用户名: 密码: 验证码:
大岗山水电站拱坝基础处理工程辉绿岩脉复合灌浆试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大岗山水电站为混凝土双曲拱坝,最大坝高210.0m,在拱坝基础及两岸传力部位分布有较多性状较差的辉绿岩脉,影响建筑物的稳定性。为了有效解决辉绿岩脉地质缺陷这一技术难题,在总结前期试验成果和分析岩脉特征的基础上,选择代表性试验区,采用高压水泥–化学复合灌浆技术,对辉绿岩脉的灌浆加固处理开展了灌浆方案、工艺流程、加固效果和加固机理等方面的研究。试验中对试验区岩体进行水泥灌浆后再进行化学复合灌浆,水泥浆液采用普通硅酸盐水泥,化学浆液采用固结性能良好的CW1环氧树脂,灌浆后试验区岩体的整体性、连续性、坚固性均得到提高,灌浆效果显著。本文主要结论如下:
     (1)采用高压水泥-化学复合灌浆技术是必要的。辉绿岩脉整体呈陡倾、微细裂隙发育、裂隙开度相对较小,常规条件下水泥浆液难以灌入0.2mm以下宽度的裂隙,为了充分利用化学浆液的真溶液等特点充填、胶结水泥浆液难以达到的部位,采用高压水泥-化学复合灌浆方案,即首先进行高压水泥灌浆,其结束后基础再进化学复合灌浆,研究复合灌浆后的加固效果。
     (2)采用复合灌浆对辉绿岩脉进行处理是经济的、可行的。经统计分析,水泥浆液在辉绿岩脉中的单位注入量约为在花岗岩中的1/6;在岩体均一性相对较好的基础上进行化学灌浆,既能保证质量又节省灌浆材料,环氧浆液能够充填到宽度0.01mm的极微细裂隙中,且胶结密实。当辉绿岩脉与周围花岗岩的单位注入量差别较大时,依靠注入量很难清楚判断灌浆效果,应结合其他手段进行灌浆效果检测,如声波或钻孔弹模测试手段。
     (3)复合灌浆施工工艺、参数合理,可指导施工。试验中水泥灌浆孔间距2.0 m,化学灌浆孔间距1.4 m,均分三序施工。水泥灌浆最大目标压力5.0 MPa,主要采用“孔口封闭、自上而下、分段循环”灌浆工艺,实际工程应用中可增加5:1、3:1两级水灰比,提高对微细裂隙的有效灌入;化学灌浆在水泥灌浆基础上复合,最大目标压力4.4 MPa,采用“分段阻塞、纯压式”灌浆工艺,同时采用“压力下结束”和“定量灌注结束”双控标准结束灌浆。
     (4)试验区岩体完整性、连续性和坚固性提高。化学复合灌浆后两种岩性的单孔波速基本相同(花岗岩段为5184m/s,较灌浆前提高13.4%;辉绿岩段为5153m/s,较灌浆前提高40.9%),跨孔波速为4876m/s,较灌浆前提高14.4%,透水率均小于1Lu,岩体完整性提高;变形模量在15.35~16.60GPa范围内,约为灌浆前的1倍,环氧浆液能够充填到0.01mm的极微细裂隙中,且胶结密实,岩体连续性大幅提高;取芯平均干抗拉强度达到5MPa以上,平均干抗压强度可达75~90MPa,甚至更高,抗剪断系数提高,岩体坚固性增强。
     (5)复合灌浆加固岩体的实质可归纳为:复合灌浆后裂隙被充填、胶结,其端部应力集中被降低或消除,受力后破坏由压剪状态转变为纯剪,抗扩展、破坏能力提高;试验区岩体在灌浆后不利结构面组合得到改善,形成连续均匀的结构体,部分地应力得到恢复,抗变形能力增大,故灌浆后试验区岩体强度和刚度均得到提高,达到了加固岩体的效果。
Dagangshan hydropower station is a 210.0m concrete hyperbolic arch dam, there are more diabase dikes of poor distribution in the dam foundation and two sides that is the force transfer part, and affect the stability of the building. In order to effectively solve the problem of geological defects in diabase dikes, base on the pre-test results and the dikes characteristics, and select representative test area, taking the techniques of high-press cement and chemical grouting, and by the experiment studying the grouting plan、technological process、reinforcement effect、reinforcement mechanism and so on. During the experiment, in the rock-mass of test area, the high pressure cement grouting has been adopted firstly and then the chemical compound grouting is carried out. The material of cement slurry is ordinary portland cement,and the material of chemical grouting is epoxy resin with super consolidation performance,which belongs to the CW series. After the compound grouting, the entirety、continuity and sturdiness of rock mass in the test area are improved significantly, and the grouting effects are good.The main conclusions of the paper are as follows:
     (1) The technique of high-pressure cement and chemical compound grouting is necessary. Diabase overall was steep, which micro-cracks are developed and fracture aperture is small relatively, cement grout poured into the crack width of 0.2mm and it’s below is difficult in the normal condition. In order to make full use of the true solution of chemical grout fill and cement grout the rock-mass part which the cement grout can’t fill, taking the compound grouting plan that the high pressure cement grouting has been adopted firstly and then the chemical compound grouting is carried out, and study the reinforcement effect after the compound grouting.
