用户名: 密码: 验证码:
多级孔分子筛材料的合成、表征及催化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔、介孔、大孔材料从发现至今在各个方面已经取得了很大的研究进展,并被广泛应用于许多科学技术领域。然而在许多应用过程中研究人员发现微孔、介孔、大孔材料有各自的优缺点,单一使用具有某一种孔结构的材料往往不够理想,这就迫切需要我们研究出能够综合各种孔结构材料优点的新材料,如制备含有多级孔结构的新材料。本论文致力于研究这种含有多级孔结构的新材料,详细阐述了各种多级孔材料的合成条件和方法,并进一步充分表征了它们的结构特点、物理化学性质及催化性能。
     第一章为绪论,分别阐述了各种孔材料的优缺点、发展史以及其应用现状。其中还介绍了多级孔材料的合成原理、方法和其发展现状。第二章是实验试剂及各种测试仪器型号及测试条件;在第三章中,介绍了采用孔壁晶化法将介孔材料SBA-15和JLU-1的孔壁晶化来合成多级孔材料。在第四章中,采用树脂碳为模板合成多级孔的ZSM-5,另外一种是水蒸气晶化含有SiO2的树脂碳来合成具有多级孔的ZSM-5。第五章,详细阐述了使用多孔的聚苯乙烯微球为硬模板,合成了两种不同形貌的多级孔的Silicalite-1。
Zeolites are widely used in catalysis as well as in the separation and purification fields due to their uniform, small pore size, high internal surface area, flexible frameworks, highly hydrothermal and chemical stability. The major drawback of zeolites is that the small size of the pores (<2 nm) imposes diffusional limitations on reactions that can cause high back pressure on flow systems. Therefore, mesoporous silica materials with lager pore size (2 ~ 50 nm) have been attracted much attention. Mesoporous materials have large surface area, uniform pore channels, high thermal stability and easily to be recycled, and thus they are widely used as catalysts or catalyst supports for many catalytic reactions. Since the discovery of M41S molecular sieves, varied kinds of mesoporous materials have been synthesized. However, conventional mesoporous aluminosilicates commonly possess weak acidity and poor hydrothermal stability due to amorphous pore wall; their catalytic applications are also limited. Generally, the macroporous materials cannot sieve molecules, since their pore size exceeds 50 nm. Based on this background, synthesize of new materials to combine advantages of microporous, mesoporous and macroporous materials are very interesting, and it is expected to provide great opportunity to overcome the difficulty in bulk molecular catalytic conversion and separation. In this thesis, the hierarchical porous materials were successfully synthesized and their structures were also carefully characterized. Physic-chemical characters of each material and their applications were also investigated.
     According to the literatures, a generally method is crystallization of pore wall of mesoporous materials into microporous material with MFI structure. In the third chapter, order aluminosilicates with hierarchical porosity were synthesized by recrystallizing the wall of SBA-15 and JLU-1 with TPAOH in a short period of recrystallization time. The effect of the crystallization time on the properties of the composite materials was studied. The structures of these materials were characterized by X-ray diffraction, FT-IR, nitrogen adsorption-desorption, SEM, TEM. The results revealed that these materials were ordered mesoporous aluminosilicates with crystalline zeolite wall structure and the distribution of mesopore and micropore of materials were changed with the increasing of crystallization time. The nature and the strength of the acid sites of these materials were discussed by IR spectroscopy of pyridine adsorption and NH3-TPD techniques, which indicated that all materials have better acidic property than that of the mesoporous substrate. The hydrothermal stability of the obtained JF-n and M-In materials were also quiet good. And they have good performance in alkylation reaction of phenol with tert-butanol.
     It is well known, carbon material is not easy to be participated in the reaction of the molecular sieve synthesis, and it is easy to be removed during calcinating. Therefore, many researchers are very interesting in using carbon as template to synthesize hierarchical porous zeolite attracts. In the fourth chapter, we synthesized two carbon xerogels firstly, then they were impregnated in ZSM-5 precursor solution, finally two hierarchical ZSM-5 (denote as m-ZSM-5-1 and m-ZSM-5-2) were successfully obtained under static hydrothermal conditions. The characterized results show that the samples have the typical structure of MFI zeolite. Many bumps were found on the surface of the samples which can be ascribed to the mesoporous or macroporous holes after removing carbon template. The mesoporous pore volumes of two samples are all larger than that of the conventional ZSM-5. The difference of two samples is that m-ZSM-5-2 particles stick together while m-ZSM-5-1 does not, which results in smaller mesopore surface area of m-ZSM-5-2 than that of m-ZSM-5-1. The catalytic performance of m-ZSM-5-1 and m-ZSM-5-2 were tested in alkylation of phenol with tert-butanol. And comparing with the conventional ZSM-5, these two samples show higher conversion of phenol and selectivity to 2,4-DTBP. We also prepared a combined SiO2-C material by adding TEOS in the synthesis process of carbon xerogels. Using zeolite SiO2-C as template and silicate source, through vapor phase transport (VPT) of the TPAOH in the different period, a series of hierarchical ZSM-5 (denote as M-ZSM-5) were synthesized. The characterized results show that M-ZSM-5 has the typical structure of MFI zeolite. After removing the template, it is clearly to see that there are many mesopores and macropores on the surface of M-ZSM-5 and the irregularly morphology of SiO2-C templates were well preserved. With different crystallization time, the samples show different micropore, mesopore and macropore distribution. The NH3-TPD results show that the acidity of the samples varies with different crystallization time. This is because of the different amount of aluminum entering into the structure framework with the different crystallization time. The catalytic performance of M-ZSM-5 was tested in alkylation of phenol with tert-butanol. It also shows a higher conversion of phenol and selectivity to 2,4-DTBP when compared with the conventional ZSM-5,.
     Due to the similar advantages to carbon material, polystyrene microsphere was used as template to synthesize hierarchical zeolite. In the fifth chapter, Silicalite-1 microsphere with uniform diameter about 2.5μm was prepared by using polystyrene microsphere (PSD) with hierarchical structure as template. In this method, the PSD particles were impregnated firstly with tetraethoxysilane (TEOS) and then with tetrapropylammonium hydroxide (TPAOH). After crystallization and calcination, the hierarchical Silicalite-1 microsphere was charactered by XRD, FT-IR, SEM and TEM. The results show that Silicalite-1 possesses a regularly spherical morphology similar to the polystyrene microsphere and have the typical structure of MFI zeolite. More importantly, the Silicalite-1 microspheres have large secondary pores in the range of 40 to 120 nm and high pore volume up to 0.7 cm3g-1. Silicalite-1 with a lot of defect holes (denote as q-Silicalite-1) was also synthesized by using cyano-functioned polystyrene microsphere as a template. The formation mechanism of such material was also discussed. The characterized results show that the samples have the typical structure of MFI zeolite and with an average size of 1-2μm. The results of the nitrogen adsorption-desorption show that such material have large pore volume and more secondary pores. We believe that such hierarchical materials will be widely used in fields such as catalyzing, gas separation, sewage treatment and fine chemicals.
