用户名: 密码: 验证码:
基于FACTS装置的阻尼控制器设计及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代电力系统网络规模的不断扩大,电网互联程度的提高和运行方式的多样性,电力系统的运行和控制变得日益复杂。FACTS控制器是增强输配电系统的可控性和灵活性,提高运行的稳定性和经济性的有效技术手段。随着FACTS装置在电力系统中的广泛应用,研究FACTS装置的控制方法以及FACTS装置的协调控制问题具有重要的意义。第一,互联电网的增多使得大系统之间的功率振荡现象时有发生,系统小干扰稳定性问题更为突出。基于FACTS装置的阻尼控制器设计及阻尼控制策略的研究成为重要的研究领域。第二,FACTS装置能够实现电压控制、潮流控制、无功补偿、阻尼振荡等多种功能,其阻尼控制策略需要考虑对其他控制目标的影响,即单个控制器的多目标协调问题。第三,随着电力系统中控制器数量和种类的增多,控制器之间的交互影响可能会影响彼此的控制效果,在设计控制器时应予以考虑,即多个控制器的协调控制问题。
     生物免疫系统中蕴涵着丰富而高效的信息处理机制,可以有效地处理人体内部和外界环境的各种扰动和不确定性情况,是复杂的自适应系统。工程中的控制问题与免疫系统的应答过程有许多相似之处,免疫调节机制和基于免疫网络的多抗原多抗体协调机制对于FACTS控制器的设计和协调控制有很强的启发性和借鉴意义。
     本文主要围绕基于FACTS装置的阻尼控制器设计以及基于人工免疫调节机制的FACTS装置的控制策略来开展工作,全文包括以下几部分内容:
     第一部分用转矩分析和能量函数分析两种方法分别解释了FACTS阻尼电力系统功率振荡的原理,并提出了相应的阻尼控制策略。首先,在电力系统线性化模型的基础上,分析了安装FACTS装置前后发电机的电磁转矩的变化,从阻尼转矩分析的角度说明了抑制功率振荡的原理。然后,定义了区域间功率振荡的能量函数,它的大小可以看作是系统在动态过程中偏离事故后稳定平衡点的程度,其值越小,说明系统越逼近稳定状态。分析了功率振荡过程中能量函数的变化,提出了衰减振荡能量的阻尼控制策略,目的是使系统暂态能量以最快的速度归零,即回到故障后的稳定平衡点。并提出了SVC和TCSC两种常用的FACTS装置的阻尼控制策略。
     第二部分采用Prony分析辨识系统传递函数,用补偿留数相位的方法设计FACTS阻尼控制器,提出了输入信号的选择方法。在应用Prony方法对电力系统仿真信号进行分析的过程中,选取特定形式的小扰动作为输入信号,根据对应的输入、输出信号中包含的模态的关系,推导出系统的传递函数。根据传递函数可以得到系统的主导振荡模式及留数等信息,避免了复杂的特征值分析。在此基础上采用补偿留数相位的方法设计阻尼控制器,配置控制装置的内部参数。针对区域间振荡在不同的运行方式下,两区域间的功率传输可能为双向的,提出了输入信号的选择不但要考虑留数模的大小,还要考虑在不同的运行方式下留数相位的变化,以保证控制的鲁棒性。并提出了根据传输功率水平调整控制器增益的方法。所提出的设计方法,不涉及控制装置的内部结构,适应性强,避免了复杂的特征值计算,易于实现。仿真研究表明,用Prony分析辨识得到的系统模型与实际系统的幅频、相频特性一致,适合用于阻尼控制器的设计。对TCSC阻尼控制器和SVC阻尼控制器阻尼区域间功率振荡进行时域仿真研究,仿真结果表明在各种运行方式下,都能够有效的抑制振荡,有较强的鲁棒性。与固定值增益的阻尼控制器相比,采用在线调节增益的控制器有更好的阻尼控制效果,特别是在轻载的情况下,阻尼的改善更为明显。
     第三部分基于免疫调节机制设计了人工免疫控制器和免疫FACTS控制器,实现了阻尼控制与基本控制目标(电压控制、潮流控制等)的双重控制目标的协调控制。分析了生物系统的免疫应答过程中T细胞的调节机制,和免疫应答的数学模型。根据控制问题的特点加以改进,设计了人工免疫控制器,研究了控制器参数的作用。模拟T细胞在免疫应答不同阶段的作用,构造了反馈调节函数,根据系统当前状态和控制效果,通过反馈进行实时调节,实现单个控制器的双重控制目标的协调。结合衰减振荡能量的控制策略,将人工免疫控制方法用于FACTS阻尼控制器的设计。以TCSC和SVC免疫阻尼控制器为例,进行仿真研究,结果表明在有效阻尼功率振荡的同时,保证了TCSC的潮流控制,SVC的电压控制的效果,实现了控制器多控制目标的协调。
     第四部分介绍了独特型免疫网络,以及在此基础上的多抗原多抗体之间的协调作用机制,提出了多个控制器的协调控制策略。首先,借鉴免疫系统中对不同抗原的免疫应答具有不同的响应强弱,提出抗原耦合控制策略,在多变量控制系统中,根据不同控制通道对于系统总体控制性能影响的大小,调整控制器的输入信号,使控制系统能够尽快消除被控状态量的偏差。然后,采用相对增益矩阵方法分析控制器之间的交互影响,若某控制器的闭环运行降低了其他控制器的控制效果,则将前者的输出视为后者的扰动,借鉴免疫系统中多抗体之间的相互作用原理,提出抗体反馈耦合控制策略。上述两种控制策略共同构成了免疫协调控制策略,利用多变量控制系统中各控制通道之间内在的耦合关系,实现多控制器的协调控制。采用基于免疫网络的协调策略,对TCSC和SVC控制器,以及SVC与励磁进行协调控制,仿真结果表明与各个控制器单独控制相比,免疫协调控制能够提高系统整体的控制效果。
With the development of the large scale power system, interconnected network and diversity of operating conditions make it more complicated to operate and control the power system. Flexible AC Transmission System is an effective technology which can enhance the controllability and flexibility of transmission and distribution system as well as increasing stability and economy of the power system operation. With widely application of FACTS in power system, it is significant to discuss the control method of FACTS and coordination control strategy of multiple FACTS devices. First, power oscillations will occur among the interconnected network, and damage the small disturbance stability of the power system. It becomes an important research field to design FACTS-based damping controller and analyze damping control strategy. Second, besides the conventional function of voltage control, power flow control and reactive power compensation, FACTS can also suppress power oscillations. The impact on the conventional control target should be considered when decide the damping control strategy of FACTS controller. It is the multi-objective coordination problem of the same controller. Third, with the increasing amount and variety of FACTS installed in the power system, the interaction between controllers should be considered when design FACTS controller. It is the coordination control problem of multiple controllers.