     (2) Taking compound grouting reinforced the diabase is economical and feasible. Viewed from the different lithologies, the unit slug size of cement grout in diabase dikes is about 1/6 than in the granite, when the uniformity of rock-mass is relatively superior, taking chemical grouting not only ensure quality but also save materials, and epoxy grout can fill to the very fine cracks which is 0.01mm, and dense cementation. When the unit slug size is large difference between the diabase and granite which around the diabase, it is difficult to determine grouting effect for depending on the amount, should be combined with other means of detection of grouting effect, such as sonic testing or borehole elastic modulus testing methods.
     (3) The construction technology and the parameters of compound grouting are reasonable, which can directly guide the foundation treatment construction. In test, the distance between holes of cement grouting is 2.0m, and the distance between holes of chemical grouting is 1.4m, both constructions of them are divided into three sequences. The maximum target pressure of cement grouting is 5.0MPa, and the" hole-top-enclosed, top-down, sub-cycle" grouting technology is mainly used. For practical engineering application, should be increased both 5:1and 3:1 water-cement ratio and the effective injection of micro-cracks will be improved.The maximum target pressure of chemical grouting is 4.4MPa, and the" piecewise- obstruction, pure-compression style" grouting technology is mainly used, meanwhile, both "end under pressure" and " end of the quantitative perfusion " are used for grouting end standard .
     (4)The entirety、continuity and sturdiness of rock mass in the test area are improved significantly. After the compound grouting, sonic wave in diabase can reach 5184m/s, which increase 40.9%, in the granite can reach 5153m/s, which increase 13.4%, their cross-hole sonic can reach 4876m/s, which increase 14.4%, and the average pervious rate less than 1Lu, the rock-mass entirety is improved. The deformation modulus is in the range of 15.35–16.60GPa, and grout can fill to the very fine cracks which is 0.01mm, and dense cementation, the rock-mass continuity is improved. The average dry tensile strength of core is 5MPa, the average dry compressive strength is up to 75~90MPa or even higher, and the anti-shear is increased, the rock-mass sturdiness is improved.
     (5)The essence of the cement-chemical compound grouting for reinforcing the rock mass can be summarized as follows: after consolidation grouting, It is the fine filling and cementation of micro-cracks that reduce or eliminate the stress concentration on their ends intensively,and after force the failure mode from the compression - shear mode into pure-shear mode and its strength are enhanced. Meanwhile, the structural plane of rock mass and its disadvantage combination are improved, and form continuous and uniform structural body, and then partially restored stress and the anti deformation capacity is improved, so the strength and stiffness of rock-mass are increased after compound grouting, achieve the desired results.
引文
【1】《辞海》(缩印本)[M].上海辞书出版社,1999,第1189页.
    【2】熊进,祝红,董建军.长江三峡工程灌浆技术研究[M].北京:中国水利水电出版社,2003
    【3】孙钊.大坝基岩灌浆[M].北京:中国水利水电出版社,2004
    【4】马国彦,林秀山.水利水电工程灌浆与地下水排水[M].北京:中国水利水电出版社, 2001
    【5】王志仁.乌江渡水电站岩溶地层灌浆试验[J].岩土工程学报,1979
    【6】夏可凤.孔口封闭法讨论.中国水利学会地基与基础工程专业委员会.水工建筑物水泥灌浆与边坡支护技术[C].北京:中国水利水电出版社,2007
    【7】蔡胜华.长江三峡工程复合灌浆材料及施工技术研究.武汉理工大学硕士学位论文.
    【8】孙纪正.常用灌浆材料性能试验研究.山东大学硕士学位论文.
    【9】王道平.超细灌浆水泥性能及试验研究.广东工业大学硕士学位论文.
    【10】李筱芳.大坝用高效化学灌浆材料的研制.湖南大学硕士学位论文.
    【11】黄良锐.改性环氧灌浆材料的研究与应用.武汉理工大学硕士学位论文.