引文
[1] IUPAC Manual of Symbols and Terminology[J], Pure Appl.Chem.1972,31:578.
    [2] Barrer R M. Zeolite and Clay Minerals as Sorbents and Molecular Sieves[J]. London: Academic Press, 1978
    [3] Milton R M. Zeolite synthesis. ACS symp. Ser. 398, Washington D. C., [J] American Chemical Society, 1989
    [4] Davis, M. E.,Saldarriaga, C.;Montes, C.;et al. A Molecule sieve with eighteen-membered rings[J] Nature, 1988, 331:698-699.
    [5] Smith, J. V., Topochemistry of zeolites and related materials[J]. Chem. ReV. 1988, 88:149.
    [6] Ka¨rger, J.; Ruthven, D. M. Diffusion in Zeolites and Other Microporous Materials[J]; Wiley: New York, 1992.
    [7] van Donk, S.; Broersma, A.; Gijzeman, O. L. J.; van Bokhoven, J.A.; Bitter, J. H.; de Jong, K. P., Combined Diffusion, Adsorption, and Reaction Studies of n-Hexane Hydroisomerization over Pt/H–Mordenite in an Oscillating Microbalance[J], J. Catal. 2001, 204:272.
    [8] Herrmann, C.; Haas, J.; Fetting, F. Effect of Crystal Size on the. Activity of ZSM-5 Catalysts in Various Reactions[J], Appl. Catal. 1987, 35:299.
    [9] Pe′rez-Ram?′rez, J.; Kapteijn, F.; Groen, J. C.; Domenech, A.; Mul, G.; Moulijn, J. A., Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition[J], J. Catal. 2003, 214:33.
    [10] Weisz, P. B.; Zeolites New horizons in catalysis, Chem. Technol. 1973, 3:498.
    [11] Chen, N Y; Smith, C M. Molecular Transport and Reaction in Zeolite[J], VCH: New York, 1994.
    [12] Nesterenko, N. S.; Thibault-Starzyk, F.; Montouillout, V.; Yuschenko, V. V.; Fernandez, C.; Gilson, J.-P.; Fajula, F.; Ivanova, I. I., Accessibility of the acid sites in dealuminated small-port mordenites studied by FTIR of co-adsorbed alkylpyridines and CO[J], Microporous Mesoporous Mater. 2004, 71:157.
    [13] Kresge C T, Leonowicz M E, Roth W J, Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism[J]. Nature, 1992, 359:710-712.
    [14] Beck J S, Vartuli J C, Roth W J, et al. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid- Crystal Templates[J]. J. Am. Chem. Soc., 1992, 114:10834-10843.
    [15] Galarneau, A.; Barodawalla, A.; Pinnavaia, T J, Porous clay heterostructures formed by gallery-templated synthesis[J], Nature 1995, 374:529.
    [16] Yanagisawa, T.; Shimizu T.; Kuroda K.; Kato C. Bull., The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials[J], Chem. Soc. Jpn. 1990, 63:988.
    [17] Inagaki, S.; Fukushima, Y.; Kuroda, K., Synthesis of highly ordered mesoporous materials from a layered polysilicate[J], J. Chem. Soc., Chem. Commun. 1993, 680.
    [18] Tanev, P. T.; Pinnavaia, T. J., A Neutral Templating Route to Mesoporous Molecular Sieves[J], Science 1995, 267:865.
    [19] Tanev, P T; Chibwe, M, Pinnavaia, T J, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J], Nature 1994, 368:321.
    [20] Tanev, P. T; Pinnavaia, T. J, Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties[J], Chem. Mater. 1996, 8:2068.
    [21] Ryoo, R.; Kim, J. M.; Ko, C. H.; Shin, C. H., Disordered molecular sieve with branched mesoporous channel network[J], J. Phys. Chem. 1996, 100:17718.。
    [22] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores[J], Science 1998, 279:548.
    [23] Zhao, D; Huo, Q; Feng, J; Chmelka, B F; Stucky, G D, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J], J. Am. Chem.Soc. 1998, 120:6024.
    [24] Kim, J. M.; Stucky, G. D., Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers[J], Chem. Commun. 2001, 1159
    [25] Cassiers, K.; Linssen, T.; Mathieu, M.; Benjelloun, M.; Schrijnemakers, K.; Van Der Voort, P.; Cool, P.; Vansant, E. F., A Detailed Study of Thermal, Hydrothermal, and Mechanical Stabilities of a Wide Range of Surfactant Assembled Mesoporous Silicas[J], Chem. Mater. 2002, 14:2317.
    [26] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporou molecular-sieves for catalytic-oxidation of aromatic-compounds[J]. Nature, 199 368:321-323
    [27] Tanev P T, Chibwe M, Pinnavaia T J, et al. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267(5219): 865-867.
    [28] Tanev P T, Pinnavaia T J. Mesoporous silica molecular sieves prepared by ion and neutral surfactant templating: a comparison of physical properties[J]. Chem Mater., 1996, 8:2068-2079
    [29] Zhang W, Pauly T R, Pinnavaia T J. Tailoring the framework and textur mesopores of HMS molecular sieves through an electrically neutral (S0I0) assembly pathway[J]. Chem. Mater., 1997, 9:2491-2498
    [30] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecula sieves by non ionic popyethylene oxide surfactants[J]. Science, 1995, 269:1242-1244.
    [31] Tanev P T, Liang Y, Pinnavaia T J. Assembly of Mesoporous Lamellar Silicas with Hierarchical Particle Architecture[J]. J. Am. Chem. Soc., 1997, 119:8616-8624.
    [32] Zhao D, Feng J, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279:548-552
    [33] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable mesoporous silica structure[J]. J. Am. Chem. Soc., 1998,120:6024-6036
    [34] Kruk M, Jaroniec M, Ko C H, Ryoo R. Characterization of the Porous Structure of SBA-15[J]. Chem. Mater., 2000, 12:1961-1968.
    [35] Sun J H, Moulijn J A, Jansen K C, et al. Alcothermal synthesis under basic conditions of an SBA-15 with long-range order and stability[J]. Adv. Mater., 2001 13:327-331
    [36] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J],Nature, 1992,359:710.
    [37] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates[J],J. Am. Chem. Soc., 1992, 114:10834.
    [38] Satishkumar, B.C.;Govindaraj, A.;Vogl, E.M.;Basumallick, L.;Rao, C.N. R., Oxide nanotubes prepared using carbon nanotubes as templates[J], J. Mater.Res.1997, 12:604.
    [39] Chen C Y, Burkett S L, Li H X, Davis M E. Studies on mesoporous materials. In Synthesis mechanism of MCM-41[J]. Microporous Mater., 1993, 2(1): 27-34
    [40] Stucky G D, Huo Q S, Firouzi A et al. Directed synthesis of organic/inorganic composite structures[J]. Progress in Zeolite and Microporous Materials, 1997, 3-28.
