Natl Aced Sci USA, 1994,91:1628-1631.
    [26] Park L K, Moran P, Dightman D A. A polymorphism in intron D of the Chinook salmon growth hormone 2 gene[J]. Anim Genet, 1995:285.
    [27] Gross R and Nilsson J. Restriction fragment length polymorphism at the growth hormone 1 gene in Atlantic salmon (Salmo salar L.)and its association with weight among the offspring of a hatchery stock[J]. Aquaculture, 1999,173:73-80.
    [28] Sato N. Watanabe K, Murata K, et al. Mocecular cloning and nucleotide sequence of tuna growth hormone cDNA[J]. Biochim Biochim Biophys Acta, 1988,949:35-42.
    [29] Law M S, Chang K W, Fung T K et al. Isolation and characterization of two distinct growth hormone cDNAs from the goldfish, Carassius auratus[J]. Archives Of Biochemistry and Biophysics, 1996,330:19-23.
    [30] Sekine S, Mizukami T, Nishi T, et al. Cloning and expression of cDNA for salmon growth hormone in Escherichia coli[J]. Prot, Nati Aced Sci USA,1985. 4306-4310.
    [31] Johansen B, Johnsen O C, Valla S. The complete nucleotide sequence of the growth-hormone gene From Adantic salmon(Salmo salar)[J]. Gene, 1989,77.
    [32] Barbara E T, Deborah A D, Ewen M, et al. Effect of recombinant vertebrate growth hormones on growth of adult abalone, Haliotis kamtschatkana[J]. Aquaculture, 1996,140:153-158.
    [33] Retior-Delnze F, Swermen D, Philippart J C, et al. Tilapia growth hormone: Molecular cloning of cDNA and expression in Escherichia coli[J]. DNA, 1989:271-278.
    [34] Chao S C, Pan F M, Chang W C. Purification of carp growth hormone and cloning of the complementary DNA[J]. Biochim. Biophys. Acta, 1989,1007:233-236.
    [35] Sekine S, Mizukami T, Saito A, et al. Isolation and characterization of a novel growth hormone cDNA from chum salmon (Oncorhynchus keta)[J]. Biochim. Biophys. Acta, 1989,1009:117-120.
    [36] Agelon, L.B, Chm T T. Rainbow trout growth hormone: molecular cloning of cDNA and expression in Escherichia coli[J]. DNA, 1986:463-471.
    [37] Chiou C S, Chen H T, Chang W C. The complete nucleotide sequence of the growth hormone gene from the common carp (Cyprinus carpio)[J]. Biochim. Biophys. Acta, 1990,1087:91-94.
    [38] Agellon L B, Davies S S, Liu G M, et al. The primary structure of coho salmone growth hormones and its cDNA[J]. Mol. Rep. Develop:11-17.
    [39] Sato N, Watanabe K, Murata K, et al. Molecular cloning and nucleotide sequence of tuna growth hormone cDNA[J]. Biochem. Blophys. Acta, 1988,949:35-42.
    [40] Funkenstein B, Chen T T, Powers D A, et al. Cloning and sequencing of the gilthead seabream (Sparus aurata) growth hormone-encoding cDNA[J]. Gene, 1991,103:243-247.
    [41] Ho W K, Wong M W, Chan A P. Cloning and sequencing of the grass carp (Ctenopharyngodon idellus) growth hormone gene[J]. Biochim. Biophys. Acta, 1991,1090:245-248.
    [42] Gonzalez-Villawnm, L L, Zhang P, Chen T T, et al. Molecular cloning and sequencing of coho salmon growth hormone cDNA[J]. Gene, 1988,65:239-246.
    [43] Waahiki M, Tanaka M, Masuda N, et al. cDNA cloning and primary structure of yellow tail (Seiola quinquerodiata) pregrowth hormone[J]. Cen. Comp. Endocrinol, 1988,70:401-406.
    [44] Knibb W, Robins A, Crocker L, et al. Molecular Cloning and sequencing of Australian black bream Acanthopagrus butcheeri and barramundi Lates calcarifer fish growth hormone cDNA using polymeaase chain reacton[J]. DNA, 1991,2:121-123.
    [45] Ber R, Danie V. Structure and sequence of the growth hormone-encording from Tilapia nilotica[J]. Gene, 1992,113:245-250.
    [46] Chang Y S, Liu C S, Huang F L, et al. The primary structure of growth hormone of three cyprinid species: Bighead carp, silver carp, and grass carp[J]. Gen. Camp. Endocrinol, 1992,87:385-393.
    [47] Doliana R, Bortolussi M, Colombo L. Cloning and sequencing of European sea bass ( Dicentrarchus labrax L) growth hormone cDNA using polymerase chain reaction and degenerate oligonucleotides[J]. DNA Seq, 1992,3:185-189.
    [48] Tang Y, Lin C M, Chen T T, et al. Structure of the channel Calfish (Ictahurus- Punctatus) growth hormone gene and its evolutionary implication[J]. Mol. Marine Biol. Biotechnol, 1993,2:198-206.
    [49] Law M S, Cheng K W, Fung T K, et al. Isolation and characterization of two distinct growth hormone cDNAs from the goldfish, Carassius auratus[J]. Arch. Biochem. Biophys, 1996,330:19-23.
    [50] Anathy V, Venugopal T, Koteswaran R, et al. Cloning, sequencing and expression of cDNA encoding growth homone from Indian catfish (Heteropneustes fassilis)[J]. J. Biosci, 2001,26:315-324.
    [51] Venugopal T, Anathy V, Pandian T J, et al. Molecular cloning of growth hormone-encoding cDNA of an Indian major carp, Labeo rohita, and its expression in Escherichia coli and zebrafish[J]. Gen. Comp. Endocrinol, 2002,125:236-247.
    [52] Inoue R, Iwatani H, Takei Y. Growth hormone and insulin-like growth factor I of a Euryhaline fish Cottus kazika cDNA cloning and expression after seawater acclimation[J]. Gen. Comp. Endocrinol, 2003,131:77-84.
    [53] 杨瑶, 张海萍, 张爱萍, 等. 草鱼生长激素 cDNA 基因的克隆及序列分析[J]. 水产养殖, 2001:32-35.
    [54] 白俊杰, 马进, 简清, 等. 鲤鱼(Cyprinus capio)生长激素基因克隆及原核表达[J]. 中国生物化学与分子生物学报, 1999,15:409-412.
    [55] 劳海华, 白俊杰, 叶星, 等. 广东鲂和团头鲂生长激素 cDNA 的分子克隆和序列分析[J]. 农业生物技术学报, 2001,9:346-349.
    [56] 江世贵, 张殿昌. 鳗生长激素基因 cDNA 的分子克隆和序列分析[J]. 水产学报, 2003,10:97-101.