    【12】中国水电顾问集团成都勘测设计研究院.四川省大渡河大岗山水电站可行性研究报告工程地质卷[R].2006
    【13】中国水电顾问集团成都勘测设计研究院.四川省大渡河大岗山水电站拱坝基础岩体现场固结灌浆试验研究总报告[R].2008
    【14】王杰.注浆技术的发展与展望[J].沈阳建筑工程学院学报,1997 (1 ): 59-64
    【15】E.Nonveiller. Grouting Theory and Practice. Elsevier Science Pulisher B.V,The Netherlands,1989:102-123
    【16】孙钊.大坝基础灌浆(第二版).北京:水利电力出版社,1987
    【17】杜嘉鸿.国外化学注浆教程.北京:水利电力出版社,1987
    【18】黄月文,区晖.高分子灌浆材料应用研究与发展.高分子通报,2000 (4 ): 71-76
    【19】《岩上注浆理论与工程实践》协作组.岩土注浆理论与工程实践(第一版)[M].北京:科学出版社,2001
    【20】窦向贤.大坝基础水泥灌浆的研究,大连理工大学硕士学位论文. 2004.6
    【21】苏打.构皮滩水电站27#坝段无盖重固结灌浆试验研究,中南大学硕士学位论文. 2007.5
    【22】谢仕求.洪家渡水电站K40溶洞防渗帷幕灌浆技术研究及灌浆效果分析,中南大学工程硕士学位论文,2005.12
    【23】王中美,丁坚平,刘世喜.化学灌浆在贵州岩溶山区滑坡治理中的应用[[J].中国地质灾害与防治学报,2008(1)40-44
    【24】仇学明.锦屏水电站左岸帷幕灌浆试验与分析[[J].湖南水利水电,2008(1)45-48
    【25】罗平平.裂隙岩体可灌性及灌浆数值模拟研究,河海大学博士学位论文,2006.4
    【26】Arvind V Shroff,Dhananjay L.Shah. Grouting Technology in Tunnelling and Dam Construction[M].Second Edition.A.A.BALKEMAIROTTERDAMIBROOKFIELD,1999
    【27】John Bensted. Microfine Cements[J].World Cement,1992(12)
    【28】Jens Mittag. The use of microfine cements for the horizontal sealing of construction pits in Berlin[A].In: The proceedings of the International Conference on Anchoring and Grouting Towards the New Century[C].Guang Zhou,China,1999
    【29】涂建湘.湿磨水泥灌浆技术在五强溪水电站坝基帷幕灌浆中的应用[[J].水利水电技术, 1997(5)40-42
    【30】B.D.Paoli etal. Fundamental observations on cement based grouts(1):Traditional Materials, (2):Microfine cement and the cemill process. Grouting/Soil Improvement and Geosynthetics, ASCE,NY,1992
    【31】D.U.Deere and GLombardi .Grout slurries: thick or thin?[A]. Issues in Dam Grouting[C]. W H. Baker(ed),ASCE,NY,1985
    【32】刘孔凡,焦莉莉.普通水泥稳定浆液的研究[[J].水利水电技术,1998,29(12):48-50
    【33】谭日升,薛希亮.灌浆材料与灌浆技术的研究.长江水利水电科技史料之一长江水利水电科学研究院岩基科研三十年[R].1986
    【34】范光华.化学灌浆技术在锦屏一级电站工程中的试验研究[J].广西水利水电,2008,3.
    【35】汪在芹,谢波,唐文坚等.论科技创新与化学灌浆和谐持续发展[J].中国化学灌浆的现状与未来,2005.10
    【36】董建军,吕书云,谭日升等.对中国化学灌浆未来的思考.中国水利学会化学灌浆分会编.蒋忠硕,邓敬森.中国化学灌浆的现状与未来[C],2005.10
    【37】周正新.“劈裂和充填灌浆法”在小型水库大坝除险加固中的应用[J].湖南水利水电,2008.(1):18~21.
    【38】曹慧,陈勇,曹净,沈飞.压灌浆作用机理及其压浆方法[J].浙江建筑,2009.7(26):51~53.
    【39】K.D. Weaver. Dam Foundation Grouting[M], ASCE, NY,1991.
    【40】D.A. Bruce. Trends and developments in American grouting practice. Grouting in the Ground, Thomas Telford, London,1994.
    【41】林军,李焱.试论钻探和灌浆施工工艺的综合应用与发展方向[J].水利水电施工,2009.115(4):52~54.
    【42】林伟智.浅述水利工程建设的灌浆工艺技术[J].建筑科学,2009.(22):59~60.