     Immune system is a complicated adaptive system that contains abundant and effective information processing principle, which can cope with different kinds of disturbances and uncertainties of inner body and outside environment. The control problem is similar with the immune response of immune system. The immune regulation mechanism and immune network based coordination mechanism among antigens and antibodies have good performance, which can be applied to the multi-objective coordination control of FACTS and coordination control of multiple controllers in the power system.
     This dissertation mainly discusses about design of FACTS-based damping controller, and control strategy of FACTS based on artificial immune regulation mechanism. The main research work is summarized as follows:
     In the first part, torque analysis and energy function analysis are used to explain the mechanism of damping power oscillations by FACTS controller, and relative damping control strategy are poposed. Firstly, the change of generator electromechanical torque after installation of FACTS is analyzed on the basis of power system Phillips-Heffron model. The reason of suppressing the power oscillation is explained from the viewpoint of damping torque analysis. Secondly, oscillation energy function of inter-area mode oscillation is defined which can be regarded as a measure of the deflection away from the steady state position during dynamic oscillation period. The smaller the energy is the more stable situation the power system has. The conversion of energy function during oscillation period is analyzed and damping control strategy of reducing oscillation energy is proposed which aims at reducing oscillation energy to zero as quickly as possible, namely returns to the steady state position after fault. Finally the damping control strategy of SVC and TCSC are proposed.
     In the second part, Prony analysis is used to identify the transfer function and residue of the system, and FACTS damping controller is designed by compensating the phase of residue. A method of choosing input signal of damping controller is proposed. In course of using the Prony method to analyze simulation signals of the power system, the specific format small disturbance signal is used as input signal. So transfer function can be identified according to the mode of the corresponding input signal and output signal. Oscillation mode and residue can be obtained from the transfer function and used to design damping controller. Thus complicated eigenvalue analysis of large scale power system is not needed. Residue method is used to design the damping controller and set the parameters of controller. Because the power flow along transmission line may have opposite direction under different operation conditions, a method to choose the input signal is proposed that not only the magnitude but also the phase of the residue should be considered so as to guarantee the robustness. A method of adjusting gain of controller according to the transmission power level is proposed, by which optimal damping performance can be obtained under different operating conditions. Simulation studies indicate that the frequency domain response of the identified system is consistent with the real system, and the former is suited to the design of damping controller. Simulations of TCSC damping controller and SVC damping controller show that the damping controller can suppress the oscillation effectively with good robustness. Compared with fixed gain damping controller, varying gain controller has better damping control effect, especially under light load condition.
     In the third part, artificial immune controller is designed on the basis of immune regulation mechanism and immune FACTS controller is proposed which can realize the coordination of damping control and other objective (voltage control or power flow control). The regulation mechanism of T cells in the process of immune response and the mathematical model of immune regulation are analyzed. The model is modified according to the characteristic of control problems and artificial immune controller is designed. The parameters of controller are discussed. By simulating the different functions of T-cells in different stage of immune response, feedback estimation function is constructed which can adjust the parameters according to the current state and control effect. Thus the coordination of double objective of a single controller can be realized. The proposed artificial immune controller is applied to design FACTS damping controller combined with the damping control strategy of reducing oscillation energy. Simulation results of TCSC and SVC controllers shows that the power oscillations can be damped effectively, as well as the power flow control of TCSC or voltage control of SVC can be achieved.
     In the last part, a coordination control strategy of multi-controller is proposed on basis of idiotype immune network and coordination mechanism among multi-antigen and multi-antibody. Firstly antigen coupling control strategy is proposed by simulating different response level of antigens in immune response. In multi-variable control system, input signals of controller are adjusted regarding the contribution of different control paths to the whole system performance, so as to eliminate the error as soon as possible. Interactions among multiple controllers are analyzed using relative gain array method. If close-loop operation of a certain controller decreases the control effect of other controllers, the output of the former controller is regarded as disturbance to the latter. Antibodies feedback coupling coordination strategy is proposed by simulating stimulation and suppression among antibodies in immune system. The synthesis of the above two coupling strategy consist the immune coordination control strategy, which utilizes the intrinsic coupling relation among control channels of multi-input and multi-output control system, to realize the coordination control of multiple controllers. Immune coordination strategy based coordination control are carried out for TCSC and SVC, as well as SVC and generator excitation. Simulation results show that compared with decentralized control of each controller, immune coordination control can eliminate the negative interaction between controllers and increase the control effect of the whole system.
引文
1. The FACTS Terms & Definitions Task Force of the FACTS Working Group of the DC and FACTS Subcommittee. Proposed Terms and Definitions for Flexible AC Transmission Systems (FACTS). IEEE Trans. Power Delivery, 1997, 12(4): 1848-1853.
    2.何大愚.柔性交流输电系统概念研究的新进展.电网技术,第21卷,第2期,1992年2月.
    3.韩英铎,王仲鸿,林孔兴等.电力系统中的三项前沿课题.柔性输电,智能控制,基于GPS的新一代动态安全分析与监测系统.清华大学学报(自然科学版).1997,37(7):1-6
    4. H. F. Wang. Interaction analysis and coordination of SVC voltage and damping control. The International Conference on Electric Utility Deregulation and Restructuring and Power Technologies 2000, London, 2000, 4: 361-365
    5.贾春、姜齐荣、王仲鸿.静止同步补偿器多目标协调控制器的设计.电工技术学报.1999,14(2):21-24.
    6. G. N. Taranto, D. M. Falcao. Robust decentralized control design using genetic algorithms in power system damping control, IEE Proceedings: Generation, Transmission and Distribution, Vol.145, No.1, 1998.
    7. K. Clark, B. Fardanesh, R. Adapa. Thyristor controlled series compensation application study - control interaction considerations. IEEE Transactions on Power Delivery, Vol.10, No.2, 1995.
    8. Lu Yunqiang, Abur Ali. A tracking estimator for the firing angle of the Thyristor Controlled Series Capacitors (TCSC). Electric Power Systems Research, Vol. 74, No. 1, April, 2005.
    9. H. Chen, G. Andersson. Versatile approach for the control of FACTS equipment in multi-machine power systems. International Journal of Electrical Power and Energy System, Vol.17, No.3, 1995.
    10. H. F. Wang, M. Li, EJ. Swift. FACTS-based stabilizer designed by the phase compensation method. Part I: Single-machine infinite-bus power systems. Proceedings of the 1997 4th International Conference on Advances in Power System Control, Operation and Management. Part 2 (of 2), Nov 11-14 1997.
    11. X. R. Chen, N. C. Pahalawaththa, U D. Annakkage et al. Design of decentralized output feedback TCSC damping controllers by using simulated annealing, lEE Proceedings: Generation, Transmission and Distribution, Vol.145, No.5, 1998.
