用户名: 密码: 验证码:
具有强酸性高水热稳定性硅铝孔材料的合成、表征及催化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔沸石具有较大的比表面积、可调变的孔径、较强的酸性以及较高的热稳定性和水热稳定性,因而被广泛应用于吸附、分离、催化等领域。但由于它有限的孔径限制其实际应用范围。孔径在2-50纳米范围内的介孔材料可以克服微孔分子筛孔径的局限性。但是由于它的孔壁是无定形的,酸性和水热稳定性较差,因而也限制了其应用范围。因而,近年来,很多研究者致力于寻找一种材料能够兼具微孔和介孔材料优点。
     以纳米Beta沸石或碱处理纳米Beta沸石得到的微小沸石颗粒及其次级结构单元为硅、铝源,在模板剂十六烷基三甲基溴化铵(CTAB)的存在下,通过调pH值后晶化的方法合成了一系列具有六方状介孔结构MCM-41/Beta复合分子筛。复合分子筛的酸性和水热稳定性都比普通的MCM-41要高。在苯酚叔丁基化反应中,复合分子筛显示了更高的苯酚转化率及2,4-二叔丁基苯酚的选择性。
     同样以纳米Beta沸石或碱处理纳米Beta沸石得到的微小沸石颗粒为硅、铝源,在模板剂P123的存在下分别在强酸及弱酸条件下合成了两类分子筛。强酸条件下合成的样品具有类似SBA-15的六方介孔孔道,但是其酸性不高,主要原因可能是强酸性合成条件容易造成脱铝,从而削弱了其酸性。弱酸条件合成样品具有类似KIT-1的蠕虫状孔道,酸性较强。在苯酚叔丁基化反应中,弱酸条件下合成的样品比强酸条件下合成的样品显示了更高的苯酚转化率及2,4-二叔丁基苯酚的选择性。
     通过一步法合成了一种介孔分子筛,该系列分子筛具有较强的酸性,在苯酚叔丁基化反应中,该系列分子筛显示了较高的苯酚转化率及2,4-二叔丁基苯酚的选择性。
Zeolites are widely used in industrial applications because they have many desirable properties, such as high surface area, adjustable pore size, acidity and high thermal and hydrothermal stability. However, the main drawback of zeolites is their small pore channels which make large sized reactants and products to and from the active sites of catalysts difficult. Mesoporous molecular sieves with pore diameters of 2–50 nm can overcome the pore size constraint of microporous zeolites and allow the diffusion of lager molecules. However, mesoporous materials have low acidity and hydrothermal stability because of their amorphous nature of frameworks, which limit their use as catalysts in industrial processes. Recently, much effort has been devoted to prepare new molecular sieves which combine the advantages of micro- and mesoporous materials.
     In the chapter three, Beta/MCM-41 micro/mesoporous composite materials have been prepared through assembly of zeolite Beta nanoclusters and their decomposed products by NaOH solution in the presence of CTAB under static or stirred conditions. The composite materials exhibit stronger acidity and higher hydrothermal stability than traditional mesoporous MCM-41. In the alkylation reaction of phenol with tert-butanol, composite materials display higher catalytic activities than that of Al-MCM-41.
     In the chapter four, micro/mesoporous composite materials have been prepared by using zeolite Beta nanoclusters and their decomposed products by NaOH solution as silica and aluminus source in the presence of P123 under strong or weak acidic condition. When it is synthesized under strong acidic condition, the resulting material exhibit highly ordered hexagonally arranged mesochannels similar to that of SBA-15. However, the acidity of the material is largely weakened by dealumination under strong acidic condition. The material synthesized under weak acidic condition shows disordered worm-like mesoporous channels. In the alkylation reaction of phenol with tert-butanol, the material syntheszed under weak acidic condition exhibits higher conversion of phenol and selectivity for 2,4-di-tert-butyl phenol (2,4-DTBP) than the material synthesized under strong acidic condition.
     In the chapter five, mesoporous molecular sieves with strong acidity have been prepared through a simple one step synthesis procedure in the presence of tetralkylammonium hydroxide. The resulting materials exhibit stronger acidity than conventional mesoporous MCM-41. All materials show high conversion of phenol and selectivity for 2,4-di-tert-butyl phenol (2,4-DTBP) in alkylation of phenol with tert-butanol.
引文
[1] BARRER R M. Syntheses and reactions of mordenite[J]. J. Chem. Soc., 1948, 2158-2163.
    [2] BARRER R M, DENNY P J. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates[J]. J. Chem. Soc., 1961, 971–982.
    [3] WILSON S T, LOK B M, MESSINA C A, CANNAN T R, FLANIGEN E M.Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids [J]. J. Am. Chem. Soc., 1982, 104: 1146–1147.
    [4] GIER T E, STUCKY G D. Low-temperature synthesis of hydrated zinco(berllyo)-phosphate and arsenate molecular-sieves[J]. Nature, 1991, 349: 508–510.
    [5] SOGHOMONIAN V, CHEN Q, HAUSHALTER R C, ZUBIETA J, O’CONNOR C J. An inorganic double helix: hydrothermal synthesis, structure, and magnetism of chiral [(CH3)2NH2]K4[V10O10(H2O)2 (OH)4(PO4)7]·4H2O[J]. Science, 1993, 259: 1596–1599.
    [6] HAUSHALTER R C, MUNDI L A. Reduced molybdenum phosphates: octahedral-tetrahedral framework solids with tunnels, cages, and micropores[J]. Chem. Mater., 1992, 4: 31–48.
    [7] CHAKRABARTI S, NATARAJAN S. Solution mediated synthesis and structure of a three-dimensional zinc arsenate, [NH3(CH2)3NH2(CH2)2NH3] [Zn4(AsO4)3(HAsO4)]·H2O, with intersecting helical channels[J]. J. Chem. Soc., Dalton Trans., 2002, 3874–3878.
    [8] NEERAJ S, NATARAJAN S, RAO C N R. A novel open-framework zinc phosphate with intersecting helical channels[J]. Chem. Commun., 1999, 165–166.
    [9] LI H, EDDAOUDI M, RICHARDSON D A, YAGHI O M. Porous germanates: synthesis, structure, and inclusion properties of Ge7O14.5F2·[(CH3)2NH2]3(H2O)0.86[J]. J. Am. Chem. Soc., 1998, 120: 8567–8568.
    [10] CHENG J, XU R, YANG G. Synthesis, structure and characterization of a novel germanium dioxide with occluded tetramethylammonium hydroxide[J]. J. Chem. Soc., Dalton Trans. 1991, 1537–1540.
    [11] ZHOU Y, ZHU H, CHEN Z, CHEN M, XU Y, ZHANG H, ZHAO D. A large 24-membered-ring germanate zeolite-type open-framework structure with three-dimensional intersecting channels[J]. Angew. Chem. Int. Ed., 2001, 40:2166–2168.
    [12] PLEVERT J, GENTZ T M, LAINE A, LI H, YOUNG V G, YAGHI O M, O’KEEFFE M. A flexible germanate structure containing 24-ring channels and with very low framework density[J]. J. Am. Chem. Soc., 2001, 123: 12706–12707.
    [13] PLEVERT J, GENTZ T M, GROY T L, O’KEEFFE M, YAGHI O M. Layered structures constructed from new linkages of Ge7(O,OH,F)19 clusters[J]. Chem. Mater., 2003, 15: 714–718.
    [14] ZHANG H X, ZHANG J, ZHENG S T, YANG G Y. [Ge7O13(OH)2F3]3- Cl- 2[Ni(dien)2]2+: The first chainlike germanate templated by a transition metal complex[J]. Inorg. Chem., 2003, 42: 6595–6597.