    [41] Huo Q S, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays[J]. Chem. Mater 1994; 6(8): 1176-1191.
    [42] Firouzi A, Kumar D, Bull L M et al, Cooperative organization of inorganic-surfactant and biomimetic assemblies[J], science, 1995, 267:1138-1143.
    [43] Monnier A, Schuth F, Huo Q, et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures[J]. Science, 1993, 261:1299-1303.
    [44] Huo QS, Margolese DI,Stucky GD. Surfactant control of phases in the synthesis of mesoporous silica-based materals[J], Chem Mater, 1996, 8:1147-1160.
    [45] Huo QS, Leon R, Petroff P M et al, mesostructure design with Gemini surfacants-supercage formation in a 3-Dimensional hexagonal array[J], Science. 1995, 268:1324-1327.
    [46] Inagaki S, Fukushima Y, Kuroda K, Synthesis of highly ordered mesoporous materials from a layered polysilicate[J], J Chem Soc Chem Commun, 1993:680-682.
    [47] Attard GS, Glyde JC, Goltner CG, Liquid-Crystalline Phases as template for the synthesis of mesoporous silica[J], Nature, 1995, 378:366-368.
    [48] Ying, J; Mehnert, C; Wong, M, Synthesis and applications of supramolecular templated mesoporous materials[J], Angew Chem Int Ed. 1999, 38:56.
    [49] Yiu, H.; Botting, C.; Botting, N P., Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve[J], Phys. Chem. Chem. Phys. 2001, 3:2983.
    [50] Corma, A., From microporous to mesoporous molecular sieve materials and their use in catalysis[J], Chem. Rev. 1997, 97:2373.
    [51] Choi, K.; Gardner, D.; Bein, T., Combinatorial Methods for the Synthesis of Aluminophosphate Molecular Sieves[J], Angew. Chem. Int. Ed. 1999, 38:2891.
    [52] Velev, O. D.; Jede T. A.;Lobo, R F. T.;Lenhoff, A. M., Microstructured porous silica obtained via colloidal crystal templates[J], Chem. Mater. 1998, 10:3597.
    [53] Davis, S. A.; Burkett, S. L.; Mann, S., Bacterial templating of orderd macrostructures in silica and silica-surfactant mesoporous[J], Nature, 1997, 385:420.
    [54] Lynch, J.; Raatz, F.; Dufresne, P., Characterization of the textural properties of dealuminated HY forms[J], Zeolites 1987, 7:333.
    [55] Patzelova′, V.; Jaeger, N. I., Texture of deep bed treated Y zeolites[J], Zeolites 1987, 7:240.
    [56] Lynch, J.; Raatz, F.; Delalande, Ch., Characterization of the Secondary PoreSystem in Dealuminated HY Zeolites Comparison between Isomorphous Substitution and Hydrothermal Treatment[J], Stud. Surf. Sci. Catal. 1988, 39:547.
    [57] Maher, P. K.; Hunter, F. D.; Scherzer, J.; Crystal structures of ultrastable faujasites[J], AdV. Chem. Ser. 1971, 101:266.
    [58] Cartlidge, S.; Nissen, H. U.; Wessicken, R., Ternary mesoporous structure of ultrastable zeolite CSZ-1[J], Zeolites, 1989, 9:346.
    [59] Corma, A.; Diaz-Cabanas, M. J.; Martinez-Triguero, J.; Rey. F.; Rius, J., A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst[J], Nature 2002, 418:514.
    [60] Choi-Feng, C.; Hall, J. B.; Huggins, B. J.; Begerlein, R. A., Electron microscope investigation of mesopore formation and aluminum migration in USY catalysts[J], J. Catal. 1993, 140:395.
    [61] Sasaki, Y.; Suzuki, T.; Takamura, Y.; Saji, A.; Saka, H., Structure Analysis of the Mesopore in Dealuminated Zeolite Y by High Resolution TEM Observation with Slow Scan CCD Camera[J], J. catal. 1998, 178:94.
    [62] Horikoshi, H.; Kasahara, S.; Fukushima, T.; Itabashi, K.; Okada, T.;Terasaki, O.; Watanabe, D., Study of mesopores induced by dealumination in zeolite Y[J], J. Chem. Soc. Jpn. 1989:398.
    [63] Lohse, U.; Mildebrath, M. Z. Anorg. Allg., Dealuminated Y-type molecular sieves Porosity of dealuminated molecular sieves[J], Chem. 1981, 476:126.
    [64] ven Donk, S.; Janssen, A. H.; Bitter, J. H.; de Jong, K. P., Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts[J], Catal. ReV. 2003, 45: 297.
    [65] Dutartre, R.; Menorval, L. C. D.; Di Renzo, F.; McQueen, D.; Fajula, F.; Schulz, P., Mesopore formation during steam dealumination of zeolites: influence of initial aluminum content and crystal size[J], Microporous Mater. 1996, 6:311.
    [66] McQueen, D.; Chiche, B. H.; Fajula, F.; Auroux, A.; Guimon, C.; Fitoussi, F.; Schulz, P., A multitechnique characterization of the acidity of dealuminatedmazzite[J], J. Catal. 1996, 161:587.
    [67] Lee, K.-H.; Ha, B.-H. Characterization of mordenites treated by HCl/steam or HF[J], Microporous Mesoporous Mater. 1998, 23: 211.
    [68] Meima, G. R., Advances in cumene production[J], CATTECH 1998, 2:5.
    [69] Lago, R. M.; Haag, W. O.; Mikovsky, R. J.; Olson, D. H.; Hellring, S. D.; Schmitt, K. D.; Kerr, G. T., Studies in Surface Science and Catalysis[J], Stud. Surf. Sci. Catal., 1986, 28:677.
    [69] Rozwadowski, M.; Kornatowski, J.; W?och, J.; Erdmann, K.; Go?embiewski, R., Attempt to apply the fractal geometry for characterisation of dealuminated ZSM-5 zeolite[J], Appl. Surf. Sci. 2002, 191:352.
    [70] Lo′pez-Fonseca, R.; Rivas, B. de.; Gutierrez-Ortiz, J. I.; Gonza′lez- Velasco, J. R., Characterisation of the textural properties of chemically dealuminated Y zeolites[J], Stud. Surf. Sci. Catal. 2002, 144:717.
    [71] Triantafillidis, C. S.; Vlessidis, A. G.; Evmiridis, N. P., Dealuminated H?Y Zeolites: Influence of the Degree and the Type of Dealumination Method on the Structural and Acidic Characteristics of H?Y Zeolites[J], Ind. Eng. Chem. Res. 2000, 39:307.
    [72] Kerr, G. T. [J], Intracrystalline rearrangement of constitutive water in hydrogen zeolite Y J. Phys. Chem. 1967, 71:4155.
    [73] Katada, N.; Kageyama, Y.; Takahara, K.; Kanai, T.; Begum, H. A.;Niwa, M., Acidic property of modified ultra stable Y zeolite: increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt[J], J. Mol. Catal. A 2004, 211:119.