    12. X. R. Chen, N. C. Pahalawaththa, U. D. Annakkage et al. Output feedback TCSC controllers to improve damping of meshed multi-machine power systems. IEE Proceedings: Generation, Transmission and Distribution, Vol.144, No.3, 1997.
    13. G.N. Taranto, J.K. Shiau, J.H. Chow et al. Robust decentralised design for multiple FACTS damping controllers, IEE Proceedings: Generation, Transmission and Distribution, Vol.144, No.1, 1997.
    14. M.A. Abido. Pole placement technique for PSS and TCSC-based stabilizer design using simulated annealing. International Journal of Electrical Power and Energy System, 2000, 22(8).
    15. P. S. Dolan, J. R. Smith, W. A. Mittelstadt. Study of TCSC optimal damping control parameters for different operating conditions. IEEE Transactions on Power Systems, Vol. 10, No.4, 1995.
    16. Q. Zhao, J. Jiang. TCSC damping controller design using robust control theory. International Journal of Electrical Power and Energy System, Vol.20, No.1, 1998.
    17. G. N. Taranto, J. H. Chow. Robust frequency domain optimization technique for tuning series compensation damping controllers. IEEE Transactions on Power Systems, Vol.10, No.3, 1995.
    18.王海风.房大中.多机电力系统中固定参数鲁棒灵活交流输电稳定器的设计,中国电机工程学报,1999,19(1):10-13
    19. D. Z. Fang, Y. Xiaodong, S. Wennan et al. Oscillation transient energy function applied to the design of a TCSC fuzzy logic damping controller to suppress power system interarea mode oscillations, IEE Proceedings: Communications, Vol.150, No.2, 2003.
    20. M. Noroozian, L. Angquist, M. Ghandhari et al. Improving power system dynamics by series-connected FACTS devices. IEEE Transactions on Power Delivery, Vol.12, No.4, 1997.
    21. M. Noroozian, M. Ghandhari, G. Andersson et al. A robust control strategy for shunt and series reactive compensators to damp electromechanical oscillations. IEEE Transactions on Power Delivery, Vol.16, No.4, 2001.
    22.汪冰.可控串联补偿系统基于能量函数的暂态稳定控制策略研究.上海交通大学博士学位论文,2001
    23. S. Mishra, P. K. Dash, P. K. Hota et al. Genetically optimized neuro-fuzzy IPFC for damping modal oscillations of power system. IEEE Transactions on Power Systems, Vol.17, No.4, 2002.
    24. P. K. Dash, S. Mishra. Damping of multimodal power system oscillations by FACTS devices using non-linear Takagi-Sugeno fuzzy controller. International Journal of Electrical Power and Energy System, Vol.25, No.6, 2003.
    25. P. K. Dash, A. K. Pradhan. Application of artificial intelligence techniques for classification and location of faults on thyristor-controlled series-compensated line. Electric Power Components and Systems, Vol.31, No.3, 2003.
    26. X. Tan, N. Zhang et al. Fuzzy control of thyristor-controlled series compensator in power system transients. Fuzzy Sets and Systems, Vol.110, No.3, 2000.
    27.陆超,谢小荣,童陆园,王仲鸿.使用直接神经动态规划方法的SVC附加阻尼控制.中国电机工程学报,2004,24(12):8-12
    28.江全元,张鹏翔,曹一家.计及反馈信号迟滞影响的广域FACTS阻尼控制.中国电机工程学报,2006,26(7):82-88
    29.胡志祥,谢小荣,童陆园.广域阻尼控制延迟特性分析及其多项式拟合补偿.电力系统自动化,2005,29(20):29-34
    30.肖晋宇,谢小荣,胡志祥,韩英铎.基于在线辨识的电力系统广域阻尼控制.电力系统自动化,2004,28(23):22-26
    31.谢小荣,肖晋宇,童陆园,韩英铎。采用广域测量信号的互联电网区间阻尼控制.电力系统自动化,2004,28(2):37-40
    32.李海峰.紧急情况下多补偿器二次电压协调控制的研究.东南大学博士学位论文,2001
    33.张鹏翔.博士学位论文:多目标进化算法及其在电力系统中的应用研究.华中科技大学,2004
    34.李海峰,李乃湖.FACTS装置用于电力系统稳定控制的策略.电力系统自动化,1998,22(9):31-37
    35.顾晓荣,方勇杰,薛禹胜.柔性交流输电系统稳定控制综述.电力系统自动化,1999, 23(12): 50-54
    36. Limyingcharoes S, Annakkage U D, Pahalawaththa N C. Effect of UPFC on transient stability. IEE Proceedings—Generation, Transmission and Distribution, 1998, 145(2): 182-188
    37. M. Noroozian, L. Angquist, M. Ghandhari et al. Improving Power System Dynamics by Series-Connected FACTS Devices. IEEE Transactions on Power Delivery, 1997, 12(4): 1635-1641
    38. S. Limyingcharoes, U. D. Annakkage, N. C. Pahalawaththa. Effect of UPFC on Transient Stability. IEE Proceedings-Generation Transmission and Distribution, 1998, 145(2): 182-188
    39. H. F. Wang. Selection of Operating Conditions for Coordinated Setting of Robust fixed-Parameter Stabilizer. IEE Proc. Gener. Transm. Distrib., 1998, 145(2): 111-116
    40. E. Z. Zhou. Application of Static Var Compensations to Increase Power System Damping. IEEE Trans. On Power Systems, 1993, 8(2): 655-661
    41. L. Rouco, F. L. Pagola. An Eigenvalue Sensitivity Approach to Location and Controller Design of Controllable Series Capacitors for Damping Power System Oscillations. IEEE Trans. On Power Systems, 1997, 12(4): 1660-1666
    42. J. J. Sanchez-Gasca. Coordinated Control of Two FACTS Devices for Damping Inter-area Oscillations. IEEE Trans. On Power Systems, 1998, 13(2): 428-434
    43. H. F. Wang, F. J. Swift, M. Li. Comparison of Modal Controllability Between FACTS-based Stability and PSS in increasing the oscillation Stability of Multi-machine Power Systems. lEE Proc. Gener. Transm. Distrib., 1996, 141(6): 575-581
    44. R. Mihallic, P. Zunko, D. Povh. Improvement of Transient Stability Using UPFC. lEEE Trans. On Power delivery, 1996, 11(1): 485-491
    45. A. A. El-Emary. Formula for the Effect of a Static Var Compensator on Synchronizing torque Coefficient. IEE Proc. Gener. Transm. Distrib., 1996, 143(6): 582-586
    46. K. Clark, B. Fardanesh, R. Adapa. Thyristor Connected Series Compensation Application Study Control Interaction Considerations. IEEE Trans. On Power Delivery, 1995, 10(2): 1031-1037