    [15] SHIEH M K, MARTIN J, SQUATTRITO P J, CLEARFIELD A. New low-dimensional zinc compounds containing zinc-oxygen-phosphorus frameworks: two-layered inorganic phosphites and a polymeric organic phosphinate[J]. Inorg. Chem., 1990, 29: 958– 963.
    [16] HARRISON W T A, PHILLIPS M L F, STANCHFIELD J, NENOFF T M. Pseudopyramidal building units in mixed inorganic/organic network solids: syntheses, structures, and properties ofα- andβ-ZnHPO3·N4C2H4., Inorg. Chem., 2001, 40: 895–899.
    [17] LIN Z E, ZHANG J, ZHENG S T, YANG G Y. Synthesis and characterization of a new hybrid zinc phosphite (4,4′-bipy)[Zn(HPO3)]2 with a pillared layer structure[J]. Micropor. Mesopor. Mater., 2004, 68: 65– 70.
    [18] CHOUDHURY A, KRISHNAMOORTHY J, RAO C N R. An approach to the synthesis of organically templated open-framework metal sulfates by the amine–sulfate route[J]. Chem. Commun. 2001, 2610–2611.
    [19] PAUL G, CHOUDHURY A, RAO C N R. Organically templated linear and layered cadmium sulfates[J]. J. Chem. Soc., Dalton Trans., 2002, 3859–3867.
    [20] PAUL G, CHOUDHURY A, RAO C N R. Organically templated linear and layered iron sulfates[J]. Chem. Mater., 2003, 15: 1174–1180.
    [21] NORQUIST A J, DORAN M B, THOMAS P M, O’HARE D. Controlled structural variations in templated uranium sulfates[J]. Inorg. Chem., 2003, 42: 5949–5953.
    [22] DAN M, BEHERA J N, RAO C N R. Organically templated rare earth sulfates with three-dimensional and layered structures[J]. J. Mater. Chem., 2004, 14: 1257–1265.
    [23] PASHA I, CHOUDHURY A, RAO C N R. Organically templated vanadyl selenites with layered structures[J]. Inorg. Chem., 2003, 42: 409–415.
    [24] HARRISON W T A, PHILLIPS M L F, STANCHFIELD J, NENOFF T M. (CN3H6)4[Zn3(SeO3)5]: the first organically templated selenite[J]. Angew. Chem. Int. Ed., 2000, 39: 3808–3810.
    [25] CHOUDHURY A, KUMAR D U, RAO C N R. Three-dimensional organically templated open-framework transition metal selenites[J]. Angew. Chem. Int. Ed., 2002, 41: 158–161.
    [26] DAI Z, SHI Z, LI G, ZHANG D, FU W, JIN H, XU W, FENG S. Hydrothermal syntheses, crystal structures, and magnetic properties of inorganic?organic hybrid vanadium selenites with zero- to three-dimensional structures: (1,10-Phenanthroline)2V2SeO7, (2,2‘-Bipyridine) VSeO4, (4,4‘-Bipyridine)V2Se2O8, and (4,4‘-Bipyridine)2V4Se3O15·H2O[J]. Inorg. Chem., 2003, 42: 7396–7402.
    [27] LI H, LAINE A, O’KEEFFE M, YAGHI O M. Supertetrahedral sulfide crystals with giant cavities and channels[J]. Science,1999, 283: 1145–1147.
    [28] BU X, ZHENG N, FENG P. Tetrahedral chalcogenide clusters and open frameworks[J]. Chem. Eur J., 2004, 10: 3356–3362.
    [29] SU W, HUANG X, LI J, FU H. Crystal of semiconducting quantum dots built on covalently bonded T5 [In28Cd6S54]-12 : The Largest Supertetrahedral Cluster in Solid State[J]. J. Am. Chem. Soc. 2002, 124: 12944–12945.
    [30] BU X, ZHENG N, LI Y, FENG P. Pushing up the size limit of chalcogenide supertetrahedral clusters:two- and three-dimensional photoluminescent openframeworks from (Cu5In30S54)13- clusters[J]. J. Am. Chem. Soc., 2002, 124: 12646–12647.
    [31] ZHENG N, BU X, FENG P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J]. Nature, 2003, 426: 428–432.
    [32] TUEL A. Synthesis, characterization, and catalytic properties of the new TiZSM-12 zeolite[J]. Zeolites. 1995, 15: 236-242.
    [33] ULAGAPPAN N, KRISHNASAMY V. Titanium substitution in silicon-free molecular sieves : anatase-free TAPO4-5 and TAPO4-11 synthesis and characterisation for hydroxylation of phenol[J]. J Chem. Soc. Chem. Commun. 1995, 373-374.
    [34] TUEL A. Synthesis, characterization, and catalytic properties of titanium silicoaluminophosphate TAPSO-5[J]. Zeolites. 1995, 15: 228-235.
    [35] CHANG T H, LEU F C. Synthesis and characterization of vanado titanium silicate molecular sieves with MEL structure[J]. Zeolites., 1995, 15: 496-500.
    [36] SEN T, CHATTERJEE M, SIVASANKER S. Novel large-pore vanadium alumino- and boro-silicates with BEA structure[J]. J Chern. SOC. Chem. Commun., 1995, 207-208.
    [37] KUCHEROV A V, SLINKIN A A, BEYER G K, BORBELY G. The status of chromium in aluminum-free chromosilicate with the ZSM-5 structure[J]. Zeolites, 1995, 15: 431-438
    [38] MAMBRIM J S T, PASTORE H O, DAVANZO C U, VICHI E J S, NAKAMURA O, VARGAS H. Synthesis and characterization of chromium silicalite[J]. Chem. Mater., 1993, 5: 166–173
    [39] BROUET G, CHEN X, LEE C W, KEVAN L. Evaluation of manganese(II) framework substitution in MnAPO-11 and Mn-impregnated AlPO4-11 molecular sieves by electron spin resonance and electron spin-echo modulation spectroscopy[J]. J Am. Chem. Soc., 1992, 14: 3720-3726.
    [40] BORADE R B, CLEARFIELD A. Iron-substituted Beta molecular sieve: Synthesis[J]. Microporous Mater., 1994, 2: 167-177. 25
    [41] VANOPPEN D L, DE VOS D E, GENET M J, ROUXHET P G, JACOBS P A. Cobalt-containing molecular sieves as catalysts for the low conversion autoxidation of pure cyclohexane[J]. Angew. Chem. Int. Ed., 1995, 34: 560-563.
    [42] INUI T, IWAMOTO S, MATSUBA K, TANAKA Y, YOSHIDA T. On the vital roles of zeolitic matrix in catalysts for deNOχ, reactions under conditions similar to diesel engine exhaust[J]. Catalysis Today, 1995, 26: 23-32.
    [43] SALDARRIAGA C, MONTES C, GAREES J, CROWDERT C. A molecular sieve with eighteen一membered rings. Nature., 1988, 331: 698-699.
    [44] HUO Q, XU R, LI S, MA Z. THOMAS J. M, JONES R, CHIPPINDALE A. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20. J. Chem. Soc[J]. Chem. Commun., 1992, 875-876.
    [45] FREYHARDT C C, TSAPATSIS M R, LOBO F, BALKUS K J, DAVIS M E. A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 1996, 381, 295– 298.
    [46] WESSELS T, BAERLOCHER C, MCCUSKER L B, CREYGHTON E J. An ordered form of the extra-large-pore zeolite UTD-1: its synthesis and structure analysis from powder diffraction data[J]. J. Am. Chem. Soc., 1999, 121:6242– 6247.