    [74] Beyer, H. K.; Belenyakaja, I., A New Method for the Dealumination of Faujasite-Type Zeolites[J], Stud. Surf. Sci. Catal. 1980, 5:203.
    [75] Scherzer, J., The preparation and characterization of aluminum-deficient zeolites[J], ACS Symp. Ser. 1984, 248:157.
    [76] Goyvaerts, D.; Martens, J. A.; Grobet, P. J.; Jacobs, P. A., Factors Affecting the Formation of Extra-Framework Species and Mesopores During Dealumination of Zeolite Y[J], Stud. Surf. Sci. Catal. 1991, 63:381.
    [77] Lopez-Fonseca, R.; Rivas, B. de.; Gutie′rrez-Ortiz, J. I.; Gonza′lez-Velasco, J. R., Characterisation of the textural properties of chemically dealuminated Y zeolites[J], Stud. Surf. Sci. Catal. 2002, 144: 717.
    [78] Corma, A.; Navarro, M. T., From micro to mesoporous molecular sieves: Adapting composition and structure for catalysis[J], Stud. Surf. Sci. Catal. 2002, 142:487
    [79] Le Van Mao, R.; Vo, N. T. C.; Sjiariel, B.; Lee, L.; Denes, G., Mesoporous aluminosilicates: preparation from Ca-A zeolite by treatment with ammonium fluorosilicate[J], J. Mater. Chem. 1992, 2:595.
    [80] Ku¨hl, G. H., The coordination of aluminum and silicon in zeolites as studied by x-ray spectrometry[J], J. Phys. Chem. Solids 1977, 38:1259.
    [81] Coster, D.; Blumenfeld, A. L.; Fripiat, J. J., Lewis Acid Sites and Surface Aluminum in Aluminas and Zeolites: A High-Resolution NMR Study[J], J. Phys. Chem. 1994, 98:6201.
    [82] Bore′ave, A.; Auroux, A.; Guimon, C. Nature and strength of acid sites in HY zeolites: A multitechnical approach[J], Microporous Mater. 1997, 11:275.
    [83] Abbot, J., Role of Broensted and Lewis acid sites during cracking reactions of alkanes[J], Appl. Catal. 1989, 47:33
    [84] Zholobenko, V. L.; Kustov, L. M.; Kazansky, B. V.; Loeffler. E.; Lohse, U.; Oehman, G., On the nature of the sites responsible for the enhancement of the cracking activity of HZSM-5 zeolites dealuminated under mild steaming conditions: Part 2[J], Zeolites 1991, 11:132.
    [85] Yong, Y.; Gruver. V.; Fripiat, J. J., Role of Lewis Acidity in the Isomerization of n-Pentane and o-Xylene on Dealuminated H-Mordenites J. Catal. 1994, 150:421.
    [86] Pe′rez-Ram?′rez, J.; Kapteijn, F.; Groen, J. C.; Domenech, A.; Mul,G.; Moulijn, J. A., Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition[J], J. Catal. 2003, 214:33.
    [87] Ogura, M.; Shinomiya, S.; Tateno, J.; Nara, Y.; Kikuchi, E.; Matsukata, M., Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkalinesolution[J], Chem. Lett. 2000, 882.
    [88] Ogura, M.; Shinomiya, S.; Tateno, J.; Nara, Y.; Nomura, M.; Kikuchi, E.; Matsukata, M., Alkali-treatment technique - New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J], Appl. Catal. A: Gen. 2001, 219:33.
    [89] Ogura, M.; Kikuchi, E.; Matsukata, M., Synthesis of mesoporous materials using filterate of alkali treatmentof MFI zeolite[J], Stud. Surf. Sci. Catal. 2001, 135:11.
    [90] Suzuki, T.; Okuhara, T., Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution[J], Microporous Mesoporous Mater. 2001, 43:83-89.
    [91] Groen, J. C.; Pe′rez-Ram?′rez, J.; Peffer, L. A. A., Formation of Uniform Mesopores in ZSM-5 Zeolite upon AlKaline Post-treatment[J], Chem. Lett. 2002, 94.
    [92] Groen, J. C.; Peffer, L. A. A.; Pe′rez-Ram?′rez, J., Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis[J], Microporous Mesoporous Mater. 2003, 60:1.
    [93] Groen, J. C.; Jansen J. C.; Moulijn J. A.; Pe′rez-Ram?′rez, J., Optiomal Aluminum-Assised Mesoporosity Development in MFI Zeolites by Desilication[J], J. Phys.Chem. B, 2004, 108:13062.
    [94] Groen, J. C.; Bach, T.; Ziese, U.; Paulaime-van Donk, A. M.; de Jong, K. P.; Moulijn, J. A.; Pe′rez-Ram?′rez, J., Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J], J. Am. Chem. Soc. 2005, 127:10792.
    [95] Groen, J. C.; Moulijn, J. A.; Pe′rez-Ram?′rez, J., Decoupling Mesoporosity Formation and Acidity Modification in ZSM-5 Zeolites by Sequential Desilication–dealumination[J], Microporous Mesoporous Mater. 2005, 87:153.
    [96] Su, L.; Liu, L.; Zhuang, J.; Wang, H.; Li, Y.; Shen, W.; Xu, Y.;Bao, X., Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization onMo/HZSM-5 catalysts[J], Catal. Lett. 2003, 91:155.
    [97] Dessau, R. M.; Valyocsik, E. W.; Goeke, N. H. Aluminum zoning in ZSM-5 as revealed by selective silica removal[J], Zeolites 1992, 12:776.
    [98] J. C. Grone, L. A. A. Peffer, J. A. Moulijn, J. P. Ramire, On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium[J], Microporous Mesoporous Mater., 2004, 69:29.
    [99] J. C. Grone, J. C. Jansen, J. A. Moulijn, J. P.Ramire, Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J], J. Phys. Chem. B, 2004, 108:13062.
    [100] J. C. Grone, L, A, A. Peffer,J, A, Moulijn, J. P. Ramire, Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J], Colloids and Surfaces A: Physicochem Eng Aspects, 2004, 241:53.
    [101] J. C. Grone, T. Bach,U. Ziese, A. M. P. V. Donk, K. P. D. Jong, J. A. Moulijn, J. P. Ramire, Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J], J. Am. Chem. Soc., 2005, 127:10792.
    [102] K. R. Kloetstra, H. V. Bekkum, J. C. Jansen, Mesoporous material containing framework tectosilicate by pore–wall recrystallization[J], Chem. Commun., 1997, 997:2281.
    [103] L. M. Huang, W. P. Guo, P. Deng, Investigation of synthesizing MCM-41/ZSM-5 Composites[J], J. Phys Chem B., 2000, 104:2817.
    [104]黄立民,陈海鹰,李全芝,第九届全国催化学术会议论文集,[C] 1998, 500.