    47. P. Pourbeik, M. J. Gibbard. Simultaneous Coordination of Power System Stabilizers and FACTS Device Stabilizers in a Multi-machine Power System for Enhancing Dynamic Performance. IEEE Trans. On Power Systems, 1998, 13(2): 473-479
    48.孙元章,杨志平,赵志勇等.ASVG非线性控制方式的研究及其对暂态稳定的改善.电力系统自动化,1996,20(11):473-479
    49.沈沉,孙元章.ASVG的非线性控制对改善电力系统阻尼特性的研究.电力系统自动化,1997,21(5):29-32
    50.尹建华,江道灼.可控串补的非线性控制对电力系统稳定性的影响研究.电工技术学报,1999,14(3):70-74
    51.栗春,姜齐荣,王仲鸿.增强系统阻尼并保证电压精度的SVC非线性控制器.电力系统自动化,1998,22(6):35-38
    52. Y. L. Tan, Y. Y. Wang. Design of Series and Shunt FACTS Controller Using Adaptive Nonlinear Coordinated Design Techniques. IEEE Trans. On Power Systems, 1997, 12(3): 1374-1379
    53. Y. Y. Wang, Y. L. Tan. Robust Nonlinear Coordinated Generator Excitation and SVC Control for Power Systems. International Journal of Electrical Power & Energy Systems, 2000, 22(3):187-195
    54.王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社,2003
    55.韩英铎,王仲鸿,陈淮金.电力系统最优分散协调控制.北京:清华大学出版社,1997
    56. H. J. Chen, G. A. Andersson. Versatile Approach for the Control of FACTS Equipment in Multi-machine Power Systems. International Journal of Electrical Power & energy Systems, 1995, 17(3): 215-221
    57. J. S. Thorp, M. Ilicspong, M. Varghese. An Optimal Secondary Voltage-Var Control Technique. Automatica, 1986, 22(2): 217-221
    58.刘锋,梅生伟,卢强.ASVG的非线性L2增益干扰抑制控制器.电力系统自动化,2000,24(20):11-15
    59. G. N. Taranto, J. K. Shiau, J. H. Chow et al. Robust Decentralised Design for Multiple FACTS Damping Controllers. IEE Proceedings-Generation Transmission and Distribution, 1997, 144(1): 61-67
    60. G. N. Taranto, J. H. Chow. A Robust Frequency-Domain Optimization Technique for Tuning Series Compensation Damping Controllers. IEEE Transactions on Power Systems, 1995, 10(3): 1219-1225
    61. M. Klein, L. X. Le, G. J. Rogers et al. H-Infinity Damping Controller-Design in Large Power-Systems. IEEE Transactions on Power Systems, 1995, 10(1): 158-166
    62. F. Jiang, S. S. Choi, G. Shrestha. Power System Stability Enhancement Using Static Phase Shifter. IEEE Transactions on Power Systems, 1997, 12(1): 207-212
    63. Y. Wang, R. R. Mohler, R. Spee et al. Variable-Structure FACTS Controllers for Power-System Transient Stability. IEEE Transactions on Power Systems, 1992, 7(1): 307-313
    64.罗春雷,孙洪波,徐国禹.结合主导特征值法的变结构控制及其应用.电网技术,1998,22(1):49-51
    65.韩京清.控制理论模型论还是控制论.系统科学与数学,1989,9(4):328-335
    66.刘镇,姜学智,李东海.PID控制器的参数调整.电力系统自动化,1997,21(8):79-83
    67. Narain G. Hingorani, Laszlo Gyugyi. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. IEEE Press, 2000
    68.韩京清.自抗扰控制器及其应用.控制与决策,1998,13(1):19-23
    69.张采,周孝信.可控串联补偿系统的稳定控制.中国电力,1998,31(3):3-6
    70. C. Zhang, X. X. Zhou. The Auto-Disturbances Rejection Control of TCSC. Control Engineering Practice, 1999, 7(2): 195-199
    71. Z. Xu, R. G. Cameron, F. Li. Passivity and the Design of Sampled Regulators - Extended Results. International Journal of Control, 1990, 51(3): 503-519
    72. F. Li, R. G. Cameron, S. Mossaheb. Extensions to the Design of Sampled Integrating Regulators. International Journal of Control, 1987, 46(2): 631-641
    73. H. F. Wang, ELi, R. G. Cameron. FACTS Control Design Based on Power System Nonparametric Models. IEE Proceedings-Generation Transmission and Distribution, 1999, 146(5): 409-415
    74.文福拴.智能系统在电力系统中应用的新方向:(上).电力系统自动化,1996,20(6):3-7
    75.文福拴.智能系统在电力系统中应用的新方向:(下).电力系统自动化,1996,20(7):3-8
    76. J. A. Momoh, K. Tomsovic. Overview and Literature Survey of Set-Theory in Power-Systems. IEEE Transactions on Power Systems, 1995, 10(3): 1676-1690
    77.吴捷,陈巍,刘永强.综合智能技术在电力系统中的应用.电网技术,1997,21(8):17-21
    78.于占勋,陈德树,尹项根.可控串联补偿装置的智能变结构控制.电力系统自动化,1998,22(6):8-10
    79.江全元,邹振宇,曹一家,韩祯祥.考虑时滞影响的电力系统稳定分析和广域控制研究进展.电力系统自动化,2005,29(3):1-7
    80. X. R. Chen, N. C. pahalawaththa, U. D. Annakkage, C. S. Kumble. Design of Decentralized Output feedback TCSC Damping Controllers by Using Simulated Annealing. lEE Proc. Gener., Transm., Distrib., 1998, 145(5): 553-558
    81. B. H. Li, Q. H. Wu, P. Y. Wang et al. Learning-Coordinated Fuzzy Logic Control of Dynamic Quadrature Boosters in Multi-Machine Power Systems. lEE Proceedings-Generation Transmission and Distribution, 1999, 146(6): 577-585
    82. B. N. Singh, A. Chandra, K. Al-Haddad et al0 Performance of Sliding-Mode and Fuzzy Controllers for a Static Synchronous Series Compensator. IEE Proceedings-Generation Transmission and Distribution, 1999, 146(2): 200-206
    83.卢强,孙元章等.面向目标的FACTS殴备智能预估控制方法(一)-(四).电网技术,1998,22(4-7)
    84. X. Z. Dai, D. He, L. L. Fan et al. Improved Ann Alpha ThoOrder Inverse TCSC Controller for Enhancing Power System Transient Stability. IEE Proceedings-Generation Transmission and Distribution, 1999, 146(6): 550-556
    85.何人望,文灵华,邱万英.柔性交流输电系统与用户电力技术.华东交通大学学报,2001,18(1):9-12
    86.栗春,姜齐荣,王仲鸿.基于规则的STATCOM的控制器设计.中国电机工程学报,1999,19(6):56-60
    87.王海风,李敏,陈衍.统一潮流控制器的多变鼙控制设计.中国电机工程学报,2000,20(8):51-55
    88. Coordination of controls of multiple FACTS/HVDC links in the Same System. Cigre, working group document 14.29, 1999
    89. M. Parniani, M. R. Iravani. Voltage Control Stability and Dynamic Interaction Phenomena of Static VAR Compensators. IEEE Trans. on Power Systems, 1995, 10(3): 1592-1597