    [47] WAGNER P, YOSHIKAWA M, LOVALLO M, TSUJI K, TASPATSIS M, DAVIS M E. CIT-5: a high-silica zeolite with 14-ring pores[J]. Chem. Commun., 1997, 2179-2180.
    [48] BURTON A, ELOMARI S, CHEN C.-Y, MEDRUD R. C, CHAN I. Y, et al. SSZ-53 and SSZ-59: two novel extra-large pore zeolites[J]. Chem. Eur. J. 2003, 9:5737– 5748.
    [49] STROHMAIER K. G, VAUGHAN D.W. Structure of the first silicate molecular sieve with 18-ring pore openings, ECR-34[J]. J. Am. Chem. Soc., 2003, 125:16035– 16039.
    [50] BU X H, FENG P Y , STUCKY G D. Large-cage zeolite structures withmultidimensional 12-ring channels[J]. Science, 1997, 278: 2080~2085.
    [51] CORMA A, DIAZ-CABANAS M, MARTINEZ-TRIGUERO J, REY F, RIUS J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst[J]. Nature 2002, 418: 514– 517.
    [52] PAILLAUD J-L, HARBUZARU B, PATARIN J, BATS N. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings[J]. Science, 2004,14: 990-992.
    [53] ZOU X, CONRADSSON T, KLINGSTEDT M, DADACHOV M S, O'KEEFFE M. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative[J]. Nature, 2005, 437: 716– 719.
    [54] KRESGE C T, LEONOWICZ M E, ROTH W J, VARTULI J C, BECK J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [55] BECK J S, VARTULI J C, ROTH W J, LEONOWICZ M E, KRESGE C T, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc., 1992, 114: 10834-10843.
    [56] YANAGISAWA T, SHIMIZU T, KURODA K, KATO C. Trimethylsilyl derivatives of alkyltrimethylammonium–kanemite complexes and their conversion to microporous SiO2 materials[J]. Bull. Chem. Soc. Jpn., 1990, 60: 1535-1537.
    [57] SAYARI A, KARRA V R, REDDY J S, MOUDRAKOVSKI J. Synthesis of mesostructured lamellar aluminophosphates[J]. Chem. Commun., 1996, 411-412.
    [58] KIMURA T, SUGAHARA Y, KURODA K. Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents[J]. Chem. Mater., 1999, 11: 508-518.
    [59] LUAN Z, ZHAO D, HE H, KLINOWSAKI J, KEVAN L. Characterization of aluminophosphate-based tubular mesoporous molecular sieves[J]. J. Phys.Chem. B., 1998, 102 : 1250-1259.
    [60] HOLLAND B T, ISBESTER P K, BLANFORD C F, MUNSON E J, STEIN A. Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors[J]. J. Am. Chem. Soc., 1997, 119: 6796-6803.
    [61] CARBRERA S, HASKOURI J E, ALAMO J, BELTRAN A, BELTRAN D, et al. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes[J]. Adv. Mater., 1999, 11: 379-381.
    [62] BAGSHAW S A, PINNAVAIA T J. Mesoporous alumina molecular sieves[J]. Angew. Chem., Int. Ed. Engl., 1996, 35:1102-1105.
    [63] Tian Z R, Tong W, Wang J Y, Duan N G, Krishnan V V, Suib S L. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts[J]. Science, 1997, 276: 926-930.
    [64] SHIMOJIMA A, KURODA K. Direct formation of mesostructured silica-based hybrids from novel siloxane oligomers with long alkyl chains[J]. Angew. Chem. Int. Ed., 2003, 42: 4057-4060.
    [65] CHEN C Y, BURKETT S L, LI H X, DAVIS M E. Studies on mesoporous materials II. Synthesis mechanism of MCM-41[J]. Microporous Mater., 1993, 2:27-34.
    [66] MONNIER A, SCHUTH F, HUO Q, KUMAR D, MARGOLESE D, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures[J]. Science, 1993, 261: 1299-1303.
    [67] HUO Q S, MARGOLESE D I, CIESLA U, DEMUTH D G, FENG P Y, GIER T E, SIEGER P, FIROUZI A, CHMELKA B F, SCHUTH F, STUCKY G D. Organization of organic-molecules with inorganic molecular- species into nanocomposite biphase arrays[J]. Chem. Mater. 1994, 6:1176-1191
    [68] STEEL A, CARR S W, ANDERSON M W. 14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates[J]. J. Chem. Soc., Chem.Commun 1994, 1571-1572.
    [69] ATTARD G S, GLYDE J C, GOLTNER C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica[J]. Nature 1995, 378:366-368.
    [70] GOLTNER C G, ANTONIETTI M. Mesoporous materials by templating of liquid crystalline phases[J]. Adv Mater 1997, 9: 431-436.
    [71] GOLTNER C G, HENKE S, WEISSENBERGER M C, ANTONIETTI M. Mesoporous silica from lyotropic liquid crystal polymer templates[J]. Angew Chem-Int Edit 1998, 37:613-616.
    [72] HUO Q S, MARGOLESE DI , CIESLA U, FENG P Y, GIER T E, SIEGER P, LEON R, PETROFF P M, SCHUTH F, STUCKY G D. Generalized synthesis of periodic surfactant inorganic composite-materials[J]. Nature 1994, 368:317-321.
    [73] SOLER-ILLIA G J A A, SANCHEZ C, LEBEAU B, PATARIN J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures[J]. Chem. Rev. 2002, 102:4093-4138.
    [74] HUO Q, MARGOLESE D I, CIESLA U, DEMUTH D K, FENG P, GIER T E, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays[J]. Chem. Mater. 1994, 6, 1176-1191.
    [75]徐应明,王榕树.介孔钛硅分子筛表面功能膜的制备及对水体中铅的去除作用[J].高等学校化学学报1999, 20:1002-1006.
    [76] BOISSIERE C, KUMMEL M, PERSIN M, LARBOT A, PROUZET E. Spherical MSU-1 mesoporous silica particles tuned for HPLC[J]. Adv. Funct. Mater., 2001, 11: 129-135.
    [77] GALLIS K W, ARAUJO J T, DUFF K J, MOORE J G, LANDRY C C. The use of mesoporous silica in liquid chromatography[J]. Adv.Mater.1999, 11: 1452-1455.
    [78] CEPAK V M, HULTEEN J C, CHE G, JIRAGE K B, LAKSHMI B B, et al. Chemical strategies for template syntheses of composite micro- andnanostructures[J]. Chem. Mater. 1997, 9: 1065-1067.
    [79] LI Y, XU D, ZHANG Q, CHEN D, HUANG F, XU Y, GUO G, GU Z. Preparation of cadmium sulfide nanowire arrays in anodic aluminum oxide templates[J]. Chem. Mater., 1999, 11:3433-3435.
    [80] (a). MARTIN C R. Nanomaterials: a membrane-based synthetic approach[J]. Science, 1994, 266: 1961-1966. (b)SCHMID G, BAUMLE M, GEERKENS M, HEIM I, OSEMANN C, SAWITOWSKI T. Current and future applations of nanoclusters[J]. Chem. Soc. Rev., 1999, 28: 179-185.
    [81] SCHONENBERGER C, ZANDE B M I V, FOKKINK L G J, et al. Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology[J]. J. Phys. Chem. B 1997, 101: 5497-5505.
    [82] CEPAK V M, MARTIN C R. Preparation and stability of template-synthesized metal nanorod sols in organic solvents[J]. J. Phys. Chem. B., 1998, 102: 9985-9990.
    [83] CROWLEY A T, ZIEGLER K J, LYONS D M, ERTS D, et al. Synthesis of metal and metal oxide nanowire and nanotube arrays within a mesoporous silica template[J]. Chem.Mater., 2003, 15: 3518-3522.
