用户名: 密码: 验证码:
数据驱动的填料塔液泛气速预测模型与实时监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
填料塔的液泛气速是塔的工作气速的上限。研究填料塔的液泛现象和预测填料塔的液泛气速,使填料塔在尽可能高的通量下平稳运行,避免发生由于对液泛失察或判断延误,导致溶液跑损、停产,形成巨额的经济损失。该研究工作对提高塔器的安全操作、经济效率提升以及节能减排都具有重要的意义,并有着广泛的工业应用前景。
     在总结了传统的液泛气速经验模型以及液泛实时监测方法的基础上,本文详细介绍了新型的基于数据驱动方法,建立统一的填料液泛气速预测模型的算法及实现步骤;提出了通过监听填料床因液泛发生而形成的声波改变,实现液泛实时监测的的理论及方法。并通过相应的实验,对这些新方法的可行性进行了验证。
     本文的创新性研究工作包括:
     (1)对国内近几十年来发表的散堆填料实验的文献数据进行了全面的归纳总结,初步建立了相应的实验数据库。基于径向基神经网络推导出了液泛气速预测模型。探索采用支持向量机回归方法,建立了填料塔液泛气速预测模型。根据得到的填料塔的液泛气速预测模型,在MATLAB下开发了一个辅助预测软件,可预先估计填料的液泛气速。
     (2)通过对填料塔两相对流时的声波发射进行实时监测实验,分析正常及液泛状态下,填料层上部的声波信号波动特性,分析得到了实验塔液泛状态的特征频率段位于180-200Hz区域。
     (3)探索采用阵列麦克风采集填料层上部的声波信号变化,然后采用近场声全息方法,进行了数据计算并绘制了重建后的源面声压变化图。该方法克服了单麦克风采集所得仅为液泛区域声波变化平均值的缺点,能够更好地体现液泛区域各部位的声压变化,可以用于塔内局部区域液泛的研究。
     最后总结了本文的主要研究成果,提出了需进一步探索和改进的研究方向。
The flooding gas velocity of packed column is the upper limit of its operating gas velocity. Research on the flooding of the packed column and forecasting its flooding gas velocity makes it possible that packed column can be operated steadily in the high capacity to avoid the loss and production halts of liquor due to the oversight or delayed judgment on flooding, which may lead to the tremendous economic loss. This research not only has great significance on the enhancement in safe operation of column, improvement in the economical efficiency, together with energy saving and emission reduction, but also has a wide prospect of industrial applications.
     Based on the summarization concerning the traditional experience model of flooding gas velocity and the method of online monitoring of flooding, this paper specifically introduces the original approach based on data-driven and builds an algorithm regarding the gas velocity prediction model of flooding, and the corresponding steps. Moreover, it also puts forward monitoring the acoustic wave change which formed due to flooding in the packed bed to realize the real-time monitor, which is a new theory as well as a method. Furthermore, these new methods have been verified via corresponding experiments.
     The encompassed innovative research of this paper is as follows:
     1. It makes compressive summary on the domestic literature data which have been published in recent decades with regard to experiment of random packing, so the corresponding data base have initially been established. In view of fact that the RBF (Radical Basis Function) network has launched the prediction model on the flooding gas velocity, the method of SVM (Support Vector Machine) regression is applied to this exploration in order to build the flooding gas velocity model of packed column. According to the available flooding gas velocity model of packed column, a prediction software under MATLAB is developed, which can estimate the flooding gas velocity of packed column in advance.
     2. Through the real-time monitoring experiment on the acoustic emission of the two-phase convection flow in packed columns and the analysis of the feature of acoustic wave signal above of the packed bed under the normal or flooding condition, it is found that the characteristic frequency of experimental column under flooding state is located at the range of180-200Hz.