    90. K. Mekki, N. HadjSaid, R. Feuillet, D. Georges. Design of Damping Controllers Using Linear Matrix Inequalities Techniques and Distant Signals to Reduce Control Interactions. Power Industry Computer Applications, PICA, 2001, 306-311
    91.邹振宇,江全元,曹一家等.基于规范形方法的多台SVC交互影响分析.电工技术学报,2005,20(8):12-17
    92. S. Ammari, Y. Besanger, N. Hadjsaid, D. Geroges. Robust Solutions for the Interaction Phenomena between Dynamic Loads and FACTS Controllers. IEEE Power Engineering Society, Summer Meeting, 2000, 1: 401-406
    93. J. C. Passelergue, N. Hadjsaid, D. Georges. An efficient index to deal with interaction phenomena of FACTS devices in power systems. Proceedings of 1998 International Conference on Power System Technology, 1998, 1: 401-405
    94. N. Martins, L. Lima. Determination of Suitable Locations for Power Systems Stabilizers and Static VAR Compensators for Damping Electromechanical Oscillations in Large Scale Power Systems. IEEE Trans on PWRS, 1990, 5(4): 1455-1469
    95. H. F. Wang, F. J. Swift, M. Li. Indices for Selecting the Best Location of PSSs or FACTS-based Stabilizers in Multi-machine Power Systems: A Comparative Study. IEE Proceedings-Generation, Transmission and Distribution, 1997, 144(2): 155-159
    96. N. Uchida, T. Nagao. A New Eigen-analysis Method of Steady-state Stability Studies for Large Power Systems: S Matrix Method. IEEE Trans on PWRS, 1998, 3(2): 702-714
    97. J. I. Perez-Arriaga, G. C. Verghese, F. C. Schweppe. Selective Modal Analysis with Applications to Electric Power Systems (Part Ⅰ: Heuristic Introduction, Part Ⅱ: The Dynamic Stability Problem). IEEE Trans on Power Apparatus and Systems, 1982, PAS-101(9): 3117-3114
    98. E. H. Bristol. On a new measure of interaction for multivadable process control. IEEE Trans. Automat. Contr., 1966, AC-11: 133-134
    99. A. Niederlinski. A Heuristic Approach to the Design of Linear Multivariable Interacting Control Systems. Automatica, 1971, 7: 691-701
    100. V. Manousiouthakis, R. Savage, Y. Arkun. Synthesis of Decentralized Process Control Structures Using the Concept of Block Relative Gain. AIChE Journal, 1986, 32(6): 991-1003
    101. Y. Arkun. Dynamic Block Relative Gain and Its Connection with the Performance and Stability of Decentralized Control Structures. INT. J. Control, 1987, 46(4): 1187-1193
    102. H. Lau, J. Alvarez, K. E Jensen. Synthesis of Control Structures by Singular Value Analysis: Dynamic Measures of Sensitivity and Interaction. AIChE Journal, 2004, 31(3): 427-439
    103. A. Conley, M. E. Salgado. Gramian Based Interaction Measure. Proceeding of the 39th IEEE Conf. On Dec. and Con., Sydney, Dec. 2000, 5: 5020-5022
    104. IEEE Special Stability Controls Working Group. Static Vat Compensator Models for Power Flow and Dynamic Performance Simulation. IEEE Trans on PWRS, 1994, 9(1): 229-240
    105.崔永新.含统一潮流控制器电力系统的潮流分析:硕士学位论文.北京:清华大学,1996
    106.王梅义.有感于美国西部电网大停电.电网技术,1996,20(9):43-46
    107. D. G. Ramey, R. J. Nelson, J. Bian, et al. Use of FACTS Power Flow Controllers to Enhance Transmission Transfer Limits. Proceedings of the American Power Conference, 1994, 56(1): 712-718
    108. R. J. Nelson, J. Bian, D. G. Ramey, et al. Transient Stability Enhancement with FACTS Controllers. London: 1996
    109.谢小荣,崔文进,陈远华,韩英铎.多机电力系统中STATCOM与发电机励磁的协调控制.电力系统自动化,2002,26(1):14-17
    110. X. Z. Lei, N. L. Edwin, P. Dusan. Optimization and Coordination of Damping Controls for Improving System Dynamic Performance. IEEE Trans on Power System, 2001, 16(3): 473-480
    111. J. G. Michael, J. V. David, P. Pouyan. Interactions Between, and Effectiveness of, Power System Stabilizers and FACTS Device Stabilizers in Multimachine Systems. IEEE Trans on Power System, 2000, 15(2): 748-755
    112. C. Balarko, C. P. Bikash, C. Z. Argyrios, et al. Mixed-Sensitivity Approach to H Control of Power System Oscillations Employing Multiple FACTS Devices. 1EEE Trans on Power System, 2003, 18(3): 1149-1156
    113.邹振宇,江全元,张鹏翔等.基于规范形方法的多台SVC交互影响分析.电力系统自动化,2005,29(6):60-64
    114.吕岗,赵鹤鸣,谭得健.人工免疫系统的应用与发展.计算机工程与应用,2002,11:35 38
    115. Bersini H., Varela F J.. Hints for Adaptive Problem Solving Cleaned from Immune Networks, In Proc the First Workshop on Parallel Problem Solving from Nature, 1990, 343-354
    116. Forrest S., Hofmeyr S A.. Immunology as Processing. Design Principles for Immune System & Other Distributed Autonomous Systems. Segal L A. and Cohen I R. eds. Oxford Univ. Press, 2000
    117.吕岗 免疫算法及其应用研究.徐州:中国矿业大学博士学位论文,2003
    118. Hofmeyr S A., Forrest S.. Architecture for an Artificial Immune System. Submitted to Evolutionary Computation
    119. N. KJerne. Towards a network theory of the- system. Annual Immunology, 1974, 125c: 373-389
    120. N. K. Jerne. The immune system. Scientific American, 1973, 229(1): 52-60
    121. S. Forrest, A. S. Perelson, L. Allen and R. Cherukuri. Self-nonself discrimination in a computer. In Proceedings of IEEE Symposium on Research in Security and Privacy, 1994, 202212
    122. D'haeseleer, S. Forrest, and Helman, An immunological approach to change detection: algorithms, analysis and implications, In Proceedings of the 1996 IEEE Symposium on Computer Security and Privacy, 1996, 110-119