    [84] FUKUOKA A, SHAKAMOTO Y, GUAN S, INAGAKI S, et al. Novel templating synthesis of necklace-shaped mono- and bimetallic nanowires in hybrid organic?inorganic mesoporous material[J]. J. Am. Chem. Soc., 2001, 123: 3373-3374.
    [85] HAN Y J, KIM J M, STUCKY G D. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J]. Chem. Mater., 2000, 12: 2068-2069.
    [86] MELERO J A, VICENTE G, MORALES G, et al. Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic mesostructured silicas[J]. Applied Catalysis A: General, 2008, 346: 44–51
    [87] MARSCHALL R, BANNAT I, CARO J, WARK M. Proton conductivity of sulfonic acid functionalised mesoporous materials[J]. Microporous andMesoporous Materials, 2007, 99: 190-196
    [88] ZHANG W H, SHI J L, WANG L Z, YAN D S. The post-preparation of mesoporous Zr-MCM-41 via grafting reaction[J]. Materials Letters, 2000, 46: 35–38.
    [89] CHEN L F, NORE?A L E, NAVARRETE J, WANG J A. Improvement of surface acidity and structural regularity of Zr-modified mesoporous MCM-41[J]. Materials Chemistry and Physics, 2006, 97: 236–242.
    [90] ZHANG R F, YANG C. A novel polyoxometalate-functionalized mesoporous hybrid silica: synthesis and characterization[J]. J. Mater. Chem., 2008, 18: 2691–2703.
    [91] RAJASEKAR K, PANDURANGAN A. Vapor-phase tert-butylation of p-hydroxytoluene over Al-MCM-41 and PWA supported Al-MCM-41 mesoporous molecular sieve catalysts[J]. Catalysis Communications, 2007, 8: 635–643.
    [92] JIN H X, WU Q Y, PANG W Q. Preparation and conductivity of tungstovanadogermanic heteropoly acid supported on mesoporous silicate SBA-15[J]. Materials Letters, 2004, 58: 3657– 3660.
    [93] KIM J M, JUN S, RYOO R. Improvement of hydrothermal stability of mesoporous silica using salts: reinvestigation for time-dependent effects[J]. J Phys Chem B., 1999, 103:6200-6205.
    [94] YU J, SHI J L, CHEN H R, YAN J N, YAN D S. Effect of inorganic salt addition during synthesis on pore structure and hydrothermal stability of mesoporous silica[J]. Micropor. Mesopor. Mater., 2001, 46: 153-162.
    [95] COUSTEL N, DIRENZO F, FAJULA F. Improved Stability of MCM-41 through Textural Control[J]. J. Chem Soc-Chem Commun 1994: 967-968.
    [96] PARK D H, NISHIYAMA N, EGASHIRA Y, UEYAMA K. Enhancement of Hydrothermal Stability and Hydrophobicity of a Silica MCM-48 Membrane by Silylation[J]. Ind. Eng. Chem. Res., 2001, 40: 6105–6110.
    [97] DAS D, TSAI C M, CHENG S. Improvement of hydrothermal stability ofMCM-41 mesoporous molecular sieve[J]. Chem. Commun., 1999, 473–474.
    [98]张瑛,窦涛,康善娇,郑燕英,鲍晓军.新型复合分子筛的合成[J].化学通报, 2005, 68, 1.
    [99] KLOETSTRA K R ,ZANDBERGEN H W,JANSEN J C. Overgrowthof mesoprous MCM—41 on faujasite[J]. Microporous Materials,1996, 6: 287~293.
    [100]郭万平,黄立民,陈海鹰.新型MCM-41-β-沸石中孔-微孔复合分子筛[J].高等学校化学学报, 1999, 20, 356.
    [101] BECK J S, VARTULI J C, KENNEDY G J, et al. Molecular or supramolecular templating: defining the role of surfactant chemistry in the formation of microporous and mesoporous molecular sieves[J]. Chem. Mater., 1994, 6(10): 1816-1821.
    [102] KARLSSON A, STOCKER M, SCHMIDT R. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach[J]. Micropor. Mesopor. Mater., 1999, 27: 181-192.
    [103] RAJA H P R P, LANDRY C C. Synthesis, characterization, and catalytic properties of a microporous/mesoporous material, MMM-1[J]. J. Solid State Chem., 2002, 167, 363-369.
    [104] PROKESOVA P, MINTOVA S, CEJKA J. Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases[J]. Microporous Mesoporous Mater., 2003, 64, 165-174.
    [105] KLOETSTRA K R, BEKKUM H V, JANSEN J C. Mesoporous material containing framework tectosilicate by pore–wall recrystallization[J]. Chem. Commun., 1997, 997: 2281-2282.
    [106] HUANG L M, GUO W P, DENG P. Investigation of synthesizing MCM-41/ZSM-5 Composites[J]. J. Phys Chem B, 2000, 104, 2817-2823.
    [107] ON D T, KALIAGUINE S. Large-pore mesoporous materials with semi-Crystalline zeolitic frameworks[J]. Angew Chem. Int. Ed., 2001, 40,3248-3251.
    [108] ON D T, LUTIC D, KALIAGUINE S. An example of mesostructured zeolitic material: UL-TS-1[J]. Microporous Mesoporous Mater., 2001, 44-45: 435-444.
    [109] OGURA M, SHIOMIYA S Y, TATENO J, NARA Y, KIKUCHI E, MATSUKATA M. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution[J]. Chemistry Letters, 2000, 29, 882-883.
    [110] OGURA M, SHIOMIYA S Y, TATENO J, NARA Y, MIKIHIRO N, KIKUCHI E, MATSUKATA M. Alkali-treatment technique—new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl. Catal. A, 2001, 219, 33-44.
    [111] GRONE J C, RAMIRE J , PEFFER L A. A. Formation of uniform mesopores in ZSM-5 zeolite upon alkaline post-treatment[J]. Chemistry Letters, 2002, 31, 94-95.
    [112] GRONE J C, PEFFER L A A, MOULIJN J A, RAMIRE J P. On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium[J]. Microporous Mesoporous Mater., 2004, 69, 29-34.
    [113] GRONE J C, JANSEN J C, MOULIJN J A, RAMIRE J P. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. J. Phys. Chem. B, 2004, 108, 13062-13065.
    [114] GRONE J C, PEFFER L A A, MOULIJN J A, RAMIRE J P. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2004, 241, 53-58.
    [115] GRONE J C, BACH T, ZIESE U, DONK A M P. V, JONG K P D, MOULIJN J A, RAMIRE J P. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J]. J. Am. Chem. Soc., 2005, 127, 10792-10793.
    [116] GROEN J C, PEFFER L A A, MOULIJN J A, PéREZ-RAMíREZ J. Mechanism of hierarchical porosity development in MFI zeolites bydesilication: the role of aluminium as a pore-directing agent[J].Chem. Eur. J. 11 (2005) 4983-4994.
    [117] GROEN J C, MOULIJN J A, PéREZ-RAMíREZ J. Desilication: on the controlled generation of mesoporosity in MFI zeolites[J]. J. Mater. Chem. 2006, 16: 2121-2132.
    [118] GROEN J C, ZHU W D, BROUWER S, HUYNINK S J, KAPTEIJN F, MOULIJN J A, PéREZ-RAMíREZ J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 Zeolite obtained via controlled desilication[J]. J. Am. Chem. Soc., 2007, 129: 355-360.
    [119] JANSSEN A H, KOSTER A J, JONG K P. Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y[J]. Angew. Chem. Int. Ed., 2001,40: 1102-1104.