    [57] 宋平, 胡隐昌, 向筑, 等. 南方鲇生长激素完整 cDNA 的克隆及其 DNA 序列分析[J]. 水生生物学报, 2002,26:272-280.
    [58] 曹运长, 李文笙, 叶 卫, 等. 蓝太阳鱼生长激素全长 cDNA 的克隆与序列分析[J]. 水产学报, 2004,28:589-593.
    [59] 臧晓南, 刘 滨, 张学成, 等. 牙鲆生长激素基因的克隆及其在大肠杆菌中的融合表达[J]. 高技术通讯, 2005,15:99-104.
    [60] Koren Y, Sand S, Ber R, et al. Carp growth hormone: molecular and sequencing of cDNA [J]. Gene, 1989,77:309-315.
    [61] Agellon L B, Davies S L, Chen T T, et al. Structure of a fish (rainbow trout) growth hormone gene and its evolutionary implications. Proc Natl Acad Sci USA[J]. 1988b,85:5136-5140.
    [62] Her R, Daniel V. Structure and sequence of the growth hormone-encoding gene from Tiplapia nilotica[J]. Gene, 1992,113:245-250.
    [63] Yamada S, Hata JI. Yamashita S. Molecular cloning of fish pit-1 cDNA and its functional binding to promoter of gene expresses in the pituitary[J]. J. Biol. Chem, 1993,218:24361-24366.
    [64] Farchi-Pisanty C, Stemberg H. Moav B. Transcriptional regulation of fish growth hormone growth hormone gene[J]. Fish Physiol. Biochem, 1997:237-246.
    [65] Wong A O L, Le Drean Y, Lin D, et al. Induction of chincook salmon growth homrone promoter activity by cAMP-dependent pathway involves two cAMP-response elements with the CGTCA modif and the pituitary-specific transcription factor Pit-1[J]. Endocrinology, 1996,137:1775-1784.
    [66] Bernardini S, Argenton F, Vianello S, et al. Regulatory region in the promoter and third intron of the growth hormone gene in rainbow trout, Oncorgynchus mykiss walbawn[J]. Gen. Camp. Endocrinol, 1999,116:261-271.
    [67] Cuttler L, Glaum S R, Collins B A, et al. Calcium signalling in single growth Neuroendocrine regulation of GH secretion harmone-releasing factor- responsive pituitary cells[J]. Endocrinology, 1992,130:945-953.
    [68] Holloway A C, Leatherdand J F. Neuroendocrine regulation of growth hormone secretion in teleost fishes with emphasis on the involvement of gonadal sex steroids[J]. Reviews in Fish Biology and Fisheries, 1998:409-429.
    [69] de Vos A M, Ulrtsch M, Kossiakoff A A. Human growth hormone and extracellular domain of its receptor crytal structure of the complex[J]. Science, 1992,255:306-312.
    [70] Takagi Y, Moriyama S, Hirano T, et al. Effects of growth hormone on bone formation and resorption in rainbow trout (Oncorhynchus mykiss) as examed by histomorphometry of the pharyngeal bone[J]. Gen Comp Endocrinol, 1992,86:90-95.
    [71] Collie N L, Bolton J P, Kawauchi H, et al. Survival of salmonids in seawater and the time-frame of growth hormone action[J]. Fish Physiol Biochem, 1989:315-321.
    [72] Borski R J, Yoshikawa J S M, Madsen S S, et al. Effects of environmental salinity on pituitary growth hormone content and cell activity in the euryhaline tilapia, Oreochromis mossambicus[J]. Gen Comp Endocrinol, 1994,95:483-494.
    [73] 徐斌, 张培军, 李德尚. 鱼类生长激素的分离、鉴定及其功能研究的进展[J]. 海洋与湖沼,1997,28:209-214.
    [74] Higgs D A, Donaldson E M, Dye H M, et al. A preliminary investigation of the effect of bovine growth hormone on growth and muscle composition of coho salmon (Oncorhynchus kisutch)[J]. Gen Comp Endocrinol, 1975:240-253.
    [75] Gill J A, Donaldson E M, Donaldson E M. Recombinant chicken and bovine growth hormone sccelerate growth in aquacultured juvenile Pacific salmome Oncorhynchus kisutch [J]. Biotechnology, 1985:643-646.
    [76] Down N E, Donaldson E M, Dye H M, et al. Recombinant bovine somatotropin more than doubles the growth rate of coho salmon (Oncorhynchus kisutch) acclimated to seawater and ambient winter conditions[J]. Aquaculture, 1988,68:141-155.
    [77] Miao H Z, Zhang P J, Xu Y I, et al. Growth promotion of red sea bream, pagrosmus major, by oral administration of recombinant eel and salmon growth hormone[J]. Chinese Journal of Oceanology and Limnology, 2001:141-146.
    [78] Agellon L B, Davies S L, Chen T T, et al. Structure of a fish (rainbow trout) growth hormone gene and its evolutionary implications[J]. Proc Natl Acad Sci USA, 1988,85:513-514.
    [79] Sumpter J P. Control of growth of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture 100, 299-320, 1992,100:299-320.
    [80] Sumpter J P, Le Bail P Y, Pickering A D, et al. The efect of starvation on growth and plasma growth hormone concentrations of rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol, 1991a,83:94-102.
    [81] Sumpter J P, Lincoln R F, Bye V J, et al. Plasma growth hormone levels during sexual maturation in diploid and triploid rainbow trout (Oncorhynchus mykiss)[J]. Gen. Comp. Endocrinol, 1991b,83:103-110.
    [82] Le Bail P Y, Sumpter J P, Carragheretal J F. Development and validation of a highly sensitive radio immuno assay for Chinook salmon (Oncorhynchus tshawytscha) growth hormone[J]. Gen. Comp. Endocrinol, 1991,83:75-85.
    [83] Bjornsson B T, Ogasawara T, Hirano T, et al. Elevated growth hormone levels in stunted atlantic salmon, Salmo salar[J]. Aquaculture, 1988,73:275-281.
    [84] McLean E, Mayer l. Oncorhynchus kisutch[J]. Aquaculture, 1994,122:331-359.
    [85] Bjornsson B T, Yamauchi K, Nishioka R S. Efects of hypophysectomy and subsequent hormonal replacement therapy on hormonal and osmoregulatory status of coho salmon, Oncorhynchus kisutch[J]. Gen. Comp. Endocrinol, 1987,68:421-430.
    [86] Prunet P, Boeufq Bolton J P, Young G. Smoltification and seawater adaptation in Atlantic salmon (Salmo salar): plasma prolactin, growth hormone, and thyroid hormones[J]. Gen. Comp. Endocrinol, 1989,74:355-364.
    [87] McCormick S D. Corlisol directly stimulates diferentiation of chloride cells in tilapia opercular membrane[J]. Am J Physiol, 1990,259:R857-863.