    123. M. Ayara, J. Timmis, L. de Lemos, Rde Castro, and RDuncan. Negative selection: How to generate detectors. In Proceedings of the 1st International Conference on Artificial Immune Systems OCARIS), 2002, 89-98
    124. Y. Watanabe, A. Ishiguro and Y. Uchikawa. Decentralized behavior arbitration mechanism for autonomous mobile robot using immune network, in Applications of Artificial Immune Systems. D. Dasgupta, Ed. Springer-Vedag, 1999, 187-207
    125. J. Balthrop, S. Forrest, and M. R. Glickman. Revisting LISYS: Parameters and normal behavior. In Proceedings of the 2002 Congress on Evolutionary Computation CEC2002, 2002, 1045-1050
    126. F. Gonzalez, D. Dasgupta, and R. Kozma. Combining negative selection and classification techniques for anomaly detection. In Proceedings of the 2002 Congress on Evolutionary Computation, 2002, 705-710
    127. F. Gonzalez. A study of artificial immune systems applied to anomaly detection. Ph. D Dissertation. Division of Computer Science of Memphis, TN38152, May 2003
    128. D. E. Cooke and J. E. Hunt. Recognizing promoter sequences using an artificial immune system. In Proceedings of the Intelligent Systems in Molecular Biology Conference ISMB'95), 1995, 89-97
    129. J. Timmis. Artificial immune systems: a novel data analysis technique inspired by the immune network theory. Ph. D Dissertation, University of Wales, 2000
    130. Nasraoui, EGonzalez, and D. Dasgupta. The fuzzy artificial immune system: Motivations, basic concepts, and application to clustering and web profiling. In Proceedings of the IEEE World Congress on Intelligence, 2002, 711-716
    131. Nasraoui, EGonzalez, C. Cardona, C.Rojas, and D.Dasgupta. A scalable artificial system model for dynamic unsupervised learning. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 2003, 12-16
    132. LN. de Castro and F.J.V.Zuben, The clonal selection algorithm with engineering applications. In Proceedings of GECCO'00 (workshop proceedings). 2000, 36-37.
    133. L. N. De Castro and F.J.von Zuben. aiNet: An artificial immune network for data analysis. Book Chapter in Data Mining: A Heuristic Approach, Idea Group Publishing, USA, 2001, 231-259
    134. J. O. Kephart. A biologically inspired immune system for computers. In Proceedings of the 4th International Workshop on the Synthesis and Simulation of Living Systems, MIT Press, 1994
    135. Y. Ishida and F. Mizessyn. Learning algorithms on an immune network model: application to sensor diagnosis. In Proceeding of International Conference Neural Networks, 1992, 1:33-38
    136. Y. Ishida. An immune network model and its applications to process diagnosis. Systems and Computers(in Japan), 1993, 24(6): 38-45
    137. Ishiguro, S. Kuboshiki, S.Ichikawa and Y.Uchikawa. Gait control of hexapod walking robots using mutual-coupled immune networks. Advanced Robotics. 1996, 10(2):179-195
    138. Y. Watanabe, A.Ishiguro and Y.Uchikawa. Decentralized behavior arbitration mechanism for autonomous mobile robot using immune network, in Applications of Artificial Immune Systems. D.Dasgupta, Ed. Springer-Verlag, 1999, 187-207
    139. D. Dasgupta. Using immunological principles in anomaly detection. In Proceedings of 1996 IEEE Int Artificial Neural Networks in Engineering(ANNIE'96), 1996, 10-13
    140. D. Dasgupta and S. Forrest. Novelty detection in time series data using ideas from immunology. In Proceedings of ISCA 5th International Conference on Intelligent Systems, 1996, 19-21
    141. D.Williams, K.Anchor, J.L.Bebo, G. H. Gunsch, and G. D. Lamont. CDIS: Toward a computer immune system for detecting network intrusions. Lecture Notes in Computer Science, 2001, 22: 117-133
    142. S. Hofrneyr and S. Forrest. Architecture for an artificial immune system. Evolutionary Computation, 2000, 8(4): 443-473
    143. D. Bradley and A.Tyrrell. Immunotronics: Hardware fault tolerance inspired by the immune system. In Proceedings of the 3rd International Conference on Evolvable Systems (ICES2000), 2000, 11-20
    144. Tarakanov and D. Dasgupta. A formal immune system, in Third International Workshop on Information Processing in Cells and Tissues (IPCAT'99), 1999, 23-24
    145. Tarakanov and D. Dasgupta. An immune chip architecture and its emulation. In Proceedings of the NASA/DoD Conference on Evolvable Hardware, 2002, 15-18
    146. Vera Calenbuhr, Hugues Bersini, Francisco J.Varela. Immune response towards growing-and auto-antigen in an idiotypic network model. In Proceedings of 2nd World Congress of Nonlinear Analysis, 1997, 30(3): 1859-1864
    147. H. Bersini and EVarela. The immune recruitment mechanism: A selective evolutionary strategy. In Proceedings of the 4th International Conference on Genetic Algorithms, Morgan Kaufman, 1991, 520-526
    148. Hajela, J.Yoo, and J.Lee, GA based simulation of immune networks-applications in structural optimization, Journal of Engineering Optimization, 1997, 29: 131-149
    149. CA. Coello and N. Cruz Cortes. A parallel implementation of the artificial immune system to handle constraints in genetic algorithms: preliminary results. In Proceedings of the2002 Congress on Evolutionary Computation CEC2002, 2002, 819-824
    150. L. N. de Castro and F. J. V Zuben. An immunological approach to initialize feed forward neural network weights. In Proceedings of International Conference on Artificial Neural Networks and Genetic Algorithms(1CANNGA'01), 2001, 126-129