    [120] KORTUNOV P, VASENKOV S, KARGER J et al. The role of mesopores in intra crystalline trans portin USY zeolite: PFGNMR diffision study on various length seales[J]. J. Am.Chem.Soe. 2005,127:13055-13059.
    [121] INAGAKI S, OGURA M, INAMI T, et al. Synthesis of MCM-41-type mesoporous materials using filtrate of alkaline dissolution of ZSM-5 zeolite[J]. Micropor. Mesopor. Mater., 2004, 74 : 163- 170.
    [122] WANG S, DOU T, LI Y P, ZHANG Y, LI X F, YAN Z C. A novel method for the preparation of MOR/MCM-41 composite molecular sieve[J]. Catalysis Communications, 2005, 6: 87–91.
    [123]王姗,窦涛,李玉平,张瑛,闫子春,李晓峰.一类新颖的介孔-微孔复合分子筛的合成[J].科学通报, 2005, 50: 24-27.
    [124]张瑛,窦涛,李玉平,石德先,赵震.沸石降解法合成孔壁含有沸石结构单元的介孔结构材料[J].无机材料学报, 2005, 20:1432-1430.
    [125] LIU Y, ZHANG W, PINNAVAIA T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds[J]. J. Am. Chem. Soc., 2000, 122, 8791-8792.
    [126] LIU Y, ZHANG W, PINNAVAIA T J. Steam-stable MSU-S aluminosilicatemesostructures assembled from zeolite ZSM-5 and zeolite Beta seeds[J]. Angew. Chem. Int. Ed., 2001, 40, 1255-1258.
    [127] LIU Y, PINNAVAIA J T. Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonal mesostructures from zeolite seeds under strongly acidic conditions[J]. Chem .Mater., 2002, 14, 3-5.
    [128] GUO W P, XIONG C R, HUANG L M, LI Q Z. Synthesis and characterization of composite molecular sieves comprising zeolite Beta with MCM-41 structures[J]. J. Mater. Chem., 2001, 11, 1886-1890.
    [129] GUO W P, HUANG L M, DENG P, XUE Z Y, LI Q Z. Characterization of Beta/MCM-41 composite molecular sieve compared with the mechanical mixture[J]. Microporous Mesoporous Mater., 2001, 44-45, 427-434.
    [130] ZHANG Z T, HAN Y, ZHU L, XIAO F S. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure[J]. Angew Chem. Int. Ed., 2001, 40, 1258-1262.
    [131] ZHANG Z T, HAN Y, ZHU L, XIAO F S. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures[J]. J. Am. Chem. Soc., 2001, 123, 5014-5012.
    [132] HAN Y, XIAO F S, WU S, SUN Y Y, MENG X,J, LI D F, LIN S. A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media[J]. J. Phys. Chem. B, 2001, 105, 7963-7966.
    [133] HAN Y, WU S, SUN Y, XIAO F S. Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media[J]. Chem. Mater, 2002, 14, 1144-1148.
    [134] XIAO F S, HAN Y, MENG X J. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites[J]. J. Am. Chem. Soc., 2002, 124, 888-893.
    [135]李工,阚秋斌,吴通好,侯长民,黄家辉,吴淑杰,李灿.具有强酸位的六方和立方介孔硅铝分子筛合成及催化活性比较[J].高等学校化学学报, 2002, 23: 1171-1173.
    [136] LI G., KAN Q B, WU T H, HOU C M, XIAO F S, HUANG J H. Synthesis of cubic mesoporous aluminosilicates with enhanced acidity[J]. Stud. Surf. Sci. Catal., 2003, 146, 149-152.
    [137] HUANG J H, LI G, WU S J, WANG H S, XING L H, SONG K, WU T H, KAN Q B. Synthesis, characterization and catalytic activity of cubic Ia3d and p6mm mesoporous aluminosilicates with enhanced acidity[J]. J. Mater. Chem., 2005, 15, 1055-1060.
    [138] JACOBSEN C J H, MADSEN C, HOUZVICKA J, SCHMIDT I, CARLSSON A. Mesoporous zeolite single crystals[J]. J.Am. Chem.Soc., 2000, 122: 7116-7117.
    [139] KIM S S, SHAH J, PINNAVAIA T J. Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite[J]. Chem. Matter., 2003, 15: 1664- 1668.
    [140] YANG Z X, XIA Y D, MOKAYA R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template[J]. Advanced Materials, 2004, 16: 727-732.
    [141] TAO Y S, KANOH H, KANEKO K. Uniform mesopore-donated zeolite Y using carbon aerogel templating[J]. J. Phys. Chem. B, 2003, 107, 10974-10976.
    [142] TAO Y S, KANOH H, KANEKO K. ZSM-5 monolith of uniform mesoporous channels[J]. J. Am. Chem. Soc., 2003, 125: 6044-6045.
    [143] TAO Y S, KANOH H, KANEKO K. Synthesis of mesoporous zeolite A by resorcinol-formaldehyde aerogel templating[J]. Langmuir, 2005, 21, 504-507.
    [144] SCHMIDT I, BOISEN A, GUSTAVSSON E, et al. Carbon nanotube templated growth of meso-porous zeolite single crystals[J]. Chem. Mater., 2001, 13: 4416-4118.
    [145] BOISEN A, SCHMIDT I, CARLSSON A, DAHL S, BRORSON M, JACOBSEN C J H. TEM stereo-imaging of mesoporous zeolite singlecrystals[J]. Chem. Commun., 2003, 958-959.
    [146] COMRA A, MARTINEZ A, MARTINEZSORIA V, MONTON J B. Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst[J]. J. Catal., 1996, 153: 25-31.
    [147] ROO K, LIEPOLD A, KOCH H, RESCHETILOWSKI W. Impact of accessibility and acidiy oil novel molecular sieves for catalytic cracking of hydrocarbons[J]. Chem. Eng. & Tech., 1997, 20:326-332.
    [148] KLOETSTRA K R, VAN BEKKUM H. Progress in zeolite and microporous materials[J]. Stud. Surf. Sci. Catal., 1997, 105: 431.
    [149] CAUVEL A, RENARD G, BRUNEL D. Monoglyceride synthesis by heterogeneous catalysis using MCM-41 type silicas functionalized with amino groups[J]. J. Org. Chem., 1997, 62: 749-751.
    [150] RAO Y V S, DE VOS D E, JACOBS P A. 1,5,7-triazabicyclo[4.4.0] dec-5-ene immobilized in MCM-41: a strongly basic porous catalyst[J]. Angew. Chem. Int. Ed. Engl. 36 (1997) 2661-2663.
    [151] MACQUARRIE D J, JACKSON D B. Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica[J]. Chem. Commun., 1997, 1781-1782.
    [152] KASKEL S, FARRUSSENG D, SCHLICHTE K. Synthesis of mesoporous silicon imido nitride with high surface area and narrow pore size distribution[J]. Chem. Commun., 2000,2481-2482.
    [153] KASKEL S, SCHLICHTE K. Porous silicon nitride as a superbase catalyst[J]. J. Catal., 201 (2001) 270-274.
    [154] FARRUSSENG D, SCHLICHTE K, SPLIETHOFF B, WINGEN A, KASKEL S, BRADLEY J S, SCHüTH F. Pore-size engineering of silicon imido nitride for catalytic applications[J]. Angew.Chem. Int. Ed., 40 (2001) 4204-4207.
    [155] HASKOURI J E, CABRERA S, SAPINA F F, LATORRE J, GUILLEM C, PORTER A B, MARCOS M D, AMOMOS P. Ordered mesoporous silicon oxynitrides[J]. Adv. Mater., 13 (2001)192-195.
