用户名: 密码: 验证码:
湿热环境下孔隙对CFRP力学性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维/树脂基复合材料以优异的性能在航空航天领域有着广泛的应用,但是其在储存和使用过程中要经受多种环境因素的影响,湿热环境是经常遇到的环境因素之一,导致复合材料力学性能下降。而由于复合材料特殊的成型工艺,其内部不可避免的产生孔隙缺陷,它对复合材料的力学性能存在不利影响。在孔隙缺陷存在的条件下,湿热环境对复合材料力学性能的影响更为严重。因此,研究湿热环境下孔隙对复合材料的影响具有重要意义。
     采用热压罐成型工艺制备碳纤维/环氧复合材料层压板,设置不同的固化压力0.4、0.2和0.0MPa,得到的孔隙率范围为0.33~2%。采用超声A扫描和金相显微镜分析孔隙率、孔隙形貌、分布和尺寸等特征;根据HB7401-96进行湿热环境试验,进行静态力学性能测试包括拉伸性能、压缩性能、弯曲性能和层间剪切性能。
     研究结果表明:孔隙率从0.33%增大到2%,孔隙的尺寸由圆球形增大为拉长形,而且会沿层间发展,长宽比集中在1.54~3.34之间。吸湿饱和后,出现层间裂纹,裂纹会由孔隙处引发并扩展。层压板吸湿初始阶段遵循M i与t 12的线性关系。吸湿后期偏离线性关系。饱和吸湿量和扩散系数都随着孔隙率的增加而增加,吸湿到达饱和的时间随孔隙率的增加变化不明显,试样尺寸影响平衡吸湿量和扩散系数。
     拉伸强度和拉伸模量随吸湿时间的延长呈现起伏状变化,最终下降,弯曲、压缩和层间剪切性能呈现下降趋势。随孔隙率增加,拉伸强度下降了6.5%、2.5%和1.2%,吸湿饱和后拉伸模量基本上无变化;吸湿饱和后压缩强度下降了14.6%和20.5%;弯曲强度下降了13.3%和18.7%;层间剪切强度下降了19.7%、27.4%和35.2%。吸湿前后层压板拉伸、压缩、弯曲和层间剪切损伤形式变化影响不大,随着孔隙率的增加,损伤变得严重。随孔隙率从0.33%增加到2%,脱湿后拉伸强度恢复程度变小,压缩、弯曲和层间剪切强度恢复程度减少,均未恢复至室温时的强度。
Carbon fiber reinforced polymers composite materials with excellent property have a wide application in the aerospace field, but they affected kinds of environmental factors during storage and use of the process, including hygrothermal environment is frequently encountered environment factors. Under hygrothermal environment, the mechanical properties decreased, which makes the design and use of composite materials more difficult. And because a special molding process, composite materials of internal maybe produce pore defects, it has a undesirable effect on mechanical properties of composite materials with exist of pore defects, hygrothermal environment effects the mechanical properties more serious. Therefore, the research that pore effects the properties of composite under the hygrothermal environment is meaningful.
     Useing autoclave molding process, preparation of a series of different porosity of carbon fiber/epoxy composite laminates, set different curing stress 0.4, 0.2 and 0.0MPa, porosity ranging from 0.33% to 2%. Using ultrasound A scan and optical microscopy to analysis porosity, pore morphology, distribution, size characteristics. According to HB7401-96, carry on hygrothermal environment and room temperature test, static mechanical properties including tensile properties, compression properties, bend properties and interlaminar shear properties.
     The results show that: when the porosity increase from 0.33% to 2%, the pore side change from the spherical to elongated shape, and will develop along the layers, the aspect ratio between concentration of 1.54~3.34. After moisture saturated, show layer cracks, crack caused by pore and expanded. Laminate's moisture follows the linear relationship of M i and t 12 on the initial stage, and later absorbence deviate from the linear relationship. Saturated moisture content and diffusion coefficient increase with increasing porosity; the time of moisture reach the saturation increases with the porosity increased slightly; Sample size affect the equilibrium moisture content and diffusion coefficient.
     The tensile strength and modulus fluctuate during the increase of moisture absorption time, and decline at last. The properties of bend, compress and interlaminar shear decline during the moisture absorption time. As pore rate increases, tensile strength falls 6.5%, 2.5% and 1.2% respectively, Tensile modulus after moisture saturation is basically unchanged; After saturation, compress strength falls 14.6% and 20.5% respectively; Bend strength falls 13.3% and 18.7% respectively; interlaminar shear strength falls 19.7%、27.4% and 35.2% respectively. A little influence on the injuries form of tensile, compression, bending and interlaminar shear, along with the increase of porosity, damage becomes severe. With the porosity from 0.33% to 2%, the tensile strength recovery after drying smaller extent, compression, bending and interlaminar shear strength recovery minimize, were not returned to the room temperature strength.