    [105] D. T. On, S. Kaliaguine, Large-pore mesoporous materials with semi-crystalline zeolitic frameworks[J], Angew. Chem. Int. Ed., 2001, 17:40.
    [106] Y. W. Zhang, T. Okubo, M. Ogura, Synthesis of mesoporous aluminosilicate with zeolitic characteristics using vapor phase transport[J], Chem. Commun., 2005,21:2719.
    [107] Y.M. Fang, H. Q. Hu, An Ordered Mesoporous aluminosilicate with completely crystalline zeolite wall structure[J], J. Am. Chem. Soc., 2006,128:10636.
    [108] Vanmao RL, Yao J, Dufresne L, Hybrid catalysts containing zeolite ZSM-5 and supported gallium oxide in the aromatization of n-butane [J].Catalysis Today,1996,31:247.
    [109] Koch, H; Liepold, A; Roos, K, et al, Comparative study of the acidic and catalytic properties of the mesoporous material H-MCM-41 and zeolite H-Y[J], Chemical Engineering & Technology, 1999, 22:807-811.
    [110] Kloetstra K R, Zandbergen H W, Jansen J C, van Bekkum H. Overgrowth of mesoporous MCM-41 on faujasite[J]. Micropor. Mater., 1996, 6(5-6): 287-293.
    [111] Beck J S, Vartuli J C, Kennedy G J, et al. Molecular or supramolecular templating defining the role of surfactant chemistry in the formation of microporous an mesoporous molecular sieves[J]. Chem. Mater., 1994, 6(10): 1816-1821.
    [112] Karlsson A, St?cker M, Schmidt R. Composites of micro- and mesoporou materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixe template approach[J]. Micropor. Mesopor. Mater., 1999, 27:181-192.
    [113] XiaoFS , WangLF Yin CY etal. Catalytic ProPerties of Hierarchieal MesoPorous Zeolites TemPlated with a Mixture of Small Organie Ammonium Salts and Mesoseale Cationie Polymers[J]. Angew. Chem. Ini. Ed. 2006,45:3090一3093.
    [114] SerranoDP,AguadoJ EseolaJM,RodriguezJM,PeralA,Hierarehical Zeolites with Enhaneed TextUral and Catalytie ProPerties Synthesized from Organo fun etionalized Seeds[J]. Chem. Mater.,2006. 18:2462一2464.
    [115] Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals[J]. J. Am. Chem. Soc., 2000, 122(29):7116-7117
    [116] Schmidt I, Madsen C, Jacobsen C J H. Confined Space Synthesis. A novel route to nanosized zeolites[J]. Inorg. Chem., 2000, 39(11):2279-2283.
    [117] Madsen C, Jacobsen C J H. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis[J]. Chem. Commun., 1999, 673–674
    [118] Jacobsen C J H, Madsen C, Janssens T V W, et al. Zeolites by confined space synthesis characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy[J]. Micropor. Mesopor. Mater, 2000, 39:393- 401.
    [119] Kim S S, Shah J, Pinnavaia T J. Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite[J]. Chem. Matter., 2003, 15(8):1664- 1668.
    [120] Tao Y, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels[J]. J. Am. Chem. Soc., 2003, 125:6044-6045.
    [121] Yang Z.;Xia Y.;Mokaya R., Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template[J], Adv. Mater. 2004, 16:727.
    [122] Wang LF, Yin CY, Shan ZC, Liu S, Du YC, Xiao FS, Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity[J], Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 340:126–130.
    [123] Holland, B. T.; Abrams, L.; Stein, Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks[J]. J. Am. Chem. Soc. 1999, 121:4308.
    [124] L Y, Zhang WZ, Thomas J, Pinnavaia J, Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds[J], J. Am. Chem. Soc. 2000, 122:8791-8792.
    [125] Yu Liu, Wenzhong Zhang, and Thomas J. Pinnavaia, Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds[J], Angew. Chem. Int. Ed. 2001, 40:7.
    [126] Yu Liu and Thomas J. Pinnavaia, Assembly of Hydrothermally Stable Aluminosilicate Foams and Large-Pore Hexagonal Mesostructures from Zeolite Seeds under Strongly Acidic Conditions[J], Chem. Mater. 2002, 14:3-5
    [127] W. P. Guo, L. M. Huang, P. Deng, Z. Y. Xue, Q. Z. Li, Characterization of Beta/MCM-41 composite molecular sieve compared with the mechanical mixture[J], Microporous Mesoporous Mater., 2001, 44-45:427.
    [128] W. P. Guo, C. R. Xiong, L. M. Huang, Q. Z. Li, Synthesis and characterization of composite molecular sieves comprising zeolite Beta with MCM-41 structures[J], J. Mater. Chem., 2001, 11:1886
    [129] Z. T. Zhang, Y. Han, L. Zhu, F. S. Xiao, Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure[J], Angew Chem. Int. Ed., 2001, 40:1258.
    [130] Z. T. Zhang, Y. Han, L. Zhu, F. S. Xiao, Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures[J], J. Am. Chem. Soc., 2001, 123: 5014.
    [131] Y. Han, F. S. Xiao, S. Wu, Y. Y. Sun, X. J. Meng, D. F. Li, S. Lin, A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media[J], J. Phys. Chem. B, 2001, 105:7963.
    [132] Y. Han, S. Wu, Y. Sun, F. S. Xiao, Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media[J], Chem Mater, 2002, 14:1144.
    [133] Y. Di, Y. Yu, Y. Y. Sun, F. S. Xiao, Synthesis, characterization, and catalytic properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors[J], Microporous Mesoporous Mater., 2003, 62:221.
    [134] F. S. Xiao, Y. Han, X. J. Meng, Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites[J], J. Am. Chem. Soc., 2002, 124:888.
    [135]李工,阚秋斌,吴通好,章慧杰,含有沸石结构单元体介孔材料的合成及催化性能[J],化学学报, 2002, 60:759.
    [136]李工,阚秋斌,吴通好,侯长民,黄家辉,吴淑杰,李灿,具有强酸位的六方和立方介孔硅铝分子筛合成及催化活性比较[J],高等学校化学学报, 2002, 23:1171.
    [137] G. Li, Q. B. Kan, T. H. Wu, C. M. Hou, F. S. Xiao, J. H. Huang, Synthesis of cubic mesoporous aluminosilicates with enhanced acidity[J], Stud. Surf. Sci.Catal., 2003, 146:149.
    [138] J. H. Huang, G. Li, S. J. Wu, H. S. Wang, L. H. Xing, K. Song, T. H. Wu, B..Q. Kan, Synthesis, characterization and catalytic activity of cubic Ia3d and p6mm mesoporous aluminosilicates with enhanced acidity[J], J. Mater. Chem., 2005, 15:1055.
    [139] Y. S. Li, J. L. Shi, H. R. Chen, Z. L. Hua, L. X. Zhang, M. L. Ruan, J. Yan, S. D. Yan, One-step synthesis of hydrothermally stable cubic mesoporous aluminosilicates with a novel particle structure[J], Microporous Mesoporous Mater., 2003, 60:51.