    【43】岩土注浆理论与工程实例协作组编著.岩土注浆理论与工程实例.北京:科学出版社,2001
    【44】任克昌,杨道印,梅锦煜.化学灌浆的吸渗理论和WJ88浆材的研究.中国水利学会化学灌浆专门委员会,武警水力发电工程学会.第六届化学灌浆学术交流会文集[C].1994(10):52~58
    【45】James Warner著.压密灌浆30年.现代灌浆技术译文集.王素琴译.风文华校.北京:水利电力出版社,1991
    【46】周维垣,杨若琼.高压灌浆力学机理.中国岩石力学与工程学会岩石锚固与注浆技术专业委员会编.熊厚金主编.国际岩土锚固与灌浆新进展.北京:中国建筑工业出版社,1996
    【47】杜嘉鸿.国外化学注浆教程.北京:水利电力出版社,1987
    【48】U.S.A. The State of Art-Soil Grouting. Final report,1978
    【49】郑长成.裂隙岩体灌浆的模拟研究[D],长沙:中南工业大学博士学位论文1999.3
    【50】张建强.紫坪铺水利枢纽工程大坝趾板灌浆抬动机理研究,西华大学硕士学位论文,2007.5
    【51】陈珙新,祝红,熊进.三峡工程F215断层复合灌浆处理试验研究[J].长江科学院院报,2000,17(6)
    【52】蒋硕忠,谭日升,薛希亮.三峡工程灌浆概况及浅析[J].长江科学院院报,2000,17(6)
    【53】哈秋舲,谭日升.三峡工程基础处理灌浆的研究.中国岩石力学与工程学会岩石锚固与注浆技术专业委员会编.熊厚金土编.国际岩土锚固与灌浆新进展.北京:中国建筑工业出版社[C],1996. 101-113
    【54】温帅,汪家林,刘道华等.辉绿岩脉复合灌浆试验加固效果研究[J].岩石力学与工程学报,2009,28(6):1231-1238
    【55】王川婴,葛修润,白世伟.数字式全景钻孔摄像研究[J].岩石力学与工程学报,2002,21(3):398-403.
    【56】王川婴,LAWK T.钻孔摄像技术的发展与现状[J].岩石力学与工程学报,2005,24(19):3 440–3 447.
    【57】尹健民,艾凯,刘元坤,等.钻孔弹模法评价小湾水电站坝基岩体卸荷特征[J].长江科学院院报,2006,23(4):44–46.
    【58】李光煜,刘继光,谢远静.钻孔弹模计检测断层固结效果[J].岩石力学与工程学报,1995,15(3):289-293.
    【59】林宗元.岩土工程试验监测手册[M].北京:中国建筑工业出版社,2005.
    【60】全海.河床覆盖层高压旋喷灌浆效果检测[J].岩石力学与工程学报,2006,25(2):289–293.
    【61】彭苏萍,谢和平,何满朝,等.沉积相变岩体声波速度特征的试验研究[J].岩石力学与工程学报,2005,24(16):2 831–2 837.
    【62】四川省大渡河大岗山水电站可行性研究报告(综合说明).中国水电顾问集团成都勘测设计研究院.2006
    【63】董建军,魏涛,吕书云.三峡工程f1096断层复合灌浆处理技术[J].长江科学院院报,2005,22(2):35–38
    【64】尹健民,艾凯,刘元坤,等.钻孔弹模法评价小湾水电站坝基岩体卸荷特征[J].长江科学院院报,2006,23(4):44–46.
    【65】李光煜,刘继光,谢远静.钻孔弹模计检测断层固结灌浆效果[J].岩石力学与工程学报,1996,15(3):289–293
    【66】全海.河床覆盖层高压旋喷灌浆效果检测[J].岩石力学与工程学报,2006,25(2):289–293.
    【67】彭苏萍,谢和平,何满朝,等.沉积相变岩体声波速度特征的试验研究[J].岩石力学与工程学报,2005,24(16):2 831–2 837.
    【68】王川婴,LAWK T.钻孔摄像技术的发展与现状[J].岩石力学与工程学报,2005,24(19):3 440–3 447
    【69】肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1987
    【70】李同林.弹塑性力学[M].北京:中国地质大学出版社,2006
    【71】徐芝纶.弹性力学上[M].北京:高等教育出版社,2006
    【72】王兰生,李天斌等《二郎山隧道高地应力与围岩稳定问题》[M].北京:地质出版社,2006
    【73】王建宇.《地下工程喷锚支护原理和设计》[M].北京:中国铁道出版社2006
    【74】李晓红,卢义正等.《岩石力学实验模拟技术》[M].北京:科学出版社2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700