    151. E. Hart and Ross. Exploiting the analogy between immunology and sparse distributed memories: A system for clustering non-stationary data. In Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS), 2002, 49-58
    152. J. D. Farmer, N. H. Packard, A. S. Perelson. The immune system, adaptation, and machine learning. Physica D, 1986, 22: 187-204
    153. A. J. Noest, K. Takurni, R. de Boer. Pattern formation in B-cell immune networks domains and dots in shape-space. Physical D, 1997, 105: 285-306
    154. Zheng Tang, T. Yamaguchi, K. Tashima, Okihiko Ishizuka, Koichi Tanno. Multiple-valued immune network model and its simulations. In Proceedings of 27th IEEE International Symposium on Multiple-Valued Logic, 1997, 233-238
    155.王磊,潘进,焦李成.免疫算法.电子学报,2000,28(7):74-78
    156.邵学广,陈宗海,林祥钦.一种新型的信号拟合方法—免疫算法.分析化学,2000,28(2):152-155
    157.曹先彬,刘克胜,王煦法 基于免疫遗传算法的装箱问题求解.小型微型计算机系统,2000,21(4):361-363
    158.刘克胜,曹先彬,郑浩然,王煦法.基于免疫算法的TSP问题求解.计算机工程,2000,26(1):1-2
    159.王煦法,张显俊,曹先彬,张军,冯雷.一种基于免疫原理的遗传算法.小型微型计算机系统,1999,20(2):117-120
    160.马海波,刘芳,焦李成.基于免疫算法的多用户检测.信号处理,2002,18(1):5-8
    161.曹先彬,刘克胜,王煦法.基于免疫进化规划的多层前馈网络设计.软件学报,1999,10(11):1180-1184
    162.周伟良,何鲲,曹先彬,程慧霞.基于一种免疫遗传算法的BP网络设计.安徽大学学报(自然科学版),1999,23(1):63-66
    163.孙勇智,韦巍,基于人工免疫算法的电力系统最优潮流计算.2002,26(12):30-34
    164.Jang Sung Chu著,胡朝阳,文福拴摘译.免疫算法与其它模拟进化优化算法的比较研究.电力情报,1998(1):61-63
    165.高洁.应用免疫算法进行电网规划研究.系统工程理论与实践,2001,5:119-123
    166.郑德玲,梁瑞鑫,付冬梅,李晓刚,方彤.人工免疫系统及人工免疫遗传算法在优化中的应用.北京科技大学学报,2003,25(3):284-288
    167.梁瑞鑫,郑德玲,周颖,位耀光.免疫遗传算法在高炉焦比目标优化中的应用.第二十一届中国控制会议论文集[C],杭州:浙江大学出版社,2002:463-466
    168. K. Takahashi and T. Yamada. Self-tuning immune feedback controller for controlling mechanical Systems. In Proceedings of 1997 1st IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1997, 101-105
    169. Yongsheng Ding. A nonlinear PID controller based on fuzzy-tuned immune feedback law. Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, Volume3: 1576-1580
    170. D. Lee, K. Sim. Artificial immune network-based cooperative control in collective autonomous mobile robots. In Proceedings of IEEE International Workshop on robot and human Communication., 1997, 58-63
    171.刘克胜,张军,曹先彬,王煦法.一种基于免疫原理的自律机器人行为控制算法.计算机工程与应用,2000,5:30-32
    172.位耀光.人工免疫应答理论的研究及应用.北京科技大学博士学位论文,2004
    173. J. E. Hunt and D. E. Cooke. An adaptive distributed learning system based on the immune system. In Proceedings of the IEEE International Conference on Systems Man and Cybernetics, 1995, 2494-2499
    174. John E. Hunt, Learning using an artificial immune system. Journal of Network and Computer Applications. 1996, 19: 189-212.
    175. Y. Ishida and N. Adachi. Active noise control by an immune algorithm: adaptation immune system as an evolution. In Proceedings of 1996 IEEE Int Conf on Evolutionary Computation, 1996, 150-153
    176. J. S. Chun, J. P. Lim, J. S. Yoon. Optimal design of synchronous motor with parameter correction using immune algorithm. IEEE Trans. on Energy Conversion, 1999, 14(3): 610-615
    177. J. S. Chun, M. K. Kim, H. K. Jung, S. K. Hong. Shape optimization of electromagnetic devices using immune algorithm. IEEE Traps on Magnetics. 1997, 33(2): 1876-1879
    178. J. Timrnis, M. Neal. A resource limited artificial immune system for data analysis. Knowledge-Based Systems, 2001, 121-130
    179.Prabha Kundur.电力系统稳定与控制[M].北京:中国电力出版社,2002
    180.倪以信,动态电力系统理论与分析北京:清华大学出版社
    181.P.M.安德逊,A.A佛阿德电力系统的控制与稳定水利电力出版社,1979
    182.韩祯祥,电力系统稳定,北京:中国电力出版社
    183. Wang, H. F.; Swift, F. J.; A unified model for the analysis of FACTS devices in damping power system oscillations. Ⅰ. Single-machine infinite-bus power systems. IEEE Transactions on Power Delivery, Volume 12, Issue 2, April 1997 Page(s): 941-946
    184. Wang, H. F.; Swift, F. J.; Facts-Based Stabilizer Designed by the Phase Compensation Method Part Ⅱ Multi-Machine Power Systems. Advances in Power System Control, Operation and Management, 1997. APSCOM-97. Fourth International Conference on (Conf. Publ. No. 450), Volume 2, 11-14 Nov. 1997 Page(s): 644-649
    185.闫冬.可控串联补偿装置的控制策略研究.山东大学博士学位论文,2003.
    186.郭春林,童陆园.多机系统中可控串补(TCSC)抑制功率振荡的研究.中国电机工程学报,2004,24(6):1-6
    187. D. Z. Fang, Yang Xiaodong, T. S. Chung. Adaptive fuzzy-logic SVC damping controller using strategy of oscillation energy descent [J]. IEEE Transactions on Power Systems, 2004, 19(3): 1414-1421
    188.徐桂芝,武守远,王宇红,郭强.用TCSC装置抑制电力系统低频振荡的研究.电网技术, 2004, 28(15): 45-47
    189. Zbigniew L, Tadeusz L, Jacek R. Advanced spectrum estimation methods for signal analysis in power electronics [J]. IEEE Trans on Industrial Electronics, 2003, 50(3): 514-519.
    190. Juan J. Sanchez-Gasca, Jow H. Chow, "Performance Comparison of three Identification Methods for the Analysis of Electromechanical Oscillations", IEEE Transactions on Power Systems, Vol 14, No. 3, August 1999
    191.张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    192. Trudnowaki D J, Johnson J M, Hauer J F. Making Prony analysis more accurate using multiple signals [J]. IEEE Trans on Power Systems, 1999, 14(1): 226-231
    193.基于Prony方法的电力系统振荡模式分析及PSS参数设计.pdf
    194. Smith J R, Hauer J F, Trudnowaki D J. Transfer function identification in power system applications [J]. IEEE Trans on Power Systems, 1993, 8(3): 1282-1290.