    [140] Y. S. Li, J. L. Shi, Z. L. Hua, M. L. Ruan, D. S. Yan, Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability[J], Nano Lett., 2003, 3:609.
    [141] Y. D. Xia, R. Mokaya, On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials[J], J. Mater Chem., 2004, 14: 863.
    [142]王姗,窦涛等.一类新颖的介孔一微孔复合分子筛的合成[J].科学通报,2005,l(50):24-27.
    [143] D. T. On, S. Kaliaguine, Ultrastable and highly acidic, zeolite-coated mesoporous aluminosilicates[J], Angew Chem. Int. Ed., 2002, 41:1036.
    [144] D. T. On, S. Kaliaguine, Zeolite-coated mesostructured cellular silica foams[J], J. Am. Chem. Soc., 2003, 125:618.
    [145] D. T. On, A. Nossov, M. A. Springuel-Huet, C. Schneider, J. L. Bretherton, C. A. Fyfe, S. Kaliaguine, Zeolite nanoclusters coated onto the mesopore walls of SBA-15[J], J. Am. Chem. Soc., 2004, 126:14324,
    [146] Ka¨rger, J.; Ruthven, D. M. Diffusion in Zeolites and Other Microporous Materials[J]; Wiley: New York, 1992.
    [147] Corma, A., From microporous to mesoporous molecular sieve materials and their use in catalysis[J], Chem. ReV. 1997, 97: 2373
    [145] Corma, Application of Zeolites in Fluid Catalytic Cracking and Related Processes[J]. Stud. Surf. Sci. Catal. 1989, 49:49.
    [146] Corma, A.; Fornes, V.; Pergher, S. B.; Maesen, Th. L. M.; Buglass, J. G., Delaminated zeolite precursors as selective acidic catalysts[J], Nature 1998, 396:353.
    [147] Ven Donk, S.; Janssen, A. H.; Bitter, J. H.; de Jong, K. P., Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts[J], Catal. ReV. 2003, 45:297.
    [148] Christensen, C. H.; Schmidt, I.; Christensen, C. H., Improved performance of mesoporous zeolite single crystals in catalytic cracking and isomerization of n-hexadecane[J], Catal. Commun. 2004, 5: 543.
    [149] Su, L.; Liu, L.; Zhuang, J.; Wang, H.; Li, Y.; Shen, W.; Xu, Y.; Bao, X., Creating mesopores in ZSM-5 zeolite by alkali treatment: a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts[J], Catal. Lett. 2003, 91:155
    [150] Tromp, M.; van Bokhoven, J. A.; Garriga Oostenbrink, M. T.; Bitter, J. H.; de Jong, K. P.; Koningsberger, D. C., Influence of the generation of mesopores on the hydroisomerization activity and selectivity of n-hexane over Pt/Mordenite[J], J. Catal. 2000, 190:209.
    [151] Corma, A.; Mart?′nez, A.; Arroyo, P. A.; Monteiro, J. L. F.; Sousa-Aguiar, E. F., Isobutane/2-butene alkylation on zeolite beta: Influence of post-synthesis treatments[J], Appl. Catal. A 1996, 142:139.
    [152] Gheorghiu, S.; Coppens, M.-O., Optimal bimoda; pore networks for heterogeneous catalysis[J], AIChE J. 2004, 50812.
    [153] Venuto, P. B., Structure-reactivity-selectivity relationships in reaction of organics over zeolite catalysts[J], Stud. Surf. Sci. Catal. 1996, 105:811.
    [154] Chiche, B.; Sauvage, E.; Direnzo, F.; Ivanova, I. I.; Fajula, F. Chem., Butene oligomerization over mesoporous MTS-type aluminosilicates[J], J. Mol. Catal. A, 1998, 134:145.
    [155] Tabata, T. Ohtsuka, H, Estimation of the intracrystalline diffusion coefficient of the reactant during selective catalytic reduction of nitrogen oxide by propane on Co-ZSM-5[J], Catal. Lett., 1997, 48:203.
    [1] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279:548.
    [2] D. Zhao, Q. Hou, J. Feng, B. F. Chmelka, G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable[J], mesoporous silica structures., J. A. Chem. Soc., 1998, 120:6024.
    [3] J.H. Huang, T.H. Wu, S.J. Wu, H.S. Wang, L.H. Xing, K. Song, H.Y. Xu, Y.Z. Jiang, Q.B. Kan, Large-pore cubic Ia-3d mesoporous silicas: Synthesis, modification and catalytic applications[J], Mater. Chem. Phy., 2005, 94:173-176.
    [4] K. R. Kloetstra, H. V. Bekkum, J. C. Jansen, Mesoporous material containing framework tectosilicate by pore–wall recrystallization[J], Chem. Commun., 1997, 997, 2281.
    [5] L. M. Huang, W. P. Guo, P. Deng, Investigation of synthesizing MCM-41/ZSM-5 Composites[J], J. Phys Chem B., 2000, 104:2817.
    [6]黄立民,陈海鹰,李全芝,第九届全国催化学术会议论文集,[C] 1998, 500.
    [7] D. T. On, S. Kaliaguine, Large-pore mesoporous materials with semi-crystalline zeolitic frameworks[J], Angew. Chem. Int. Ed., 2001, 17:40.
    [8] Y. W. Zhang, T. Okubo, M. Ogura, Synthesis of mesoporous aluminosilicate with zeolitic characteristics using vapor phase transport[J], Chem. Commun., 2005,21:2719.
    [9] Y.M. Fang, H. Q. Hu, An Ordered Mesoporous aluminosilicate with completely crystalline zeolite wall structure[J], J. Am. Chem. Soc., 2006, 128:10636.
    [10] W. Hu, Q. Luo, Y. C. Su, L. Chen, Y. Yue, C. H. Ye, F. Deng, Acid sites in mesoporous Al-SBA-15 material as revealed by solid-state NMR spectroscopy[J], Micropor. Mesopor. Mater., 2006, 92:22.
    [11] Y. W. Zhang, T. T. Okubo, Synthesis of mesoporous aluminosilicate with zeolitic characteristics using vapor phase transport[J], Chem.Com. 2005,21:2719.
    [12] M. Ogura, Y. Zhang, S. P. Elangovan, S. P. Naik, T. Okubo, Preparation of zeolitic mesoporous aluminosilicate by vapor phase transport method[J], Surf. Sci. Catal., 2005, 158:493.
    [13] M. Ogura, Y. W. Zhang, S. P. Elangovan, T. Okubo, Formation of ZMM-n: The composite materials having both natures of zeolites and mesoporous silica materials[J], Micropor. Mesopor. Mater., 2007, 101:224.
    [14] Lai Z, Tsapatsis M, Nicolich JP, Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers[J], Adv Funct Mater, 2004;14:716
    [15] P. A. Jacobs, H. K. Beyer, J. Valyon, Properties of the end members in the Pentasil family of zeolites: characterization as adsorbents[J], Zeolites, 1981, 1:161.