    [88] Madsen S S. The role of cortisol and growth hormone in seawater adaptation and development of hypoosmoregulatory mechanisms in sea trout parr (Salmo truta truta)[J]. Gen. Comp. Endocrinol, 1990,79:1-11.
    [89] Sakamoto T, Shepherd B S, Madsen S S, et al. Osmoregulatory actions of growth hormone andprolactin in an advanced teleost. Gen. Comp. Endocrinol, 1997,106:95-101.
    [90] Barrett B A. McKeown B A. Plasma growth hormone levels in Salmo gairdneri: Studies on temperature and the exercise intensity/duration relationship[J]. Comp. Biochem. Physiol, 1989,94A:791-794.
    [91] Duan C P, lisetskaya E M, Plisetskaya E M. Insulin-like growth factor Ⅰ (IGF-Ⅰ ) mRNA expression in coho salmon, Oncorhynchus kisutch: tissue distribution and effects of growth hormone/prolactin family proteins[J]. Fish Physiol Biochem, 1993,11:371-379.
    [92] Duan C, Duan C M, Inui Y, et al. Effects of recombinant eel growth hormone on the uptake of [35S] sulfate by ceratobranchial cartilages of the Japanese eel, Anguilla japonica[J]. Gen. Comp. Endocrinol, 1990,79:320-325.
    [93] McCormick S P, McCormick S D, Tsai P I, et al. Hormonal control of sulfate uptake by branchial cartilage of coho salmon: role of IGF-I[J]. J Exp. Zool, 1992,262:166-171.
    [94] Perez-Sanchez J, Weil C, Le Bail P Y. Effects of human insulin-like growth factor-I on release of growth hormone by rainbow trout (Oncorhynchus mykiss) pituitary cells[J]. J Exp. Zool, 1992,262:287-290.
    [95] Higgs D A, Donaldson E M, Dye H M, et al. A preliminary investigation of the effect of bovine growth hormone on growth and muscle composition of coho salmon (Oncorhynchus kisutch)[J]. J. Fish. Res. Board. Can, 1976,33:1585-1603.
    [96] Le-Gac F, Ollitrault M, Loir M, et al. Evidence for binding and action of growth hormone in trout testis[J]. Biol. Reprod,1992. 949-957.
    [97] MacLatchy D L, Eales J G. Growth hormone stimulates hepatic thyroxin 5'-monodeiodinase activity and 3,5,3'-triiodothyronine levels in rainbow trout (Salmo gairdneri)[J]. Gen. Comp. Endocrinol, 1990,78:164-172.
    [98] Byamungu N, Comeillie S, Mol K, et al. Stimulation of thyroid function by several pituitary hormones results in an increase in plasma thyroxine and reverse triiodothyronine in tilapia (Tilapia nilotica)[J]. Gen. Comp. Endocrinol, 1990,80:33-40.
    [99] Young G. Enhanced response of the interrenal of coho salmon (Oncorhynchus kisutch) to ACTHafter growth hormone treatment in vivo and in vitro[J]. Gen. Comp. Endocrinol, 1988,71:85-92.
    [100]Idler D R, Fletcher G L, Belkhode S, et al. Regulation of antifreeze protein production in winter flounder: A unique function for growth hormone[J]. Gen. Comp. Endocrinol, 1989,74:327-334.
    [101]Cunning B C.Ultsch M, De Vos A M, et al. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule[J]. Science, 1991,254:821-825.
    [102]Santos, C. M. A, Kerkhof, P. and Strous, G. J. The signal transduction of the growth hormone receptor is regulated by the ubiquitin/proteasome system and continues after endocytosis[J]. The Journal Of Biological Chemistry, 2001,276:10839-10846.
    [103]Frank, S. J, Yi, W, Zhao, Y. M. et al. Regions of the JAK2 tyrosine kinase required for coupling to the growth hormone receptor[J],The Journal Of Biological Chemistry, 1995,270:14776-14785.
    [104]Argetsinger L S, Campbell G S, Yang X, et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase[J]. Cell, 1993,74:237-244.
    [105]Herrington J, Carter-Su C. Signaling pathways activated by the growth hormone receptor[J]. Trends in Endocrinology & Metabolism, 2001,12:252-257.
    [106]Argetsinger L S, CarterSu C. Mechanism of signaling by growth hormone receptor[J]. Physiological Reviews, 1996, 76: 1089-1107, 1996,76:1089-1107.
    [107]Ayson F G, de Jesus E. G, Amemiya Y, et al. Isolation, cDNA cloning and growth promoting activity of rabbitfish (Siganus guttatus) growth hormone[J]. Gen. Comp. Endocrinol, 2000,117:251-259.
    [108]Sagiya Y, Yamagata H, Ukada S. Direct high-level secretion into the culture medium of tuna growth hormone in biologically active form by Bacillus brevis[J]. Appl. Microbiol. Biotechnol, 1994,42:358-363.
    [109]Li Y H, Bai J J, Li X H, et al. Expression of common carp growth hormone in yeast P. pastoris[J]. Chin. J. Biochem. Mol. Biol, 2001,17:488-491.
    [110]Sekine S, Mizukami T, Nishi T, et al. Cloning and expression of cDNA for salmon growth hormone in Escherichia coli[J]. Prot, Nati. Aced. Sci. USA, 1995,82:4306-4310.
    [111]Ma, J, Bai J J, Li X H, et al. Expression of rainbow trout GH cDNA in yeast Saccharomyces cerevisiae[J]. Chin. J. Biotechnol, 1999,15:219-224.
    [112]Jeh H S, Kim C H, Lee H K, et al. Recombinant flounder growth hormone from Escherichia coli: overexpression, efficient recovery, and growth-promoting effect on juvenile flounder by oral administration[J]. Journal of Biotechnology, 1998,60:183-193.
    [113]Tsai H J, Lin K L, Chen T T. Molecular cloning and expression of yellowfin porgy (Acanthopagrus latus houttuyn) growth hormone cDNA[J]. Comp. Biochem. Physiol, 1993,104:803-810.
    [114]Ho W K, Meng Z Q, Lin H R, et al. Expression of grass carp growth hormone by baculovirus in silkworm larvae[J]. Biochimica et Biophysica Acta, 1998,1381:331-339.
    [115]Li Y H, Bai J J, Jian Q, et al. Expression of common carp growth hormone in the yeast Pichia pastoris and growth stimulation of juvenile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2003,216:329-341.
    [116]Ben-Atia I, Fine M, Tandler A, et al. Preparation of recombinant gilthead seabream (Spares aurata) growth hormone and its use for stimulation of larvae growth by oral administration[J]. Gen. Comp. Endocrinol, 1999,113:155-164.
    [117]温海深,林浩然,肖东, 等. 野生鲇鱼生长激素分泌的季节变化及其神经内分泌调控[J]. 动物学报, 2002,48:213-220.