    195. D. A. Pierre, D. J. Trudnowski and J. F. Hauer, "Identifying Linear Reduced-Order Models for systems with Arbitrary Initial Conditions Using Prony Signal Analysis", IEEE Transactions on Automatic Control, Vol 37, No.6, June 1992
    196. J. F. Hauer, "The use of Prony Analysis to Determine Modal Content and Equivalent Models for Measured Power System Response," IEEE Special Publication 90TH0292-3-PWR, Eigen analysis and Frequency Domain Methods for System Dynamic Performance, 1990
    197.田芳,周孝信.利用留数进行可控串补控制装置参数的配置[J].电网技术,1999,23(2):1-5
    198. C. Y. Chung, C. T. Tse, K. W. Wang, A. K. David, C. W. Yu, "Synthesis of sensitivity coefficients for controller parameters of static var compensator", lEE Proceedings, Generation Transmission and Distribution, Vol. 147, No. 4, July 2000, pp197-201.
    199. Richard C. Doff, Modem Control Systems, Addison-Wesley Publishing Company, 1992
    200. M Klein, G J Rogers, P Kunder. A fundamental study of inter-area oscillation in power systems. IEEE Transactions on Power Systems, 1991, 6(3): 914-921
    201.于善谦,王洪海,朱乃硕等.免疫学导论[M].北京:高等教育出版社,1999
    202. Kazuhiko TAKAHASHI, Takayuki YAMADA. Application of an immune feedback mechanism to control systems. JSME International Journal, 1998, vol. 41, 184-191
    203. Yongsheng Ding. A nonlinear PID controller based on fuzzy-tuned immune feedback law. Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, 2000, vol. 3, 1576-1580
    204.高为炳.非线性控制系统导论[M].北京:科学出版社.1988.6.
    205. N K Jerne. Idiotopic network and other preconceived ideas [J]. Immunological Review, 1984, vol. 79: 5-24.
    206.Lydyard P M.,Whelan A.,M.W.Panger.Instant Notes in Immunology.北京:科学出版社.2001
    207. Yu Yao-nan, Electric Power System Dynamics, Academic Press, 1983.
    208.张芳,房大中,冯崇智,宋文南.相对增益矩阵方法在UPFC潮流控制中的应用.电网技术,2005,29(17):14-20
    209.张鹏翔,曹一家,王海风,等.相对增益矩阵方法在柔性交流输电系统多变量控制器交互影响分析中的应用.中国电机工程学报,2004,24(7):13-17
    210.蒙文川.人工免疫算法及其在电力系统中的应用研究.浙江大学博士学位论文,2006
    1. H. F. Wang. Interaction analysis and coordination of SVC voltage and damping control. The International Conference on Electric Utility Deregulation and Restructuring and Power Technologies 2000, London, 2000, 4:361-365
    2. Li Chun, Jiang Qirong, Wang Zhonghong. Design of a coordinated multi-objective controller for STATCOM. Transactions of China Electrotechnical Society, 1999, 14(2): 21-24
    3. Dipankar Dasgupta, Nii Attoh-Okine, "Immunity-based systems: a survey", 1997 IEEE International Conference on System, Man, and Cybernetics, pp.369-374, Oct, 1997.
    4. N. K. Jerne, "The immune system", Scientific American, 229(1), pp. 52-60, 1973.
    5. Yaoguang Wei, Deling Zheng, Ying Wang, "Research of an immune clone selection algorithm and its application in heating furnace state recognition", Information Acquisition, 2004. Proceedings. International Conference on, pp.384-387, June 2004.
    6. Araujo, M., Aguilar, J., Aponte, H., "Fault detection system in gas lift well based on artificial immune system", Neural Networks, 2003. Proceedings of the International Joint Conference on, vol.3, pp.1673-1677, July 2003.
    7. Harmer, P. K., Williams, P. D., Gunsch, G. H.; Lamont, G. B., "An artificial immune system architecture for computer security applications", Evolutionary Computation, IEEE Transactions on, vol.6, pp. 252-280, June 2002.
    8. Wang, H. F., Li, H., Chen, H., "Power system voltage control by multiple STATCOMs based on learning humoral immune response", Generation, Transmission and Distribution, IEE Proceedings, vol. 149, pp. 416-426, July 2002.
    9. Wang, H. F, Li, H., Chen, H., "Application of cell immune response modelling to power system voltage control by STATCOM", Generation, Transmission and Distribution, IEE Proceedings, vol. 149, pp. 102-107, Jan 2002.
    10. Kazuhiko TAKAHASHI, Takayuki YAMADA, "Application of an immune feedback mechanism to control systems", JSME International Journal, vol. 41, pp. 184-191, 1998.
    11. Yongsheng Ding, "A nonlinear PID controller based on fuzzy-tuned immune feedback law", Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, vol. 3, pp. 1576-1580, June 2000.
    12. Fang, D. Z., Yang Xiaodong; Chung, T. S., Wong, K.P., "Adaptive fuzzy-logic SVC damping controller using strategy of oscillation energy descent", IEEE Trans. Power Systems, vol. 19, pp. 1414-1421, Aug. 2004.
    1. J. J. Sanchez-Gasca and J. H. Chow, "Power system reduction to simplify the design of damping controllers for inter-area oscillations," IEEE Trans. Power Systems, vol. 11, no. 3, pp. 1342-1349, Aug. 1996.
    2. P. Pourbeik and M. J. Gibbard, "Simultaneous coordination of Power-System Stabilizers and FACTS device stabilizers in a multi machine power system for enhancing dynamic performance," IEEE Trans. Power Systems, vol.13, no. 2, pp. 473-479, 1998.
    3. D. Arnautovic and J. Medanic, "Design of decentralized multi-variable excitation controller in multi-machine power systems by projective controls," IEEE Trans. Energy Conversion, vol. EC-2, no. 4, pp. 598-604, Dec. 1987.
    4. Araujo, M., Aguilar, J., Aponte, H. "Fault detection system in gas lift well based on artificial immune system. Neural Networks," 2003. Proceedings of the International Joint Conference on. Vol.3: 1673-7.
    5. Harmer, P. K., Williams, P. D., Gunsch, G. H.; Lamont, G. B. "An artificial immune system architecture for computer security applications," Evolutionary Computation, IEEE Transactions on; 6 (3): 252-280.
    6. N. K. Jerne, "Idiotopic Network and Other Preconceived Ideas," Immunological Rev., vol. 79, pp. 5-24, 1984.
    7. F. L. Pagola, I. J. Perez-Arriaga, and G. C. Verghese, "On sensitivities, residues and participations: applications to oscillatory stability and control," IEEE Trans. PowerSyst., vol. 4, no.2, pp.278-285, May 1989.
    8. Wang, H. F.; Swift, F. J.; "Facts-Based Stabilizer Designed by the Phase Compensation Method Part Ⅱ: Multi-Machine Power Systems" Advances in Power System Control, Operation and Management, 1997. APSCOM 97. Fourth International Conference on (Conf. Publ. No. 450), Volume 2, 11-14 Nov. 1997 Page(s):644-649
    9. P. Kundur. "Power System Stability and Control." New York: McGrawHill; 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700