     3. The exploration adopts the microphone array to collect the change of acoustic wave signal which is above the packing bed. Afterwards, NAH (Nearfield Acoustic Holography) is used for computing and then, the rebuilt diagram about change of sound pressure has been drawn. This method overcomes the flaw that average amount of acoustic wave in flooding area is the only thing the single microphone collected, while this method can better reflect the change of sound pressure in any positions within the area of flooding, and it can used to research the flooding in the certain part of packed column.
     Ultimately, this paper sums up the research findings, and presents the direction of research which needs to be explored and improved further.
引文
[1]俞晓梅,袁晓竞.塔器[M].北京:化学工业出版社,2010.
    [2]N.P.Cheremisinoff. Handbook of Chemical Processing Equipment[M]. Woburn:Butterworth-Heinemann,2000.
    [3]王树楹.现代填料塔技术指南[M].北京:中国石化出版社,1998.
    [4]刘乃鸿.工业塔新型规整填料应用手册[M].天津:天津大学出版社,1993.
    [5]中国国务院.国务院关于进一步加大工作力度确保实现“十一五”节能减排目标的通知[OL]. http://www.miit.gov.cn/n11293472/n11293877/n13261291/n13261311/13261959.html, 2010-05-04.
    [6]R.Billet. Packed Column Analysis and Design[M]. Bochum:Ruhr-Universitat Bochum,1989.
    [7]T.K.Sherwood, GH.Shipley, F.A.L.Holloway. Flooding velocities in packet columns[J]. Industrial & Engineering Chemistry,1938,30(7):765.
    [8]W.A.Bain, O.A.Hougen. Flooding velocities in packed towers[J]. Transactions of AIChE, 1944,40:29.
    [9]M.Leva. Tower Packings and Packed Tower Design[M]. Akron:The United States Stoneware Company (Norton),1953.
    [10]J.S. Eckert. Design techniques for sizing packed towers[J]. Chemical Engineering Progress, 1961,57(9):54.
    [11]金祖源.乱堆填料层压降半经验通用关联图[J].化学工程,1982,3:26.
    [12]陈林君.填料塔液泛速度计算公式[J].化学工程,1987,2:26.
    [13]J.Stichlmair, J.L.Bravo, J.R.Fair. General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns[J]. Gas Separation & Purification,1989,3: 19-28.
    [14]J.Mackowiak. Fluid Dynamic of Packed Columns[M], Heidelberg:Springer-Verlag,2010.
    [15]南京化工学院.填料塔的流体力学特性(Ⅱ)-填料塔内的液泛现象[J].化学工程,1977,(6):55-65.
    [16]谈遒,李锡源,李阿娜.几种Dg50乱堆塔填料流体力学性能的测定和关联[J].化工学报,1981,(2):157-166.
    [17]H.C.Ward, J.T.Sommerfed. New equation for flooding[J]. Hydrocarbon Process,1982,10: 99-100.
    [18]H.Kister, D.Gill. Predict flood point and pressure drop for modern random packing[J]. Chemical Engineering Progress,1991,87(2):32-42.
    [19]K.Soundarajan, K.Krishnaiah. Hydrodynamics of turbulent bed contactor:Flooding aspects[J]. The Canadian Journal of Chemical Engineering,1994,72:569-575.
    [20]S.Pintus, I.Iliuta, B.P.A.Grandjean, et al. A unified approach to the hydraulics and mass transfer in randomly packed towers[J]. Chemical Engineering Science,2001,56:6003-6013.
    [21]E.Brunazzi, A.Paglianti, S.Pintus. A capacitance probe and a new model to identify and predict the capacity of columns equipped with structured packings[J]. Industrial & Engineering Chemistry Research,2001,40:1205-1212.
    [22]J.L.Bravo, A.F.Seibert, J.R.Fair. The effects of free water on the performance of packed towers in vacuum service[J]. Industrial & Engineering Chemistry Research,2001,40: 6181-6184.