    [16] A. J. Kolka, J. P. Napolitano, G.. G. Elike, Communications the ortho-alkylation of phenol[J], J. Org. Chem., 1956, 21:712.
    [17] K. G. Chandra, M. M. Sharma, Alkylation of Diphenyl oxide with benzyl alcohol over HZSM-5[J], Catal. Lett., 1993, 19: 309.
    [18] A. V. Krishnan, K. Ojha, N. C. Pradhan, Alkylation of phenol with tertiary butyl alcohol over zeolites[J], Org. Process Res. Dev., 2002, 6:132.
    [19] R. Anand, R. Maheswari, K. U. Gore, B. B. Tope, Tertiary butylation of phenol over HY and dealuminated HY zeolites[J], J. Mol. Catal. A, 2003, 193:251.
    [20] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J], Nature, 1992, 359:710.
    [21] R. Savidha, A. Pandurangan, M. Palanihamy, V. Murugesan, A comparative study on the catalytic activity of Zn and Fe containing Al-MCM-41 molecular sieves on t-butylation of phenol[J], J. Mol. Catal. A, 2004, 211:165.
    [22] A. Vinu, K. U. Nandhini, V. Murugesan, W. Bohlmann, V. Umamaheswari, A. Poppl, M. Hartmann. Mesoporous FeAlMCM-41: an improved catalyst for the vapor phase tert-butylation of phenol[J], Appl. Catal. A, 2004, 265:1.
    [23] A.Sakthivel, S. E. Dapurkar, N. M. Gupta, S. K. Kulshreshtha, P. Selvam, Theinfluence of aluminium sources on the acidic behaviour as well as on the catalytic activity of mesoporous H-AlMCM-41 molecular sieves[J], Microporous Mesoporous Mater., 2003, 65:177.
    [24] K. Sakota, T. Okaya[J], Electrolyte stability of carboxylated latexes prepared by several polymerization processes, J. Appl. Polym. Sci., 1977, 21:1025.
    [25] A. Sakthivel, P. Selvam, Vapor-Phase tertiary butylation of phenol over mesoporous gallosilicate molecular sieves[J], Catal. Lett., 2002, 84:37.
    [26] A. Sakthivel, N. Saritha, P. Selvam, Vapour phase tertiary butylation of phenol over sulfated zirconia catalyst[J], Catal. Lett., 2001, 72:225.
    [27] B. Love, J. T. Massengale, The ortho-Alkylation of Phenols[J], J. Org. Chem., 1957, 22:642.
    [28] E. A. Goldsmith, M. J. Shclatter, W. G. Toland, Uncatalyzed thermal ortho -alkylation of phenols[J], J. Org. Chem., 1958, 23:1871.
    [29] G. A. Olah (Ed.), Friedel-Grafts and Related Reactions, Inter-science[J], New York, 1963, 2:75.
    [30] C. D. Chang, S. D. Hellring, Para-Selective Butylation of Phenol over Fairly Large-Pore Zeoliotes[J] US Patent, 5288927, 1994.
    [31] S. Subramanian, A. Mitra, C. V. V. Satyanarayana, D. K. Chakrabarty, Para-selective butylation of phenol over silicoaluminophosphate molecular sieve SAPO-11 catalyst[J], Appl. Catal. A, 1997, 159:229.
    [32] R. F. Parton, J. M. Jacobs. H. V. Ooteghem, P. A. Jacobs[J], Comparison of the Alkylation of Anisole and Phenol with Methanol on Pentasil and Ultrastable Zeolites Stud. Surf. Sci. Catal., 1989, 46:211.
    [1] Jacobsen, C. J. H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A. Mesoporous zeolite single crystals[J], J. Am. Chem. Soc. 2000, 122:7116.
    [2] Pavlackova, Z.; Kosova, G.; Zilkova, N.; Zukal, A.; Cejka, J. Formation of mesopores in ZSM-5 by carbon templating[J], Stud. Surf. Sci. Catal. 2006, 162:905.
    [3] Kustova, M. Y.; Kustov, A. L.; Christensen, C. H. Aluminum-rich mesoporous MFI-type zeolite single crystals[J], Stud. Surf. Sci. Catal. 2005, 158, 255.
    [4] Kustova, M. Yu.; Hasselriis. ; Christensen, C. H, Mesoporous MEL - Type zeolite single crystal catalysts[J], Catal. Lett. 2004, 96:205.
    [5] Wei, X.; Smirniotis, P. G., Synthesis and characterization of mesoporous ZSM-12 by using carbon particles[J], Microporous Mesoporous Mater. 2006, 89:170.
    [6] Egeblad, K.; Kustova, M.; Klitgaard, S. K.; Zhu, K.; Christensen, C. H., Mesoporous zeolite and zeotype single crystals synthesized in fluoride media[J], Microporous Mesoporous Mater. 2007, 101:214.
    [7] Kim, S.-S.; Shah, J.; Pinnavaia, T. J. Colloid-Imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite[J], Chem. Mater. 2003, 15:1664.
    [8] Sakhtivel, A.; Huang, S.-J.; Chen, W.-H.; Lan, Z.-H.; Chen, K.-H.; Kim, T.-W.; Ryoo, R.; Chiang, A. S. T.; Liu, S.-B., Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs) [J], Chem. Mater. 2004, 16:3168.
    [9] Tao, Y.; Kanoh, H.; Kaneko, K. ZSM-5 Monolith of Uniform Mesoporous Channels[J], J. Am. Chem. Soc. 2003, 125, 6044
    [10] Tao, Y.; Kanoh, H.; Kaneko, K. Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating[J], J. Phys. Chem. B 2003, 107, 10974.
    [11] Yang, Z.; Xia, Y.; Mokaya, R., Zeolite ZSM-5 with unique super-microporessynthesized using mesoporous carbon as a template[J], Adv. Mater. 2004, 16:727.
    [12] Meng Y , Gu D, Zhang FQ, Shi YF, et al, A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic-Organic Self-Assembly[J], Chem. Mater. 2006, 18, 4447-4464.
    [13] Zhang FQ, Meng Y, Gu D, Yan Y, et al, An Aqueous Cooperative Assembly Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology[J], Chem. Mater. 2006, 18, 5279-5288.
    [1] Xu Ru-Ren, Pang Wen-Qin, Tu Kun-Gang et al., Zeolite Molecular SievesStructure and Synthesis[J], Changchun: Jilin University Press, 1986: 38.
    [2] Flanigen EM., Bennett JM., Grose RW. et al., Silicalite, a new hydrophobiccrystalline silica molecular sieve[J] Nature, 1978, 271:513.
    [3] Li Jun, Long Ying Cai, Report of HLA distribution of Chinese bone marrowbank[J]. Chem. J. Chinese Universities, 2001, 22:179.
    [4] Kath H., Glaser R., Weitkamp J., Communication beckmann rearrangement ofcyclohexanone oxime on MFI-Type zeolites[J], Chem. Eng. Technol., 2001,24:150.