    [118]Male R, Nerland A H, Lorens J B, et al. The complete nucleotide sequence of the Atlantic salmon growth hormone I gene[J]. Biochim. Biophys. Acta, 1992,1130:345-348.
    [119]McCormick A, Brady H, Theill L E, et al. Regulation of the pituitary-specific homeobox gene GHF1 by cell-autonomous and environmental cues[J]. Nature, 1990,345:829-832.
    [120]Dana S, Karin M. Induction of human growth hormone promoter activity by the adenosine 3',5'-monophosphate pathway involves a novel responsive elemen[J]. Mol. Endocrinol, 1989 3: 815-821:815-821.
    [121]Mordechai B, Michael K. A pituitary-specific trans-acting factor can stimulate transcription from the growth hormone promoter in extracts of nonexpressing cells[J]. Cell, 1987,50:267-275.
    [122]Peter R E. Structure-activity studies on gonadotropin-releasing hormone in teleosts amphibians,reptiles and mammals [J]. Prog. Clin. Biol. Res, 1986:75-93.
    [123]Theill L E, Castrillo J L, Wu D, et al. Dissection of functional domains of the pituitary-specific transcription factor GHF-1[J]. Nature, 1989,342:945-948.
    [124]Peng C, Peter R E. Neuroendocrine regulation of growth hormone secretion and growth in fish[J]. Zoological Studies, 1997, 36(2): 79-89.
    [125]Andrews P C, Pubols M H, Hermodson M A, et al. Structure of the 22-residue somatostatin from catfish: and 0-glycosylated peptide having multiple forms[J]. J Biol Chem, 1984, 259: 13267-13272.
    [126]Conlon J M, Deacon C F, Hazon N, et al. Somatostatin-related and glucagon-related peptides with unusual structural features from the European eel (Anguilla anguilla) [J]. Gen Comp Endocrinol, 1988, 72: 181-189.
    [127]Moore C A, Kittilson J D, Dahl S K, et al. Isolation and characterization of a cDNA encoding for preprosomatostatin containing [Tyr7,Gly10]-somatostatin-14 from the endocrine pancreas of rainbow trout, Oncorhynchus mykiss [J]. Gen Comp Endocrinol, 1995, 98: 253-261.
    [128]Marchant T A, Peter R E. Hypothalamic peptides influencing growth hormone secretion in the goldfish, Carassius auratus[J]. Fish Physiol Biochem, 1989a, 7: 133-139.
    [129]Marchant T A, Peter R E. Seasonal variations in body growth rates and circulating levels of growth hormone in the goldfish, Carassius auratus[J]. J Exp Zool, 1986, 237: 231-239.
    [130]Merchant T A, Chang J P, Nahorniak C S, et al. Evidence that gonadotropin-releasing hormone also functions as a growth hormone- releasing factor in the goldfish[J]. Endocrinology, 19896, 124: 2509-2518.
    [131]Cook A F, Peter R E. The effects of somatostatin on serum growth hormone levels in the goldfish, Caressius auratus[J]. Gen Comp Endocrinol, 1984, 54: 109-113.
    [132]Marchant T A, Fraser R A, Andrews P C, et al. The influence of mammalian and teleost somatostatins on the secretion of growth hormone from goldfish (Carassius auratus L.) pituitary fragments in vitro[J]. Regul Peptides, 1987, 17: 41-52.
    [133]Lin X W, Lin H R, Peter R E. Growth hormone and gonadotropin secretion in the common carp (Cyprinus carpio L.): in vitro interactions of gonadotropin-releasing hormone, somatostatin, and the dopamine agonist apomorphine[J]. Gen Comp Endocrinol, 1993, 89: 62-71.
    [134]Lescroart O, Roelants I, Milolajczyk T. A radioimmunoassay for African catfish growth hormone: validation and effects of substances modulating the release of growth hormone[J]. Gen Comp Endocrinol, 1996, 104: 147-155.
    [135]Melamed P, Rosenfeld H, Elizur A, et al. Endocrine regulation of gonadotropin and growth hormone gene transcription in fish[J]. Comp Biochem Physiol, Part C, 1998, 119: 325-338.
    [136]Pan J X, Lechan R M, Lin H D, et al. Multiple forms of human pancreatic growth hormone-releasing factor-like immunoreactivity in teleost brain and pituitary[J]. Endocrinology, 1985, 116: 1663-1665.
    [137]Moons L, Cambre M, Ollevier F et al. Immunocytochemical demonstration of close relationships between neuropeptidergic nerve fibers and hormone-producing cell types in the adenohypophysis of the sea bass (Dicentrarchus labrax)[J]. Gen Comp Endocrinol, 1989, 73: 270-283.
    [138]Parker D B, Sherwood N M. Evidence of a growth hormone-releasing-like molecule in salmon brain, 0ncorhynchus keta and O.Kisutch[J]. Gen Comp Endocrinol, 1990, 79: 95-102.
    [139]Vaughan J H, Rivier J, Spiess J, et al. Isolation and characterization of hypothalamic growth -hormone releasing factor from common carp, Cyprinus carpio[J]. Neuroendocrinology, 1992, 56: 539-549.
    [140]Parker D B, Coe I R, Dixon G H, et al. Two salmon neuropetptides encoded by one brain cDNA arestructurally related to members of the glucago super-family[J]. Eur J Biochem, 1993, 215: 439-448.
    [141]McRory J E, Parker D B, Ngamvongchon S, et al. Sequence and expression of cDNA for pituitary adenylate cyclase activating polypeptide (PACAP) and growth hormone-releasing hormone (GHRH)-like peptide in catfish[J]. Mol Cell Endocrinol, 1995, 1085: 167-177.
    [142]林浩然.神经内分泌因子调控鱼类生殖和生长的相互作用[J].动物学研究,2000, 21(1): 12-16.
    [143]Amano M, Okuzawa K, Yanagisawa T, et al. Immunoreactive gonadotropin-releasing hormone (ir-GnRH) in the carp brain[J]. Nippon Suisan Gakkaishi, 1992, 58: 593.
    [144]Yu K L, Sherwood N M, Peter R E. Differential distribution or two molecular forms of gonadotropin-releasing hormone in discrete brain areas of goldfish (Carassius auratus) [J]. Peptides, 1988, 9: 625-630.
    [145]Chang J P, Cook H, Freedman G, et al. Use of a pituitary cell dispersion method and primary culture system for the studies of gonadotropin-releasing hormone action in the goldfish, Caressius suratus[J]. Gen Comp Endocrinol, 1990a, 77: 256-273.
    [146]Lin H R, Lu M, Lin X W, et al. Effects of gonadotropin-releasing hormone (GnRH) analogs and sex steroids on growth hormone (GH) secretion and growth in common carp (Cyprinus carpio) and grass carp (Ctenopharyngodon idellus) [J]. Aquaculture, 1995a, 135: 173-184.