    [23]J.GWang, X.H.Ma, J.B. Chen, et al. Theoretical and experimental investigation of the flooding velocity of an immiscible vapor mixture condensing in vertical tubes[J]. Industrial & Engineering Chemistry Research,2003,42:5312-5317.
    [24]王广全,袁希钢,刘春江等.规整填料压降研究新进展[J].化学工程,2005,33(3):4-7.
    [25]E.Brunazzi, R.Macias-Salinas, A.Viva. Calculation procedure for flooding in packed columns using a channel model[J]. Chemical Engineering Communications,2009,196(3): 330-341.
    [26]J. Mackowiak. Extended channel model for prediction of the pressure drop in single-phase flow in packed columns [J]. Chemical Engineering Research and Design,2009,87:123-134.
    [27]潘立登,李大字,马俊.软测量技术原理及应用[M].北京:中国电力出版社,2009.
    [28]R.Taylor. Distill modeling after all these years:A view of the state of the art-Catching up with the Past[J]. Industrial & Engineering Chemistry Research,2007,46(13):4349-4357.
    [29]G.B.Liu, K.T.Yu, X.G. Yuan, et al. A numerical method for predicting the performance of a randomly packed distillation column[J]. International Journal of Heat and Mass Transfer, 2009,52:5330-5338.
    [30]S.Piche, F.Larachi, B.P.A.Grandjean. Flooding capacity in packed towers:database, correlations, and analysis [J]. Industrial & Engineering Chemistry Research,2001,40: 476-487.
    [31]S.Piche, F.Larachi, B.P.A.Grandjean. Loading capacity in packed towers-database, correlations and analysis[J]. Chemical Engineering & Technology,2001,24(4):373-380.
    [32]F.J.Strigle. Packed Tower Design and Applications:Random and Structured Packings[M], Texas:Gulf Publishing Company,1994.
    [33]S.Parthasarathy, H.Gowan. Prediction of Flooding in an Absorption Column using Neural Networks [A]. Proceeedings of the 1999 IEEE international Conference on Control Application[C]. Piscataway:IEEE,1999,1056-1061.
    [34]R.K.Pihlaja. Detecting Incipient Flooding in a Distillation Column[A]. Proceeedings of AIChE 2010 Spring Meeting & 6th Global Congress on Process Safety[C]. New York: AIChE,2010.
    [35]J.W.R.Boyd, J.Varley. The uses of pasive measurement of acoustic emissions from chemical engineering processes[J]. Chemical Engineering Science,2001,56:1749-1767.
    [36]E.Hansuld, L.Briens, C.Briens. Acoustic deteciton of flooding in aborption columns and trickle beds[J]. Chemical Engineering Progress,2008,47(5):871-878.
    [37]V.N. Vapnik. Statistical Learning Theory[M]. New York:Wiley-Interscience,1998.
    [38]F.C.Silvey, G.J.Keller. Testing on a commecrcial scale[J]. Chemical Engineering Progress, 1966,62(1):68-74.
    [39]D.P.Kessler, P.C.Wankat. Correlations for column parameters [J]. Chemical Engineering, 1988,26:72-74.
    [40]陈昂.关联填料塔液泛速度的经验模型[J].化学工程,1983,(4):61-66.
    [41]冯善良,江生南,徐震字.填料塔液泛速度关联式的改进[J].北京化工院学报,1989,16(3):1-8.
    [42]海金(S.Haykin).神经网络原理[M].北京:机械工业出版社,2004.
    [43]周安,罗光熹.填料塔液泛气速计算公式的评选[J].大庆石油学院学报,1995,19(2):49-54.
    [44]石油化学工业部第六设计院.瓷矩鞍型、短拉西环及拉西环填料的流体力学性能评选[J].化学工程,1976,3:18-32.
    [45]天津大学化学工程教研室.F50毫米金属鲍尔环、瓷矩鞍、短拉西环及拉西环填料的流体力学性能[J].化学工程,1977,1:10-20.