引文
1贺福,王茂章.碳纤维及其复合材料[M].科学出版社, 195:1
    2郝元凯,肖加余.高性能复合材料学[M].化学工业出版社, 2004:114
    3舒卫国.复合材料在航空工业中的应用综述.玻璃钢/复合材料增刊[J]. 2008:286~288
    4碳树脂基复合材料在航空领域的新应用新设计.国外塑料. 2009, 27(4)
    5陈绍杰.复合材料与大型飞机.新材料产业. 2008(1):31
    6顾书英,任杰.聚合物基复合材料.化学工业出版社. 2007:191
    7邓文,崔建伟.树脂基复合材料在土木建筑工程中的应用.纺织用民品. 2008(6):28~30
    8吴明复.纤维增强复合材料的应用及其缺陷检测[J].航天工艺. 1988(1):41~46
    9 Judd N C W, Wrigh W W. Void and their Effects on the Mechanical Properties of Composites[J]. SAMPE Journal, 1978(Jan/Feb):10~14
    10 Michelle Leali Costa, Sergio Frascino M Dealmeida, Mirabel Cerqueira Rezende. The Influence of Porosity on the Interlaminar Shear Strength of Carbon Epoxy and Carbon Bismaleimide Fabric Laminates[J]. Composites Science and Technology. 2001, 61:2101~2108
    11李耀华,张宁.飞机结构设计中对复合材料的环境考虑[J].环境与可靠性. 2004, 5:32~34
    12 B.C.霍斯金, A.A.贝克.树脂基复合材料及原理.科学出版社, 1992:144
    13 F.C.Campbell, A.R.Mallow. Porosity in Carbon Fibre Composites an Overiew of Causes.Journal of Adanced Materials. 1995(July):18~33
    14徐骥威,李敏,顾轶卓等.热固性树脂中孔隙形成条件的定量测试方法与影响因素.复合材料学报. 2008, 25(2):52~56
    15汪赫男,张佐光,顾轶卓等.环氧复合材料层板热压成型孔隙缺陷影响因素.复合材料学报. 2007, 24(5):55~60
    16盛磊.树脂基复合材料中孔隙的起因评述[J].航天返回与遥感. 1996, 17(2):42~53
    17 A. C. Loos, G. S. Springer. Curing of Epoxy Matrix Composites. Journal of Composites Materials. 1983, 17(2):135~169
    18 J. L. Kardos, M. P. Dudukovic, R. Dave. Viod Growth and Transport During the Processing of Thermosetting Matrix Composites. Adances in Polymer Science. 1986, 80:101~123
    19常文,张佐光,顾轶卓等.热压成型环氧复合材料层板孔隙缺陷可控性.中国航空学会2007年学术年会.材料专题55:1~6
    20游红武.碳纤维复合材料孔隙率超声检测和角度调整步进电机驱动电源研制[D].浙江大学. 1993:5~10
    21 Ewins, P. D. , Childs, R. . The Determination of Content by Volume of Fibre Resin and Voids in Carbon Fibre Reinforced Plastics[Z]. RAE, TR 72082(1972)
    22周晓军,莫锦秋,游红武.碳纤维复合材料分布孔隙率的超声衰减检测方法[J].复合材料学报. 1997, 14(3):107~114
    23 A. Ciliberto, G. Cavaccin, i O. Salvett, et al,. Porosity Detection in Composite Aeronautical Structures[J]. Infrared Physics& Technology. 2002, 43:139~143
    24 Jeong. H. Effeets of Voids on the Mechanical Strength and Ultrasonic Attenuation of Laminated Composites. Journal of Composite Materials. 1997, 31(3):276~292
    25 PleauR, PigeonM, Laureneot J L. Some Finding on the Usefldness of Image Analysis for Determining the Characteristies of the Air-Voids System on Hardened Conerete. Cement&Concrete Composites. 2001, 23(2~3):237~246
    26何方成.复合材料孔隙率的超声检测方法探讨.材料工程2009年增刊1:57~60
    27 A. PMouritz. Ultrasonic and Interlaminar Porperties of Highly Porous Composites. Joumal of Composite Materials. 2000, 34(3):218~239
    28 D. E. W. Stone, B. Clakre. Ultrasonic Aretnuation as a Measure of Void Content in Carbon-Fiber Reinforced Plasties. Non-desturetivetesting. 1975, 33 (3):137~145
    29周晓军,游红武,程耀东.含孔隙碳纤维复合材料的超声衰减模型[J].复合材料学报. 1997, 14(3):99~106
    30刘继忠,周晓军.碳纤维RP孔隙率超声无损检测技术研究与系统实现.浙江大学. 2005:10~15
    31宋立军,周晓军.复合材料孔隙率检测方法及其实现技术的研究.浙江大学. 2005:14~15
    32华志恒,周晓军.基于信号处理碳纤维复合材料孔隙率无损检测方法研究.浙江大学. 2005:5~10
    33华志恒,周晓军,刘继忠.碳纤维复合材料(碳纤维RP)孔隙的形态特征.复合材料学报. 2005, 22(6):103~107
    34刘志真,李宏运,益小苏.孔隙率对聚酰亚胺复合材料力学性能的影响.材料工程. 2005(9):56~58