    [147]Melamed P, Eliahu N, Levavi-Sivan B, et al. Hypothalamic and thyroidal regulation of growth hormone in tilapia [J]. Gen Comp Endocrinol, 1995, 97: 13-30.
    [148]Lin H R, Zhang Q, Peter R E. Effects of recombinant tuna growth hormone and analogs of gonadotropin-releasing hormone on growth of grass carp (Ctenopharyngodon idellus) [J]. Aquaculture, 1995b, 129:342.
    [149]Bjornsson B T, Stefansson S O, Hansen T. Photoperiod regulation of plasma growth hormone levels during parr-smolt transformation of Atlantic salmon: implications for hypoosmoregulatory ability and growth[J]. Gen Comp Endocrinol, 1995, 100: 73-82.
    [150]Cook H, Berkenbosch J W, Fernhout M J et al. Demonstration of gonadotropin-releasing- hormone receptors on gonadotrophs and somatotrophs of the goldfish: an electron microscope study[J]. Regul Peptides, 1991, 36: 369-378.
    [151]Chang J P, Van Goor F, Jobin R M, et al. GnRH signaling in goldfish pituitary cells. Biol Signals [J], 1996, 5: 70-80.
    [152]Mahmoud S S, Moloney M M, Habibi H R. Cloning and sequencing of the goldfish growth hormone cDNA [J]. Gen Comp Endocrinol, 1996, 101: 139-144.
    [153]Melamed P, Gur G, Elizur A, et al. Differential effects of gonadotropin-releasing hormone, dopamine and somatostatin and their second messengers on the mRNA levels of gonadotropin II β subunit and growth hormone in the teleost fish, tiplapia[J]. Neuroendocrinology, 1996, 64: 320-328.
    [154]Taniyama S, Kitahashi T, Ando H, et al. Effects of gonadotropin-releasing hormone analog on expression of genes encoding the growth hormone / prolactin / somatolactin family and a pituitary-specific transcription factor in the pituitaries of prespawning sockeye salmon[J]. Gen Comp Endocrinol, 2000, 118:418-424.
    [155]Gomez J M, Boujard T, Boeuf G, et al. Individual diurnal plasma profiles of thyroid hormones in rainbow trout (Oncorhynchus mykiss) in relation to cortisol, growth hormone, and growth rate[J]. Gen Comp Endocrinol, 1997, 107: 74-83.
    [156]陈松林. 鱼类生长内分泌学和鱼类养殖[J]. 水产学报,1992, 16(1): 91-100.
    [157]Tanaka M, Tanangonan J B, Tagawa M, et al. Development of the pituitary, thyroid and interrenal glands and applications of endocrinology to the improved rearing of marine fish larvae[J]. Aquaculture, 1995, 135: 111-126.
    [158]Schreiber A M and Specker J L. Metamorphosis in the summer flounder (Paralichthys dentatus): stage-specific developmental response to altered thyroid status [J]. Gen Comp Endocrinol, 1998, 111: 156-166.
    [159]Ayson F G, Lam T J. Thyroxine injection of female rabbitfish (Siganus guttatus) broodstock: changes in thyroid hormone levels in plasma, eggs, and yolk-sac larvae, and its effect on larval growth and survival [J]. Aquaculture, 1993, 109: 83-93.
    [160]Huang L Y, Specker J L, Bengtson D A. Effect of triiodothyronine on the growth and survival of larval striped bass (Morone saxatilis) [J]. Fish Physiol Biochem. 1996, 15(l): 57-64.
    [161]Zhu Z, He L, Chen T T. Primary-structural and evolutionary analyses of the growth- hormone gene from grass carp [J]. Eur J Biochem, 1992, 207: 643-648.
    [162]Farchi-Pisanty O, Sternberg H, Moav B. Transcriptional regulation of fish growth hormone gene [J]. Fish Physiol Biochem, 1997, 17: 237-246.
    [163]Lescroart O, Roelants I, Cauwenberghs N, et al. Effect of route and frequency of administration of apomorphine on growth hormone release in African catfish (Clarias gariepinus) [J]. Life Sciences, 1997, 60: 1771-1779.
    [164]王黎,林浩然,张为民. 阿扑吗啡对 LHRH-A 促进鲤鱼 GtH 和 GH 分泌的影响[J]. 中山大学学报,1997, 36(1): 119-121.
    [165]林信伟,林浩然,张 庆.促性腺激素释放激素类似物促进鱼类生长激素分泌和生长[J]. 水产学报,1993, 17(4): 282-288.
    [166]陈松林.鱼类多肽激素基因工程研究进展及展望[J].水产学报, 1993,17(3): 264-273.
    [167]Chang J P, Yu K L, Wong A O L, et al. Differential actions of dopamine receptor subtypes on gonadotropin and growth hormone release in vitro in goldfish. Neuroendocrinology, 1990b, 51: 661-674.
    [168]Peter R E. The efects of goidthioglucoseon food intake, growth and forebrain histology in goldfish, Carassius auratus[J]. Physipl. Beav, 1976, 17: 303-312.
    [169]Cook A F, Wilson S W, Peter R E. Development and validation of a carp growth hormone radio immuno assay [J]. Gen. Comp. Endocrinol, 1983, 50: 335- 347.
    [170]Wagner G F, Mckeown B A. Development of a Salmon growth hormone radio immuno assay [J]. Gen. Comp. Endocrinol, 1986, 62: 452-458.
    [171]Bolton J R,Takahashi A, Kawauchietal H. Development and validation of a salmon growth hormone radio immuno assay [J]. Gen. Comp. Endocrinol, 1986, 62: 230-238.
    [172]Ayson F G. Efects of. acclimation to hypertonic environment on plasma and pituitary levels of two prolactin and growth hormone in two species of tilapia, Orepchromismos sambicus and Orepchromisniloticus [J]. Gen. Comp. Endocrinol, 1993, 89: 138 -148.
    [173]Kishida M, Hirano T. Development of radio immuno assay for eel growth hormone [J]. Nip. Suis. Cakkaish, 1988, 54: 1321-1327.
    [174]Marohelidon J. Development of a radio immuno assay for European eel growth hormone andapplication to the study of silverin gand experimental fasting [J]. Gen. Comp. Endocrinol, 1996,102:360-369.
    [175]Lescroart O, Roklants I, Mikolajczyketal T. A radio immuno assay for African catfish growth hormone: Validation and efects of substances modulating the release of growth hormone. Gen. Comp. Endocrinol, 1996, 104:147-155.
    [176]Furuya A. Gene ration and application of monoclonalantibodiesagainst salmon somatotropin and prolactin. Agric. Bio. Chem, 1987, 51: 2331-2335.
    [177]Farbridge K J, Leatherland J F. The development of anoncompetitive enzyme linkes immuno sorbent assay for oncorhynchid growth hormone using monoclonalantibodies Gen. Comp. Endocrinol, 1991, 82: 7-17.