    [156] CORMA A, NACARRO M T, PARIENTE J P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons[J]. J. Chem. Soc. Chem. Commun., (1994) 147-148.
    [157] GONTIER S, TUEL A. Novel zirconium containing mesoporous silicas for oxidation reactions in the liquid phase[J]. Appl. Catal. A, 143 (1996) 125-135.
    [158] TUEL A, GONTIER S, TEISSIER R. Zirconium containing mesoporous silicas: new catalysts for oxidation reactions in the liquid phase[J]. Chem. Commun., 1996, 651-652.
    [159] SAMUEL V, MUTHUKUMAR P, GAIKWAD,S P, DHAGE S R, RAVI V. Synthesis of mesoporous rutile TiO2[J]. Materials Letters, 2004, 58:2514-2516.
    [160] QING D, HE N Y, GUO Y, YUAN C W. High photocatalytic activity of pure TiO2 mesoporous molecular sieves for the degradation of 2,4,6-trichlorophen[J]. Chem. Letters., 1998, 11:1113-1114.
    [161] YU J C, WANG X C, FU X Z. Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films[J]. Chem Mater, 2004, 16:1523-1530.
    [1] KRESGE C T, LEONOWICZ M E, ROTH W J, VARTULI J C, BECK J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [2] BECK J S, VARTULI J C, ROTH W J, LEONOWICZ M E, KRESGE C T, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc. 1992, 114: 10834-10843.
    [3] RAJA H P R P, LANDRY C C. Synthesis, characterization, and catalytic properties of a microporous/mesoporous material, MMM-1[J]. J. Solid State Chem., 2002, 167, 363-369.
    [4] KLOETSTRA K R, BEKKUM H V, JANSEN J C. Mesoporous material containing framework tectosilicate by pore–wall recrystallization[J]. Chem. Commun., 1997, 997: 2281-2282.
    [5] GROEN J C, ZHU W D, BROUWER S, HUYNINK S J, KAPTEIJN F, MOULIJN J A, PéREZ-RAMíREZ J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J. Am. Chem. Soc., 2007, 129: 355-360
    [6] LIU Y, ZHANG W, PINNAVAIA T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite Beta seeds[J]. Angew. Chem. Int. Ed., 2001, 40, 1255-1258.
    [7] GUO W P, XIONG C R, HUANG L M, LI Q Z. Synthesis and characterization of composite molecular sieves comprising zeolite Beta with MCM-41 structures[J]. J. Mater. Chem., 2001, 11, 1886-1890.
    [8] HAN Y, XIAO F S, WU S, SUN Y Y, MENG X J, LI D F, LIN S. A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media[J]. J. Phys.Chem. B, 2001, 105, 7963-7966.
    [9] HUANG J H, LI G, WU S J, WANG H S, XING L H, SONG K, WU T H, KAN Q B. Synthesis, characterization and catalytic activity of cubic Ia3d and p6mm mesoporous aluminosilicates with enhanced acidity[J]. J. Mater. Chem., 2005, 15: 1055-1060.
    [10] KARLSSON A, STOCKER M, SCHMIDT R. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach[J]. Micropor. Mesopor. Mater., 1999, 27: 181-192
    [11] WANG S, DOU T, LI Y P, ZHANG Y, LI X F, YAN Z C. A novel method for the preparation of MOR/MCM-41 composite molecular sieve[J]. Catalysis Communications, 2005, 6: 87–91
    [12] HIGGINS J B, LAPIERRE R B, SCHLENKER J L, ROHRMAN R C, WOOD J D, KERR G T, ROHRBAUGH W J. The framework topology of zeolite beta[J]. Zeolites. 1988, 8: 446–452.
    [13] KOLKA A J, NAPOLITANO J P, ELIKE G. G.. Communications-the ortho-alkylation of phenols[J]. J. Org. Chem., 1956, 21: 712.
    [14] TSAI T C, AY C L, WANG I. Cumene disproportionation over zeoliteβ: I. comparison of catalytic performances and reaction mechanisms of zeolites[J]. Appl. Catal.,1991, 77:199-207.
    [15] PARIKH P A, et al. Toluene isopropylation over zeoliteβand metallosilicates of MFI structure[J]. Appl. Catal. A,1992, 90:1-10
    [16] MITRA A, SUBRAMANIAN S, DAS D, et al. Alkylation of aromatics on zeolite beta. Unusual butylation of benzene with isobutanol[J]. Appl. Catal. A,1997, 153: 233-241.
    [17] PRADHAN A R, RAO B S. Transalkylation of di-isopropylbenzenes over large pore zeolites[J]. Appl. Catal. A., 1993, 106: 43-153.
    [18]王延吉,唐靖,李赫喧.β沸石在丙烯醚化反应中的催化性能分子催化[J]. 1996,10:6-12.
    [19] CARLTON A A. Alkylation of phenol with t-butyl alcohol in the presence of perchloric acid[J]. J. Org. Chem. 13 (1948) 120-122.
    [20] G. Sartori, F. Bigi, G. Casiraghi, G. Carnati, L. Chiesi, A. Arduini, Chem. Ind. 22 (1985) 762.
    [21] SHEN H Y, JUDEH Z M A, CHING C B. Selective alkylation of phenol with tert-butyl alcohol catalyzed by [bmim]PF6[J]. Tetrahedron Lett. 2003, 44: 981-983.
    [22] GUI J Z, BAN H Y, SUN Z L, et al. Selective alkylation of phenol with tert-butyl alcohol catalyzed by Br?nsted acidic imidazolium salts[J]. J. Mol. Cat. A: Chem., 2005, 225: 27-31.
    [23] CHANDRA K G, SHARMA M M. Alkylation of phenol with MTBE and other tert-butyl ethers: cation exchange resins as catalysts[J]. Catal. Lett. 1993, 19: 309-317.
    [24] RAJADHYAKSHA R A, CHAUDHARI D D. Alkylation of phenol and pyrocatechol b y isobutyl alcohol using superacid catalysts[J]. Ind. Eng. Chem. Res. 1987, 26: 1276–1280.
    [25] ZHANG K, XIANG S H, ZHANG H B, LIU S Y, LI H X. Phenol alkylation with tert-butyl alcohol catalyzed by HM zeolite[J]. React. Kinet. Catal. Lett. 2002, 77: 13-19.
    [26] ZHANG K, HUANG C H, ZHANG H B, XIANG S H, LIU S Y, XU D, LI H X. Alkylation of phenol with tert-butyl alcohol catalysed by zeolite Hβ[J]. Appl. Catal. A: Gen., 1998, 166: 89-95
    [27] ZHANG K, ZHANG H B, XU G H, XIANG S H, XU D, LIU S Y, LI H X. Alkylation of phenol with tert-butyl alcohol catalyzed by large pore zeolites[J]. Applied Catalysis A: General 2001,207: 183–190.
    [28] KUMAR G S, SARAVANAMURUGAN S, HARTMANN MARTIN. Synthesis, characterisation and catalytic performance of HMCM-22 of different silica to alumina ratios[J]. Journal of Molecular Catalysis A: Chemical 2007, 272: 38–44.
    [29] ANAND R, MAHESWARI R, GORE K U, TOPE B B. Tertiary butylation of phenol over HY and dealuminated HY zeolites[J]. Journal of Molecular Catalysis A: Chemical, 2003, 193: 251–257.
    [30] VINU A, DEVASSY B M, HALLIGUDI S B, B?HLMANN W, HARTMANN M. Highly active and selective AlSBA-15 catalysts for the vapor phase tert-butylation of phenol[J]. Applied Catalysis A: General, 2005, 281: 207–213.