    35刘玲,张博明,王殿富等.聚合物基复合材料中孔隙率及层间剪切性能的实验表征.航空材料学报. 2006, 26(4):115~118
    36 Judd N C W, Wrigh W W. Void and their Effects on the Mechanical Properties of Composites[J]. SAMPE Journal, 1978(Jan/Feb):10~14
    37 Almeida S F M, Nogueira Neto Z S. Effects of Voids Content on the Strength of Composite Laminates[J]. Composite Structures. 1994, 28(2):139~148
    38 Olivier P, Cottu J P, Ferret B. Effects of Cure Cycle Pressure and Voids on Some Mechanical Properties of Carbon/epoxy laminates[J]. composites. 1995, 26 (7):509~515
    39 Michael R. Wisnom, Tom Reynolds, et al. Reduction in Interlaminar Shear Strength by Discrete and Distributed Voids[J]. Composites Science and Technology. 1996, 56(1):93~101
    40 Michelle Leali Costa, Sergio Frascino M Dealmeida, Mirabel Cerqueira Rezende. The Influence of Porosity on the Interlaminar Shear Strength of Carbon Epoxy and Carbon Bismaleimide Fabric Laminates[J]. Composites Science and Technology. 2001, 61:2101~2108
    41 P. O. Hagstrand, F. Bonjour, J. A. E. Manson. The In?uence of Void Content on the Structural Fexural Performance of Unidirectional Glass Fibre Reinforced Polypropylene Composites.Composites:Part A. 2005
    42刘玲,张博明,王殿富.碳/环氧复合材料孔隙问题研究进展.宇航材料工艺. 2004(6):6~10
    43 Ling Liu, Bo-Ming Zhang, Dian-Fu Wang, Zhan-Jun Wu. Effects of Cure Cycles on Void Content and Mechanical Properties of Composite Laminates[J]. Composite Structures. 2006, 73(3):303~309
    44刘玲,路明坤,张博明等.孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响.复合材料学报. 2004, 21(5):116~121
    45刘志真,李宏运,益小苏.孔隙率对聚酰亚胺复合材料力学性能的影响.材料工程. 2005(9):56~58
    46李耀华,张宁.飞机结构设计中对复合材料的环境考虑[J].环境与可靠性, 2004, 5:32~34
    47张骏华. C/E复合材料在湿热环境下的静态力学性能及其散布度的实验研究[J].强度与环境, 1996(4):53~62
    48 Ghothed I. , valentine D. Hygrothermal Effeets on the Physieo-Chemical Properties of Pure and Glas~Fiber Reinforced Polyester and Vinylester Resins[J]. PolymerComposites. 1993, 14(4):324~334
    49 Selzer. S, Friedrich. K. , Mechanieal Properties and Fatigue Behaviour of Carbon Fiber Reinforced Polymer Composites under the Influence of Moisture[J]. Composites. 1997, 28A(6):595~604
    50 ZhongY., ZhouJ. R. Study of Thermal and Hygrothermal Behaviour of Glass/Vinyl Ester. Composites[J]. Journal of Reforeed Plasties and Composites. 1999, 18(17):1619~1629
    51吕小军,张琦,项民等.环境因素对复合材料力学性能的影响.中国腐蚀与防护学报. 2007, 27(3):97~100
    52李善君,陈月辉.环氧树脂固化的吸湿过程及其影响因素.热固性树脂. 1992, (4):38~42
    53田莉莉,刘道新,张广来等.温度和应力对碳纤维环氧复合材料吸湿行为的影响.玻璃钢/复合材料. 2006(3):14~18
    54周小东,戴干策.玻璃纤维毡增强聚丙烯复合材料的湿热稳定性[J].玻璃钢/复合材料. 1999, 1:17
    55 Xu Z R, Ashbee K H. Photoelastic Study of the Durability of Interfacial Bonding of Carbon Fiber-Epoxy Resin Composite[J]. J Mater Sci. 2004, 29(2):394
    56 M. R. Meshram, Nawal K. Agrawal, Bharoti Sinha, et a1. Characterization of M-type Barium Hexagonal Forrite-based Wide and Microwave Absorber[J]. J Magn Magn Mater. 2004, 271:207~214
    57惠雪梅,王晓洁,尤丽虹. CE/EP/碳纤维复合材料湿热性能研究[J].工程塑料应用. 2006, 34(5):49~51
    58孙丽,黄远,万怡灶等.碳/环氧树脂复合材料吸湿水分浓度场的有限元分析[J].兵器材料科学与工程. 2007, 30(4):5~8
    59郑路,常新龙,赵峰等.湿热环境中复合材料吸湿性研究[J].纤维复合材料. 2007(2):37~39
    60詹美珍,刘东勋.碳纤维/环氧复合材料的温\湿度效应[J].材料工程, 1989(3):35~37