    [5] Sato H., Acidity control and catalysis of pentasil zeolites[J], Catal. Rev. Sci. Eng,1997,39:395.
    [6] Wang P,Shen BJ, Shena DD, Peng T, Gao, GS, Synthesis of ZSM-5 zeolite fromexpanded perlite/kaolin and its catalytic performance for FCC naphthaaromatization[J], Catalysis Communications, 2007, 10:1452.
    [7] Qiu SL, Pang WQ, Synthesis of B-ZSM-5 Zeolites in Slightly Acidic Medium[J], Chem. J. Chinese Universities, 1988, 10:987.
    [8] Gabelica Z., Valange S., Synthesis of MFI metallosilicate zeolites using metallicamino complexes as mineralizing agents: an overview[J], Microporous andMesoporous Materials, 1999,30:57
    [9] Larlus O, Valtchev V., Patarin J.et al., Preparation of Silicalite-1/glass fibercomposites by one- and two-step hydrothermal syntheses[J], Microporous andMesoporous Materials, 2002,56:175.
    [10] Ko Y. S, Ahn W. S. Synthesis and characterization of tantalum silicalitemolecular sieves with MFI structure[J], Microporous and Mesoporous Materials,1999,30:283.
    [11] Jung, MK; May, GS; Oakley, BR, Mitosis in wild-type and beta-tubulin mutantstrains of Aspergillus nidulans [J], Fun Gene Bio, 1998, 1-2:146.
    [12] Petkovska M., Do D. D., Nonlinear frequency response of adsorption systems:isothermal batch and continuous flow adsorbers[J], Chem. Eng. Sci, 1998,53:3081.
    [13] Denexter M. 1, Vabbekkum H., Rijn C. J. M., Stability of Oriented Silicalite-1Films in View of Zeolite Membrane Preparation[J], Zeolites, 1997,19:13.
    [14] Graaf J. M., Zwiep M., Kapteijn F.et al. Application of a Silicalite-1 membranereactor in metathesis reactions[J], Appl. Catal, 1999,178:225.
    [15] C.H. Christensen, K. Johannsen, I. Schmidt, C.H. Christensen, Catalyticbenzene alkylation over mesoporous zeolite single crystals: Improving activityand selectivity with a new family of porous materials[J], J. Am. Chem. Soc,2003, 125:13370.
    [16] F.-S. Xiao, L. Wang, C. Yin, K. Lin, Y. Di, J. Li, R. Xu, D. Su, R. Schlogl, T.Yokoi, T. Tatsumi, Catalytic properties of hierarchical mesoporous zeolitestemplated with a mixture of small organic ammonium salts and mesoscalecationic polymers[J], Angew. Chem., Int. Ed. 2006, 45:3090.
    [17] M. Choi, H.S. Cho, R. Srivastava, C. Venkatesan, D. H. Choi, R. Ryoo,Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunablemesoporosity[J], Nature Mater. 2006, 5:718.
    [18] B.T. Holland, L. Abrams, A. Stein, Dual templating of macroporous silicateswith zeolitic microporous frameworks[J], J. Am. Chem. Soc. 1999, 121:4308.
    [19] C.J.H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson,Mesoporous zeolite single crystals[J], J. Am. Chem. Soc. 2000, 122:7116.
    [20] I. Schmidt, A. Boisen, E. Gustavsson, K. Sta°hl, S. Pehrson, S. Dahl, A.Carlsson, C.J.H. Jacobsen, Carbon nanotube templated growth of mesoporouszeolite single crystals[J], Chem. Mater. 2001, 13:4416.
    [21] A. Sakthivel, S.J. Huang, W.H. Chen, Z.H. Lan, K.H. Chen, T.W. Kim, R.Ryoo, A.S.T. Chiang, S.B. Liu, Replication of mesoporous aluminosilicatemolecular sieves (RMMs) with zeolite framework from mesoporous carbons(CMKs) [J], Chem. Mater. 2004, 16:3168.
    [22] W. Song, R. Kanthasamy, V.H. Grassian, S.C. Larsen, Hexagonal, Hexagonal,hollow, aluminium-containing ZSM-5 tubes prepared from mesoporous silicatemplates[J], Chem. Comm. 2004, 17:1920.
    [23] A. Dong, Y. Wang, Y. Tang, N. Ren, Y. Zhang, Y. Yue, Z. Gao, Zeolitic tissuethrough wood cell templating[J], Adv. Mater. 2002, 14:926.
    [24] Holland, B. T.; Abrams, L.; Stein, A., Dual templating of macroporous silicateswith zeolitic microporous frameworks[J], J. Am. Chem. Soc. 1999, 121:4308.
    [25] B. T. Holland, L. Abrams, A. Stein, Dual templating of macroporous silicateswith zeolitic microporous frameworks[J], J. Am. Chem. Soc, 1999, 121, 4308.
    [26] Y. J. Wang, Y. Tang, Z. Ni, W. M. Hua, W. L. Yang, X. D. Wang, W. C. Tao,Z. Gao, Synthesis of macroporous materials with zeolitic microporousframeworks by self-assembly of colloidal zeolites[J], Chemistry Letters, 2000,29,510.
    [27] C. Danumah, S. Vaudreuil, L. Bonneviot, M. Bousmina, S. Kaliaguine,Synthesis of macrostructured MCM-48 molecular sieves[J], MicroporousMesoporous Mater., 2001, 44-45, 241.
    [28] C. G. Oh, Y. Baek, S. K. Ihm, Synthesis of skeletal-structured biporous silicatepowders through microcolloidal Ccrystal templating[J], Adv. Mater., 2005, 17,270.
    [29] T. Sen, J. T. T. Gordon, L. C. John, M. W. Anderson, One-Pot synthesis ofhierarchically ordered porous-silica materials with three orders of length scale[J],Angew Chem. Int. Ed., 2003, 42, 4649.
    [30] Rhodes, K. H.; Davis, S. A.; Caruso, F.; Zhang, B.; Mann, S. Hierarchicalassembly of zeolite nanoparticles into ordered macroporous monoliths usingcore-shell building blocks[J], Chem. Mater. 2000, 12:2832
    [31] Kim JW, Ryu JH, Suh KD., Monodisperse micron-sized macroporouspoly(styrene-co-divinylbenzene) particles by seeded polymerization[J], ColloidPolymsci, 2001,279:146.
    [32] Lai Z, Tsapatsis M, Nicolich JP, Siliceous ZSM-5 membranes by secondarygrowth of b-oriented seed layers[J], Adv Funct Mater 2004, 14:716.
    [33] Jacobs PA, Beyer HK, Valyon J. Properties of the end members in thePentasil-family of zeolites: characterization as adsorbents[J], Zeolites 1981, 1:161.
    [34] Leofanti G, Padovan M, Tozzola G, Venturelli B. Surface area and pore texture of catalysts[J], Catal Today 1998, 41:207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700