    [178]Fukada H, Hiramatsu N, Hara A. Asensitivenon competitive avidin biotinenzyme linked immuno sorbent assay for chumsalmon (Oncorhynchus keta) growth hormone. Fish Physiology and Biochemistry, 1997, 17(1-6) 253-259.
    [179]Chen Song lin, Chen Xi hua, Den Wen tao et al. Development and validation of an on comeptitive enzyme linked immuno sorbent assay for the growth hormone of grass. Carp (Ctenopharyngodon idellus). Acta Zoologica Sinica, 1996, 42(4): 386-393.
    [180]Donaldson E M, Fagerlund V H M. Hormonal enhancement of growth in fish. In: Hoar, W. S, Randall, O.J. Bret, J. R, eds. Fish Physiology. VoL8, Bionenergetics and Growth. NewYork: Academic Press, 1979, 455-597.
    [181]Mclean E, Donaldson E M. The role of growth hormone in growth of poikilotherms. In: Schriebman, M. P, Scanes, C. G, Pang, P. K. T, eds. The Endocrinology of Growth, Development and Metabolism in Vertebrates. SanDiego: Academic Press, 1993, 43-71.
    [182]Mclean E, Donaldson E M. The absorption of bioactive proteins by the fish gastointestinaltract: Areview[J]. J. Aquat. Anitn. Health, 1990, 2: 1-11.
    [183]Peter R E, Marchant T A, The endocrinology of growth incarpandrelated species[J]. Aquaculture, 1995, 129: 299-321.
    [184]Sir M F, Vemier J M. Intestinal absorption of protein in teleost fish[J]. Comp. Biochem. Physiol, 1992, 103A: 771-781.
    [185]Lebail P Y, Sire M F, Vernier J M. Intestinal transfer for growth hormone into the circulatory system of the rainbow trout Salmogairdneri: interference by granulecell [J]. J Experimental Zoology, 1989,251:101-107.
    [186]Moriyama S. Oraladministration of recombinant salmon growth hormone to rainbow trout (Oncorhynchus mykiss)[J]. Aquculture, 1993, 112: 99-106.
    [187]尾崎夕雄.鱼类消化生理(吴尚忠译)[M].上海科技出版社,1983.
    [188]Hertz, Y. Tchelet, A, Madar, Z, Gerder, A. Absorption of bioactive human growth hormone after oraladministration in the common carp (Cyprimus carpio) and its enhancement by deoxycholate[J]. Comp. Physiol, 1991, 161B: 159-163.
    [189] Brian S, Shepher D. Somatotropicactions of the homologous growth hormone and prolactins in the euryhalineteleost, the tilapia, Oreochromismos sambicus [C]. Proc. Nail. Acad. Sci. U S A, 1997, 94: 2068-2072.
    [190]孙逊,朱尚权.生长激素的结构与功能[J].国外医学生理、病理科学与临床分册,1999, 19(1): 6-9.
    [191]Gorden J W, Scangos G A, Plotkin D J, et al. Genetic transformation of mouse embryos by microinjection of purified DNA[J]. Proc Nad Acad Sci. USA, 1980, 77: 7380-7384.
    [192]Brinster R L, Chen H Y, Trumbauer M, et al. Somatic expression of herpes thymidme kinase in mice folowing injection of a fusion gene into eggs[J]. Cell, 1981, 27: 223-231.
    [193]Palmiter R D,Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggs microinjected with metalothionein growth hormone fusion genes. Nature (London), 1982, 300: 611-615.
    [194]McMahon A P, Flytzanis C N, Houg-Evans B R, et al. Introduction of cloned DNA into sea urchin egg cytoplasm replication and persistence during embryogenesis. Dev. Biol, 1985, 108: 420-430.
    [195]Xu N, Niemeyer C C, Gonzalez-Rimbau M, et al. Distal cis-acting elements restrict expression of the CyⅢ b actin gene in the aboral ectoderm of the sea urchin embryo. Mechanisms of Developmmt, 1996, 60(2): 151-162.
    [196]Spradling A C, Rubin C M. Transposition of cloned P elements into Drosophila germ line chromosomes[J]. Science, 1982, 218: 341-347.
    [197]Spradling A C, Rubin C M. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene[J]. Cell, 1983, 34: 47-57.
    [198]Rusconi S, Schaffner W. Transformation of frog embryos with a rabbit β-globin gene[J]. Proc Natl. Acad Sci. USA, 1981, 78: 5051-5055.
    [199]Etkin L D, Pearman B, Roberts M, et al. Replication, integration and expression of exogenous DNA injected into fertilized eggs of Xenopus Laevis[J]. Diferentiation, 1984, 26:194-202.
    [200]Edrin L D, Baktesh S L. Transformed Xenopus embryos as a transient expression system to analyze gene expression at the midblastula transition[J]. Dev Biol, 1985, 108: 173-178.
    [201]Brem G, Brenig B, Goodman H M, et al. Production of transgenic mice, rabbits and Pigs by microinjection into pronucle[J]. Zuchthygiene, 1985, 20: 251-252.
    [202]Hammer R E, Pursel V G, Reroad C E, et al. Production of transgenic rabbits, sheep and pigs by microinjection[J]. Nature (London), 1985, 315:680-683.
    [203]Church R R. Embryo manipulation and gene transfer in domestic animals [J]. Trends Biotechnol, 1987, 5: 13-19.
    [204]Clark A J, Simons P, Wilmut L, et al. Pharmaceuticals from transgenic livestock [J]. Trends Biotechnol,1987, 5: 20-24.
    [205]Punsel V G, RexroadJr C E. Status of research with transgenic farm animals [J]. J. Anim. Sci, 1993, 71(SuppL 3): 10-19.
    [206]Zhu Z, Li G, He L, et al. Novel gene transfer into the fertilized eggs of goldfish (Carassius auratus) [J]. Z. Angew. Ichthyol, 1985, 1: 32-34.
    [207]Fletcher G L, Davies P L. Transgceic fish for aquaculture [J]. Genet. Engineering, 1991, 13: 331-370.
    [208]Ozata K, Kondoh H, Inohara H, et al. Production of transgenic fish: introduction and expression of chicken β -crstaline gene in medaka embryos [J]. Cel. Difer. Dev, 1986, 19: 237-244.
    [209]Stuart G W, McMurray J V, Westerfield, M. Replication, integration and stable Germiline transmission of foreign sequences injected into early zebrafish embryos [J]. Development, 1988, 103: 403-412.
    [210]Stunt G W, Vieldnd J R, McMuray J V. and Westafield, M. Germ-line transmission and variegatedexpression of a foreign gene in transgenic zebrafish[J]. Development, 1990, 109: 577-584.
    [211]Chounout D, Guymard R, Houdebine L. High efficiency gene transfer in rainbow trout (Sabno girdneri) by microinjectien into egg cytoplasm [J]. Aqucalture, 1986, 51: 143-150.