    [31] WU S , HUANG J H, WU T H, SONG K, WANG H S, XING L H, XU H Y, XU L, GUANG J Q, KAN Q B. Synthesis, characterization, and catalytic performance of mesoporous Al-SBA-15 for tert-butylation of phenol[J]. Chin. J. Catal., 2006, 27: 9–14.
    [32] DAPURKAR S E, SELVAM P. Mesoporous H-AlMCM-48: highly efficient solid acid catalyst[J]. Applied Catalysis A: General 2003, 254: 239–249.
    [33] KUMAR G S, VISHNUVARTHAN M, PALANICHAMY M, MURUGESAN V. SBA-15 supported HPW: Effective catalytic performance in the alkylation of phenol[J]. Journal of Molecular Catalysis A: Chemical 2006, 260: 49–55.
    [34] KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic?inorganic nanocomposite materials[J]. Chem. Mater., 2001, 13: 3169-3183.
    [35] RAVIKOVITCH P I, NEIMARK A V. Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures[J]. Langmuir, 2002, 18: 1550-1560.
    [36] LEOFANTI G, PADOVAN M, TOZZOLA G, VENTURELLI B. Surface area and pore texture of catalysts[J]. Catalysis Today , 1998, 41: 207-219.
    [37] LIPPMAA E, SAMOSON A, MAGI M. High-resolution aluminum-27 NMR of aluminosilicates[J]. J. Am. Chem. Soc.,1986, 108: 1730-1735.
    [38] Parry E P. An infrared study of pyridine adsorbed on acidic solids.Characterization of surface acidity[J]. J. Catal, 1963, 2: 371-379.
    [39] MOKAYA R. Improving the stability of mesoporous MCM-41 silica via thicker more highly condensed pore walls[J]. J. Phys. Chem. B 103 (1999) 10204-10208.
    [40] KLIONWSKI J, THOMAS J M, FYFE C A, et al. Monitoring of structural changes accompanying ultrastabilization of faujastite zeolite catalysts[J]. Nature, 1982, 96: 533-536.
    [1] GALLIS K W, ARAUJO J T, DUFF K J, MOORE J G, LANDRY C C. The use of mesoporous silica in liquid chromatography[J]. Adv. Mater., 1999, 11: 1452-1455.
    [2] BOISSIERE C, KUMMEL M, PERSIN M, LARBOT A, PROUZET E. Spherical MSU-1 mesoporous silica particles tuned for HPLC[J]. Adv. Funct. Mater., 2001, 11: 129-135.
    [3] QING D, HE N Y, GUO Y, YUAN C W. High photocatalytic activity of pure TiO2 mesoporous molecular sieves for the degradation of 2,4,6-trichlorophen[J]. Chem Letters,1998, 11:1113-1114.
    [4] CROWLEY A T, ZIEGLER K J, LYONS D M, ERTS D, OLIN H, MORRIS M A, HOLMES J D. Synthesis of metal and metal oxide nanowire and nanotube arrays within a mesoporous silica template[J]. Chem. Mater., 2003, 15: 3518-3522.
    [5] FUKUOKA A, SHAKAMOTO Y, GUAN S, INAGAKI S, SUGIMOTO N, FUKUSHIMA Y, HIRAHARA K, IIJIMA S, ICHIKAWA M. Novel templating synthesis of necklace-shaped mono- and bimetallic nanowires in hybrid organic?inorganic mesoporous material[J]. J. Am. Chem. Soc., 2001, 123: 3373-3374.
    [6] HAN Y J, KIM J M, STUCKY G D. Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15[J]. Chem. Mater., 2000, 12: 2068-2069.
    [7] CHOUDHARY V R, MANTRI K. AlClX-grafted Si-MCM-41 prepared by reacting anhydrous AlCl3 with terminal Si-OH groups: an active solid catalyst for benzylation and acylation reactions[J]. Micropor. Mesopor. Mater., 2002, 56:37-320.
    [8] MOKAYA R. Al content dependent hydrothermal stability of directly synthesized aluminosilicate MCM-41[J]. J. Phys. Chem. B, 2000, 104: 8279–8286.
    [9] XIA Y D, MOKAYA R. On the hydrothermal stability of mesoporous aluminosilicate mcm-48 materials[J]. J. Phys. Chem. B, 2003, 107: 6954–6960.
    [10] ROMERO A A, ALBA M D, KLINOWSKI J. Aluminosilicate mesoporousmolecular sieve MCM-48[J]. J. Phys. Chem. B., 1998, 102: 123–128.
    [11] ONAKA M, HASHIMOTO N, KITABATA Y, YAMASAKI R. Aluminum-rich mesoporous aluminosilicate (Al-HMS) as a solid acid catalyst for the Diels-Alder reaction of acrylates with 1,3-diene[J]. Appl. Catal. A., 2003, 241: 307-317.
    [12] ZHAI S R, WEI W, WU D, SUN Y H. Two-step route to mesoporous Al-MSU-X[J]. Acta Chimica Sinica, 2004, 62: 442-444.
    [13] BAGSHAW S A, JAENICKE S, KHUAN C G. Structure and properties of Al?MSU?S mesoporous catalysts: structure modification with increasing Al content[J]. Ind. Eng. Chem. Res., 2003, 42: 3989–4000.
    [14] ZHAO D Y, FENG J L, HUO Q S, MELOSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279: 548-552.
    [15] ZHAO D Y, HUO Q S, FENG J L, CHMELKA BF, STUCKY G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J. Am. Chem. Soc., 1998, 120: 6024-6036.
    [16] YUE Y H, GéDéON A, BONARDET J, MELOSH N, D’ESPINOSEA J B, FRAISSARDA J. Direct synthesis of AlSBA mesoporous molecular sieves: characterization andcatalytic activities[J]. Chem. Commun., 1999, 1967–1968.
    [17] WU S, HAN Y, ZOU Y C, SONG J W, ZHAO L, DI Y, LIU S Z, XIAO F S. Synthesis of heteroatom substituted SBA-15 by the“pH-adjusting”method[J]. Chem. Mater., 2004, 16: 486-492.
    [18] RYOO R, KIM J M, KO C H, SHIN C H. Disordered molecular sieve with branched mesoporous channel network[J]. J. Phys. Chem., 1996, 100: 17718-17721.
    [19] KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic?inorganic nanocomposite materials chem. mater[J]. 2001, 13:3169-3183.
    [20] RAVIKOVITCH P I, NEIMARK A V. Density Functional Theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures[J]. Langmuir, 2002, 18: 1550-1560.
    [21] LEOFANTI G, PADOVAN M, TOZZOLA G, VENTURELLI B. Surface area and pore texture of catalysts[J]. Catalysis Today, 1998, 41: 207-219.
    [22] DAPURKAR S E, SELVAM P. Mesoporous H-AlMCM-48: highly efficient solid acid catalyst[J]. Applied Catalysis A: General 2003, 254: 239–249
    [23] DUMITRIU E, HULEA V. Effects of channel structures and acid properties of large-pore zeolites in the liquid-phase tert-butylation of phenol[J]. Journal of Catalysis, 2003, 218: 249–257.
    [1] KRESGE C T, LEONOWICZ M E, ROTH W J, VARTULI J C, BECK J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [2] BECK J S, VARTULI J C, ROTH W J, LEONOWICZ M E, KRESGE C T,et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc. 1992, 114: 10834-10843.
    [3] ZHAO D Y, FENG J L, HUO Q S, MELOSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279: 548-552.
    [4] ZHAO D Y, HUO Q S, FENG J L, CHMELKA BF, STUCKY G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J. Am. Chem. Soc., 1998 , 120: 6024-6036.