    [46]石化部第六设计院.F16毫米铝鲍尔环填料的流体力学性能研究[J].化学工程,1977,4:35-42.
    [47]浙江化工学院.聚丙烯阶梯环和鲍尔环的流体力学性能[J].化学工程,1978,1:1-13.
    [48]化学工业部第六设计院.16毫米瓷矩鞍型填料的流体力学性能研究[J].化学工程,1979,3:47-52.
    [49]浙江化工学院化工原理教研组.聚丙烯阶梯环的研究与应用[J].化学工程,1979,3: 82-89.
    [50]天津大学化学工程教研室传质科研组.几种聚丙烯塔填料的流体力学性能-Dg50米字筋鲍尔环、井字筋鲍尔环、阶梯环填料[J].化学工程,1979,3:37-42.
    [51]吉林化学公司研究院.国产38毫米陶瓷矩鞍性、钢鲍尔环、拉西环填料及法国毫米陶瓷矩鞍性填料的流体力学及传质性能的测定[J].化学工程,1979,3:20-36.
    [52]兰州石油机械研究所塔器组.50#金属英特洛克斯填料的研究[J].化工炼油机械,1981,3:1-7.
    [53]林淑容,许炳树,刘启尺等.F38毫米聚丙烯共扼环填料的流体力学及传质性能的测试[J].华南工学院学报,1981,9(2):58-65.
    [54]卢励生,钱恒元,陈大昌.新型通用填料的流体力学性能研究[J].化工炼油机械,1982,1:12-17.
    [55]李阿娜,李锡源,麦本熙等.几种开孔填料的性能研究(一)[J].化学工程,1984,4:37-45+62.
    [56]刘彤文,曾鄂,陈蜀君.新型、高效25#双弧填料的开发[J].石油化工设备,1985,14(6):1-5.
    [57]李景鹤.对金属环矩鞍和金属阶梯环的流体力学性能研究[J].化学工程,1988,16(1):34-41.
    [58]胡振瑗,王存文,李德树WCEC-I型填料的流体力学性能研究[J].化学工程,1989,17(3):55-58+63.
    [59]李锡源,王恩详,张绍军.塑料花环填料的流体力学及传质性能研究[J].化学工程,1991,19(3):43-47+55.
    [60]倪炳华,王昂,刘宗宽等.塑料花心填料流体力学及传质性能研究[J].化学工程,1993,21(2):32-35+49.
    [61]王昂,肖清,刘宗宽等.MT环等五种填料的流体力学性能测定与评价[J].西安交通大学学报,1994,28(8):37-43+52.
    [62]李锡源,贾绍义,王恩详.塑料TGJ型填料的流体力学及传质性能研究[J].化学工业与工程,1995,12(1):1-6.
    [63]董谊仁,张文敏.聚丙烯短阶梯环填料的性能研究和工业应用[J].化学工程,1996,24(4):21-24+32.
    [64]叶荣恒.鞍环填料的新构型-双鞍环性能分析[J].化工设计,1998,5:27-30+43.
    [65]贾绍义,胡晖,李杰等.塑料扁环填料流体力学及传质性能的研究[J].化学工业与工程,2000,17(4):198-203.
    [66]杨运泉,刘文英,周大军等.聚乙烯扁环填料的流体力学与传质性能研究[J].精细化工中间体,2002,32(2):43-45+57.
    [67]孙兰义,郭庆丰,费维扬.QH-2型扁环填料的流体力学和传质性能研究[J].化学工程,2002,30(3):7-10+21.
    [68]贾绍义,吴松海,孙永利等.塑料异型矩鞍填料的流体力学及传质性能研究[J].化学工程,2006,34(4):1-4.
    [69]吴松海,贾绍义,孙永利等.DN50塑料异型矩鞍填料的流体力学及传质性能[J].天津大学学报,2006,39(10):1184-1188.
    [70]张杰旭,李玉安,叶启亮等.环鞍复合填料的实验研究[J].化学工程,2007,35(7):19-22.