    [212]Guyomard R, Chounutrt D, Leraux C, et al. Integration and germ line transmission of foreign genes microinjected into fertilized trout eggs [J]. Biochemic, 1989, 71: 857-863.
    [213]Inoue K, Ozato K, Kondoh H, et al. Stage-dependent expression of the chicken delta-crystalline gene in transgenic fish embryos[J]. Cell Diff. Dev,1989, 27: 57-68.
    [214]Chong S S C, Viellrind J R. Expression and fate of CAT reporter gene microinjected into fertilized medaka (Oritias latipes) eggs in the form of plasmid DNA, recombinant phage particles and its DNA[J]. Theor. Appl. Genet, 1989, 78:369-380.
    [215]Maclean N, Penman D, Zhu Z. Introduction of novel genes into fish[J]. BioTechnology, 1987, 5: 257-261.
    [216]Fletcher G L, Shears M A, King M J, et al. Evidence for antifreeze protein gene transfer in Atlantic salmon (Sabrro solar) [J]. Can. J. Fish. Aquat. Sci, 1988, 45: 352-357.
    [217]RoWones E, Alestrom P, Skjervold H, et al. Microinjection and expression of a mouse metallothionein human growth hormone fusion gone in fertilized salmonid eggs [J]. J. Comp. PhYSIOUB), 1989, 158: 751-758.
    [218]McEvoy T, Stack M, keane B, et al. The expression of a foreign gene in salmon embryos [J]. Aquaculture, 1988, 68: 27-37.
    [219]Brem G, Bmnig B, Horstgen-Schwadc G, et al. Gene transfer in tilapia (Oreochrwnis niloticus) [J]. Aquculture, 1988, 68: 209-219.
    [220]Rahman M A, Maclean N. Production of transgenic tilapia (Oreochromis niloticus) by one-cell-stage microinjection [J]. Agtuuculture, 1992, 105: 219-232.
    [221]Yoon S J, Hallerman E M, Gross M L, et al. Transfer of the Gene for neomycin resistance into Goldfish, Carassius auratus [J]. Aquaculture, 1990, 85:21-23.
    [222]Guise K S, Hackett P R, Faras A J. Transfer of genes encoding neomycin resistance, ch1loramphenicol acetyl transferase, and growth hormone into goldfish and northern pike. In Transgenic fish. World Scientific publishing Co, Singapore, 1992, pp: 142-163.
    [223]Hallerman E M, Schmeider J F, Gross M, et al. Tissue specific gene expression promoted by the RSV long terminal repeat element on transgenic goldfish[J]. Anim. Biotech, 1990, 1: 79-93.
    [224]Dunham R A, Eash J, Askins J, et al. Transfer of the metallothionein-human growth hormone fusion gene into channel catfish [J]. Trans. Am. Fish. Soc, 1987, 116: 87-91.
    [225]Durham R A, Ramboux A C, Duncan P L, et al. Transfer, expression, and inheritance of salmonid growth hormone gene in channel catfish, Ictalarus punctatus, and effect on performance traits [J]. Mol. Mar. Biol. Biotechnol, 1992, 1: 380-389.
    [226]Powers D A. Gene transfer, expression and inheritance of pRSV- rainbow trout GH-cDNA in the common carp, Cyprinus carpio (Linnaeus) [J]. Mol Repro Dev, 1990, 25: 23-31.
    [227]Liu Z, Moav B, Faras A J, et al. Development of expression vectors for transgenic fish [J]. Bio/Technolog, 1990, 8: 1268-1272.
    [228]Eiichi T, Tomoyasu S, Kazuyoshi M, et al Spatial imaging of luciferase gene expression in transgenic fish [J]. Nucleic Acids Res, 1990, 18(4): 1072.
    [229]魏彦章.鱼类基因工程研究的现状和展望[J].水生生物学报,1992, 16(1): 71-78.
    [230]简 清,白俊杰. 饲料中添加重组鱼生长激素对罗非鱼鱼种的促生长作用研究[J].淡水渔业,1999,29(3):3-5.
    [231]白俊杰,简 清. 鲑鱼生长激素 cDNA 在大肠杆菌中的表达及表达产物对罗非鱼促生长作用[J]. 农业生物技术学报, 1998, 6(4): 343-346.
    [232]陈丹,王玮.鲈鱼生长激素在甲醇酵母中的胞内表达[J]. 生物化学与生物物理进展,1998, 25(1): 140-143.
    [233]马进,白俊杰. 虹鳟生长激素 cDNA 在醉母中的表达[J]. 生物工程学报,1999, 15(4): 434-438.
    [234]巫爱珍,孙玉昆. 基因工程鱼生长激素的生产研究[J]. 生物工程学报,1997, 13(2): 200-205.
    [235]白俊杰,马进. 鲤鱼生长激素基因克隆及原核表达[J].中国生物化学与分子生物学学报,1999, 15(3): 409-412.
    [236]单元勋,杜启艳,等. 河南淇河鲫(Carassius auratus gibelio var)的生物学[J]. 河南师范大学学报.1985, 3: 58-62.
    [237]孙兴旺. 淇河鲫(Carassius auratus gibelio var)的生物学特征[J]. 淡水渔业, 1986, (2): 5-8.
    [238]楼允东 张英培等. 淇河鲫细胞遗传学和同功酶的初步研究[J]. 水产学报. 1989, 13(3): 254-258.
    [239]冯建新,张西瑞. 淇河鲫的 RAPD 标记及遗传多样性[J]. 海洋湖沼通报.2003, 4: 90-94.
    [240]冯建新 惠筠等. 淇河鲫与彭泽鲫的生物学性状比较研究[J]. 淡水渔业, 2004, 34(4):27-29.
    [241]高春生,齐子鑫. 淇河鲫鱼(Carassius auratus gibelio var)消化酶活性研究[J]. 水利渔业, 2006, 26(1): 7-8.
    [242]高春生,肖传斌,等. 淇河鲫鱼与普通鲫鱼消化酶活性研究[J]. 广东农业科学, 2006, 4: 72-74.
    [243]高春生,杨国宇,等. 黄霉素对淇河鲫鱼(Carassius auratus gibelio var)生长性能、体成分和消化酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2007, 30(12):91-98.
    [244]Pellett P L, Young V R, Nutritional Evaluation of Protein Foods. The United National University, Printed in Japan,1980. 26-29.
    [245]赵法仍, 郭俊生, 陈洪章, 等. 大豆平衡氨基酸营养价值的研究[J]. 营养学报,1986 , 8 (2) : 153-159.
    [246]严安生, 熊传喜, 钱健旺, 等. 鳜鱼含肉率及鱼肉营养价值的研究[J]. 华中农业大学学报, 1995, 14(1): 80-84.