    61 J. S. Earl, J. M. Dulieu-Barton, R. A. Shenoi School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK Composites Science and Technology. 2003 (63):211~223
    62 Z. Sereir, N. Damage of Hybrid Composites under Long Term Hygrothermal Loading and Stacking Sequence. Theoretical and Applied Fracture Mechanics. 2007(47):145~163
    63 G. M. Ca?ndido, M. L. Costa, M. C. Rezende, et al. Hygrothermal effects on quasi~isotropic carbon epoxy laminates with machined and molded edges. Composites:Part B. 2008(39):490~496
    64 K. H. Amara, A. Tounsi, A. Benzair. Analys of Transverse Cracking and Elastic Properties Reduction in Hygrothermal Aged cross-ply Laminates. Materials Science and Engineering A . 2005(396):369~375
    65王晓洁,梁国正,张炜等.湿热老化对高性能复合材料性能的影响[J].固体火箭技术. 2006, 29(3):301~304
    66张静,张琦,马会平等. G827/5224和G803/5224碳纤维增强环氧树脂湿热老化的研究.装备环境工程. 2008, 5(3):16~20
    67哈里斯.布莱恩.工程复合材料[M].陈祥宝,张宝艳,译.化学工业出版社, 2004:212~218
    68 RAR B C. Temperature Effect during Humid Ageing on Interfaces of Glass and Carbon Fibers Reinforced Epoxy Composites[J]. Journal of Colloid and Interface Science. 2006, 298:111~117
    69过梅丽,杨桦.预浸料制备方法影响复合材料湿热稳定性的原因分析.航空学报. 2000, 21(增刊):81~84
    70 Vijayan. Muralidharan, Chung-Yuen Hui, Venkat R. Krishnan, et al. A Flow through Porous Media Model for Pore Pressure during Heating of Polymer-Matrix Composites. Composites Science and Technology. 2006(66):1409~1417
    71 Jong-Pil Won, Su-Jin Lee, Yoon-Jung Kim, et al. The effect of Exposure to Alkaline Solution and Water on the Strength–Porosity Relationship of GFRP rebar. Composites:Part B. 2008(39):764~772
    72 Park S. Y. , Choi W. J. , Choi H. S. . The Effects of Void Contents on the Long- Term Hygrothermal Behaviors of Glass/Epoxy and GLARE laminates, Compo- site Structures(2009)
    73 A. Farouk, T. H. Kwon. Effect of Processing Parameters on Compression Molded PMR~15/C3K Composites. Polymer Composites. 1990, 11:379~386
    74 F. Y. C. Boey, S. W. Lye. Void Reduction in Autoclave Processing of Thermoset Composites Part2:Void Reduction in a Microwave Curing Process. Composites. 1992, 23(4):266~270
    75 R. S.戴夫, A. C.卢斯.高分子复合材料加工工程.方征平,沈烈译.化学工业出版社, 2004:320~321
    76 K. L. Adams, L. Rebenfeld. In-Plane Flow of Fluids in Fabrics Structure/Flow Characterization. Textile Research Journal. 1987, 57(11):647~654
    77 J. M. Prausnitz, R. N. Lichtenthaler, E. G. Azevado. Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall Inc, Englewood Cliffs, 1986
    78曾竟成,罗青,唐羽章.国防科技大学出版社. 1998:153~155
    79 LinYC., Chen Xu. Moisture Sorption-desoption-resoption Characteristies and its Effects on the Mechanical Behavior of the Epoxy System[J]. Polyme. 2005, 46(25):11994~12003
    80过梅丽,肇研,谢令.航空航天结构复合材料湿热老化机理的研究[J].宇航材料工艺, 2002(4):51~54
    81陈伟明,王成忠,周同悦等. T800碳纤维复合材料界面吸湿性能分析.玻璃钢/复合材料. 2006(5):20~23
    82吕小军,张琦,马兆庆等.湿热老化对碳纤维/环氧树脂基复合材料力学性能影响研究.材料工程. 2005(11):50~57
    83 Y Z Wan. Moisture Absorption Behavior of C3D/EP Composite and Effect of External Stress[J], Materials Science and Engineering. 2002, A326:324~329

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700