    [71]J.D.Powell. Radial basis function approximations to plolynomials[A]. Numerical analysis 1987[C]. New York:Longman Publishing Group,1988.
    [72]D.S.Broomhead, D.Lowe. Multivariable functional interpolation and adaptive network[J]. Complex Systems,1988,2:321-355.
    [73]I.R.H. Jackson. An order of convergence for some radial basis functions[J]. IMA Jouranla of Numerical Analysis,1989,9:567-587.
    [74]D.M.Himmelblau. Accounts of Experiences in the Application of Artificial Neural Networks in Chemical Engineering[J]. Industrial & Engineering Chemistry Research,2008,47(16): 5782-5796.
    [75]C.Aldrich, J.Deventer. Modeling of Induced Aeration in Turbine Aerators by Use of Radial Basis Function Neural Networks [J]. The Canadian Journal of Chemical Engineering,1995, 73:808-816.
    [76]A.Aminian. Prediction of temperature elevation for seawater in multi-stage flash desalination plants using radial basis function neural network[J]. Chemical Engineering Journal,2010, 162(2):552-556.
    [77]A.Gulbag, F.Temurtas, Z.Z.Ozrurk. A study on radial basis function neural network size reduction for quantitative identification of individual gas concentrations in their gas mixtures[J]. Sensors and Actuators B:Chemical,2007,124(2):383-392.
    [78]米歇尔(T.M.Mitchel)机器学习[M].曾华军,张银奎等译.北京:机械工业出版社,2008.
    [79]邓乃扬,田英杰.支持向量机-理论、算法与扩展[M].北京:科学出版社,2009.
    [80]M.Agrawal, A.M.Jade, V.K.Jayaraman, et al. Support vector machines:a useful tool for process engineering applications [J]. Chemical Engineering Progress,2003,99(1):57-62.
    [81]A.B.Gandhi, J.B.Josh, V.K.Jayaraman. Development of support vector regression(SVR)-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas-liquid systems[J]. Chemical Engineering Science,2007,62:7078-7089.
    [82]K.Salahshoor, M.Kordestani, M.Khoshro. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers[J]. Energy,2010,35(12):5472-5482.
    [83]I.Monroy, R.Benitez, GEscudero, et al. DICA enhanced SVM classification approach to fault diagnosis for chemical processes[J]. Computer Aided Chemical Engineering,2009,26: 267-272.
    [84]L.M.R.Baccarini, V.V.Rocha, B.R.Menezes, et al. SVM practical industrial application for mechanical faults diagnostic [J]. Expert Systems with Applications,2011,38(6):6980-6984.
    [85]O.Devos, C.Ruckebusch, A.Durand, et al. Support vector machines(SVM) in near infrared(NIR) spectroscopy:focus on parameters optimization and model interpretation[J]. Chemometrics and Intelligent Laboratory Systems,2009,96(1):26-33.
    [86]Y.Liu, H.Q.Wang, J.Yu, et al. Selective recursive kernel learning for online identification of nonlinear systems with NARX form[J]. Journal of Process Control,2010,20(2):181-194.
    [87]Y.Liu, N.P.Hu, H.Q, et al. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size[J]. Industrial & Engineering Chemistry Research,2009,48(12):5731-5741.
    [88]H.Kaneko, M.Arakawa, K.Funatsu. Novel soft sensor method for detecting completion of transition in industrial polymer processes[J]. Computers & Chemical Engineering,2011, 35(6):1135-1142.
    [89]J.Terzic, C.R.Nagarajah, M.Alamgir. Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM)[J]. Sensors and Actuators A:Physical,2010,161(1-2):278-287.
    [90]R.Noori, A.R.Karbassi, A.Moghaddamniac, et al. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction[J]. Journal of Hydrology,2011, 401(3-4):177-189.