    [247]胡 玫, 张中英, 吴福煌. 尼罗罗非鱼与莫桑比克罗非鱼的含肉率及鱼肉生化分析[J]. 淡水渔业, 1982, (4): 34-37.
    [248]马仲波, 张兴忠, 仇潜如, 等. 元江鲤与荷包红鲤的生态类型及其杂交后代(荷元鲤) 经济性状的分析[J]. 水产学报, 1981, 5(3): 187-198.
    [249]汪名芳. 异育银鲫与本地鲫营养成分及相关指标的比较[J]. 水产科技情报, 1984, 1: 19-20.
    [250]汪学杰, 熊晓钧. 彭泽鲫鱼营养成分的测试报告[J]. 江西水产科技, 1992, 1: 8-10.
    [251]孔晓荣. 鳗鱼肌肉的氨基酸及营养价值[J]. 氨基酸和生物资源, 1995, 17(2): 33-35.
    [252]柳琪, 滕葳, 张炳春. 中华鳖氨基酸和微量元素的分析与研究[J]. 氨基酸和生物资源, 1995, 17(1):18-21.
    [253]Makert J R, Higgs D A, Dye H M, et a1. Influence of bovine growth hormone on growth rate, appetite, and food conversion of yearling coho salmon (Oncorhynchus kisutch) fed two diets of different composition[J]. Can J Zool, 1977, 55: 74-83.
    [254]Agellon L B, Emery C J, Jone J M, et a1. Promotion of rapid growth of rainbow trout(Salmogairdneri)by a recombinant fish growth hormone[J]. Can J Fish Aquat Sci, 1988, 45: 146-151.
    [255]崔宗斌, 朱作言. 鱼类基因转移育种的几个问题[J]. 生物技术通报, 1998, 5: 1-10.
    [256]Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs [J]. Nucleic Acids Res, 1987, 15: 8125-8148.
    [257]Rentier-Delrue F, Swennen D, Philippart J C, et a1. Tilapia growth hormone: molecular cloning of cDNA and expression in Escherichia coil[J]. DNA, 1989, 8: 271-278.
    [258]Knibb W, Robins A, Crocker L, et a1. Molecular cloning and sequencing of Australian black bream acanthopagrus butcheri and barramundi Lates calcarifer fish growth hormone cDNA using polymerase chain reaction[J]. DNA Seq, 1991, 2(2): 121-123.
    [259]Venugopai T, Anathy V, Pandian T J, et al. Molecular cloning of growth hormone-encoding cDNA of an Indian major carp, Labeo rohita, and its expression in Eschedchia coli and zebrafish[J]. Gen Comp Endocrinol, 2002, 125: 236-247.
    [260]Wallis M. The molecular evolution of vertebrate growth hormones: a pattern of near-stasis interrupted by sustained bursts of rapid change[J]. Mot Evol, 1996, 43:93-100.
    [261]Walis, M. Molecular evolution of growth hormone (GH) in Cetartiodactyla: cloning and characterization of the gene encoding GH from a primitive ruminant, the Chevrotain (Tragulus javanicus) [J]. Gen.Comp.Endo, 2001, 123: 62-72.
    [262]Rahman M A, Mak R, Ayad H, et a1. Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus)[J]. Transgenic Research, 1998, 7: 357-369.
    [263]Nam Y K, Noh J K, Cho Y S, et a1.Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis[J]. Transgenic Research, 2001, 10: 353-362.
    [264]喜菊, 夏 春, 汪 明. 水牛 α-干扰素基因的克隆与表达及其抗病毒活性[J]. 农业生物技术学报, 2004, 12(3): 288-293.
    [265]刘 淼, 杨致邦, 林珊珊, 等. 幽门螺杆菌 vacA 毒性片段与 hpaA 融合基因的原核表达[J]. 世界华人消化杂志, 2004,12:1096-1099.
    [266]张智清, 张颖, 路秀华, 等. 人粒细胞-巨噬细胞集落刺激因子 cDNA 5'端的修饰提高其在大肠杆菌中的表达[J]. 病毒学报, 1991, 6: 136-142.
    [267]阎锡蕴, 汤 健, 吴小平, 等. 血管内皮生长因子人单链抗体-基因克隆高效表达亲和力成熟及生物活性鉴定[J]. 中国科学, 2000, 30(4): 394-400.
    [268]Varenne S, Buc J, Lloubes R, et al. Translation is non-uniform process: Effect of tRNA availability on the rate of elongation of nascent polypeptide chain[J]. J Mol Biol, 1984, 180: 549-576.
    [269]Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and selective codon usage in efficiently expressed genes[J]. Gene, 1982, 18: 199-209.
    [270]Varenne S, Baty D, Verheij H, et al. The maximum rate of gene expression is dependent on the downstream context of unfavourable codon[J]. Biochimie, 1989, 71: 1221-1229.
    [271]Yarus M, Folley L S. Sense codons are found in specific contexts [J]. J. Mol Biol, 1085, 82: 529-540.
    [272]Guisez Y, Robbens J, Remaut E, et al. Folding of the MS2 coat protein in Escherichia coli is modulated by translational pauses resulting from mRNA secondary structure and codon usege: A hypothesis[J]. J Theor Biol, 1993, 162: 243-252.
    [273]Ellis S B, Brust P F, Koutz P J, et al. Isolation of alcohol oxidase and two others methanol regulatable genes from the yeast Pichia pastoris[J]. Mol Cell Biol, 1985, 5: 1111-1116.
    [274]Cregg J M, Barringer K J, Hessler A Y, et al. Pichia pastoris as a host system for transformations[J]. Mol Cell Biol, 1985, 5: 3376-3382.
    [275]陈莉, 邓文汉, 卢菀华, 等. 大黄鱼生长激素基因的克隆与表达[J]. 福州大学学报(自然科学版), 2004, 12(6): 754-758.
    [276]王涛, 周先碗, 胡美浩. 人尿激酶原在大肠杆菌中表达的研究[J]. 北京大学学报, 2000, 36(6): 802-807.
    [277]王立新, 白俊杰, 叶星, 等. 草鱼 MyoD 基因原核表达研究[J]. 西北农林科技大学学报(自然科学版), 2006,34:6-10.
    [278]贾盘兴, 蔡金科. 微生物遗传学实验技术[M]. 科学技术出版社, 1992 年 9 月, 北京.
    [279]J. 萨姆布鲁克斯,DW. 拉塞尔著,黄培堂主译.分子克隆实验指南[M].北京, 科学出版社,2002 年.
    [280]Macauley-Patrick S, Fazenda M L, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system[J]. Yeast, 2005, 22: 249-270.
    [281]杜中军, 朱水芳, 黄文胜, 等. 毕赤酵母外源基因表达系统研究进展[J]. 生物技术通报, 2004, 4: 7-11.
    [282]王炎林, 许崇波. 巴斯德毕赤酵母表达系统研究进展[J]. 大连大学学报, 2006,27:67-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700