    [5] RYOO R, KIM J M, KO C H, SHIN C H. Disordered Molecular Sieve with Branched Mesoporous Channel Network[J]. J. Phys. Chem., 1996, 100: 17718-17721.
    [6] TANEV P T, PINNAVAIA T J. A Neutral Templating Route to Mesoporous 108Molecular Sieves[J]. Science, 1995, 267: 865-867.
    [7] TANEV P T, PINNAVAIA T J. Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties[J]. Chem. Mater., 1996, 8: 2068-2079.
    [8] PAULY T R, PINNAVAIA T J. Pore size modification of mesoporous HMS molecular sieve silicas with wormhole framework structures[J]. Chem. Mater., 2001, 13: 987-993.
    [9] BAGSHAW S A, PROUZET E, PINNAVAIA T J. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants[J]. Science, 1995, 269: 1242-1244.
    [10] BAGSHAW S A, PINNAVAIA T J. Mesoporous Alumina Molecular Sieves[J]. Angew. Chem., Int. Ed. Engl., 1996, 35, 1102-1105.
    [11] PROUZET E, PINNAVAIA T J. Assembly of Mesoporous Molecular Sieves Containing Wormhole Motifs by a Nonionic Surfactant Pathway: Control of Pore Size by Synthesis Temperature[J]. Angew. Chem.,Int. Ed. Engl., 1997, 36: 516-518.
    [12] BOISSIERE C, KUMMEL M, PERSIN M, LARBOT A, PROUZET E. Spherical MSU-1 mesoporous silica particles tuned for HPLC[J]. Adv. Funct. Mater., 2001, 11: 129-135.
    [13] GALLIS K W, ARAUJO J T, DUFF K J, MOORE J G, LANDRY C C. The Use of Mesoporous Silica in Liquid Chromatography[J]. Adv. Mater., 1999, 11: 1452-1455.
    [14] VIOLET SAMUEL, P MUTHUKUMAR, S P GAIKWAD, S R DHAGE, V RAVI. Synthesis of mesoporous rutile TiO2[J]. Materials Letters, 2004,58: 2514-2516.
    [15] QING D, HE N Y, GUO Y, YUAN C W. High Photocatalytic Activity of Pure TiO2 Mesoporous Molecular Sieves for the Degradation of 2,4,6-Trichlorophen[J]. Chem Letters,1998, 11:1113-1114.
    [16] CROWLEY A T, ZIEGLER K J, LYONS D M, ERTS D, OLIN H, MORRIS M A, HOLMES J D. Synthesis of Metal and Metal Oxide Nanowire andNanotube Arrays within a Mesoporous Silica Template[J]. Chem. Mater., 2003, 15: 3518-3522.
    [17] FUKUOKA A, SHAKAMOTO Y, GUAN S, INAGAKI S, SUGIMOTO N, FUKUSHIMA Y, HIRAHARA K, IIJIMA S, ICHIKAWA M. Novel Templating Synthesis of Necklace-Shaped Mono- and Bimetallic Nanowires in Hybrid Organic?Inorganic Mesoporous Material[J]. J. Am. Chem. Soc., 2001, 123: 3373-3374.
    [18] HAN Y J, KIM J M, STUCKY G D. Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15[J]. Chem. Mater., 2000, 12: 2068-2069.
    [19] MOKAYA R, JONES W. Acidity and catalytic activity of aluminosilicate mesoporous molecular sieves prepared using primary mines[J]. Chem. Commun., 1996, 8: 983-984.
    [20] MOKAYA R, JONES W. Grafting of Al onto purely siliceous mesoporous molecular sieves[J]. Physical Chemistry Chemical Physics, 1999, 1: 207-213.
    [21] ARAUJO R S, MAIA D A S, AZEVEDO D C S, CAVALCANTE C L, RODRIGUEZ-CASTELLON E, JIMENEZ-LOPEZ A. Assessment of surface acidity in mesoporous materials containing aluminum and titanium[J]. Appl. Surf. Sci., 2009, 255: 6205-6209.
    [22] KATOVIC A, GIORDANO G, BONELLI B, ONIDA B, GARRONE E, LENTZ P, NAGY J B. Preparation and characterization of mesoporous molecular sieves containing Al, Fe or Zn[J]. Micropor. Mesopor. Mater., 2001,44: 275-281.
    [23] CONESA T D, CAMPELO J M, LUNA D, MARINAS J M, ROMERO A A. Development of mesoporous Al, B-MCM-41 materials - Effect of reaction temperature on the catalytic performance of Al, B-MCM-41 materials for the cyclohexanone oxime rearrangement[J]. Applied Catalysis B: Environmental, 2007,70: 567-576.
    [24] ESWARAMOORTHI I, DALAI A K. Synthesis, characterisation andcatalytic performance of boron substituted SBA-15 molecular sieves[J]. Micropor. Mesopor. Mater., 2006, 93: 1-11.
    [25] KUSTROWSKI P, CHMIELARZ L, SURMAN J, BIDZINSKA E, DZIEMBAJ R, COOL P, VANSANT E F. Catalytic activity of MCM-48, SBA-15, MCF-, and MSU type mesoporous silicas modified with Fe3+ species in the oxidative dehydrogenation of ethylbenzene in the presence of N2O[J]. Journal of Physical Chemistry A, 2005, 109: 9808-9815.
    [26] SUNDARAMURTHY V, ESWARAMOORTHI I, LINGAPPAN N. The catalytic effect of boron substitution in MCM41-type molecular sieves[J]. Canadian Journal of Chemistry-revue Canadienne De Chimie, 2004, 82: 631-640.
    [27] MARSCHALL R, BANNAT I, CARO J, WARK M. Proton conductivity of sulfonic acid functionalised mesoporous materials[J]. Micropor. Mesopor. Mater., 2007, 99: 190-196.
    [28] MELERO J A, VICENTE G, MORALES G, PANIAGUA M, MORENO J M, ROLDáN R, EZQUERRO A, PéREZ C. Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic mesostructured silicas[J]. Applied Catalysis A: General, 2008, 346: 44–51.
    [29] CHEN L F, NORE?A L E, NAVARRETE J, WANG J A. Improvement of surface acidity and structural regularity of Zr-modified mesoporous MCM-41[J]. Materials Chemistry and Physics, 2006, 97: 236–242.
    [30] ZHANG W H, SHI J L, WANG L Z, YAN D S. The post-preparation of mesoporous Zr-MCM-41 via grafting reaction[J]. Materials Letters, 2000, 46: 35–38.
    [31] RAJASEKAR K, PANDURANGAN A. Vapor-phase tert-butylation of p-hydroxytoluene over Al-MCM-41 and PWA supported Al-MCM-41 mesoporous molecular sieve catalysts[J]. Catalysis Communications, 2007, 8: 635–643.
    [32] ZHANG R F, YANG C. A novel polyoxometalate-functionalizedmesoporous hybrid silica: synthesis and characterization[J]. J. Mater. Chem., 2008, 18: 2691–2703.
    [33] JIN H X, WU Q Y, PANG W Q. Preparation and conductivity of tungstovanadogermanic heteropoly acid supported on mesoporous silicate SBA-15[J]. Materials Letters, 2004, 58: 3657– 3660.
    [34] KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic?inorganic nanocomposite materials[J]. Chem. Mater., 2001, 13: 3169-3183.
    [35] RAVIKOVITCH P I, NEIMARK A V. Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures[J]. Langmuir, 2002, 18: 1550-1560.
    [36] LEOFANTI G, PADOVAN M, TOZZOLA G, VENTURELLI B. Surface area and pore texture of catalysts[J]. Catalysis Today, 1998, 41: 207-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700