    [91]刘毅.间歇过程的核学习自适应建模与控制研究及工业应用[D].杭州:浙江大学,2009.
    [92]刘国海,周大为,徐海霞等.基于SVM的微生物发酵过程软测量建模研究[J].仪器仪 表学报,2009,30(06):1228-1232.
    [93]顾幸生,潘晔,卢胜利.基于改进支持向量机的作物叶水势软测量建模[J].同济大学学报(自然科学版),2010,38(11):1669-1674.
    [94]张铃.基于核函数的SVM机与三层前向神经网络的关系[J].计算机学报,2002,25(7):696-700.
    [95]C.J.Lin. Formulations of support vector machines:a note from an optimization point of view[J]. Neural Computation,2001,13(20):307-317.
    [96]彭轶,朱菊香,刘炳炎等.圆筒型填料的性能研究[J].石油化工,2010,39(2):192-197.
    [97]王佐民.噪声与振动测量[M].北京:科学出版社,2009.
    [98]L.E.Kinsler. Fundamentals of acoustics (3rd ed.)[M]. New York:Wiley,1982.
    [99]齐娜,孟子厚.声频声学测量技术原理[M].北京:国防工业出版社,2008.
    [100]D.J.McClements. Ultrasonic characterisation of foods and drinks:Principles, methods, and applications[J]. Critical Reviews in Food Science and Nutrition,1997,37(1):1-46.
    [101]J.D.Maynard, E.G.Williams, Y.Lee. Nearfield Acoustic Holography:Theory of Generalized Holography and the Development of NAH[J]. Journal of the Acoustical Society of America, 1985,78(4):1395-1413.
    [102]E.G.Williams, H.D.Dardy, K.B.Washburn. Generalized Nearfield Acoustic Holography for Cylindrical Geometry:Theory and Experiment[J]. Journal of the Acoustical Society of America,1985,81(2):389-407.
    [103]何元安,何祚镛.用声场变换识别水下噪声源[J].应用声学,2000,19(2):9-14.
    [104]何元安,何祚镛.基于平面声全息的全空间场变换:原理与算法[J].声学学报,2002,27(6):507-512.
    [105]于飞,陈心昭,李卫兵等.空间声场全息重建的波叠加方法研究[J].物理学报,2004,53(8):2607-2613.
    [106]李卫兵,陈剑,于飞等.基于联合波叠加法德相干声场全息重建与预测理论[J].声学学报,2006,31(4):334-341.
    [107]T.Kitagawa, D.J.Thompson. The horizontal directivity of noise radiated by a rail and implications for the use of microphone arrays[J]. Journal of Sound and Vibration,2010, 329(2):202-220.
    [108]S.Bruhl, A.Roder. Acoustic noise source modelling based on microphone array measurements [J]. Journal of Sound and Vibration,2000,231(3):611-617.
    [109]I.Markovic, I.Petrovic. Speaker localization and tracking with a microphone array on a mobile robot using von Mises distribution and particle filtering[J]. Robotics and Autonomous Systems,2010,58(11):1185-1196.
    [110]Q.GLiu, B.Champagne, P.A.Kabal. Microphone array processing technique for speech enhancement in a reverberant space[J]. Speech Communication,1996,18(4):317-334.
    [111]T.F.Brooks, W.M.Humphreys. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration,2006,294(4-5):856-879.
    [112]C.R.Lowis, P.F.Joseph, A.J.Kempton. Estimation of the far-field directivity of broadband aeroengine fan noise using an in-duct axial microphone array[J]. Journal of Sound and Vibration,2010,329(19):3940-3957.
    [113]E.Ranalli, H.P.Lee. Long time-base temporal holography using fiber-optic tapped delay line diffractive arrays[J]. Optics and Lasers in Engineering,1997,28(6):471-480.
    [114]E.G.Williams. Fourier Acoustics/Sound Radiation and Nearfield Acoustical Holography[M]. San Diego:Academic press,1999.
    [115]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700