用户名: 密码: 验证码:
基于雷达杂波和GNSS的大气波导反演方法与实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从电磁波的大气波导传播理论出发,围绕雷达杂波和GPS海面散射信号反演大气波导的理论与方法以及验证实验开展了相关研究,其主要研究成果如下:
     1、系统分析了大气波导的基本结构、形成机理以及大气波导的极限频率和穿透角;利用抛物方程(PE)算法和射线追踪(RT)算法分析了电磁波在大气波导中的传播特性,并将抛物方程算法的计算结果与AREPS软件的计算结果进行对比,结果具有很好的一致性,为雷达杂波和GPS海面散射信号反演大气波导提供理论依据和支持;
     2、研究了单波段雷达杂波反演大气波导的相关理论,并用实验数据进行了验证,在此基础上,提出了多波段雷达杂波反演大气波导的多目标优化反演算法;以10525和24150MHz的双频雷达杂波为例,首次将基于带精英策略的非支配排序算法的多目标遗传算法(NSGA-Ⅱ)和多目标优化差分进化算法(MODE)引入到多波段雷达杂波反演大气波导技术中,并用单参数的蒸发波导模型和四参数的表面波导模型反演进行仿真分析;
     3、给出了雷达杂波反演大气波导中的三种目标函数模型,并深入研究了不同天线高度和不同雷达频率时三种目标函数随大气波导参数的变化特性;详细分析了三种目标函数模型情况下不同雷达频率和天线高度对反演结果精度的影响;详细分析了多波段雷达杂波反演大气波导的多目标优化反演算法在抗噪性和提高反演精度方面的优势;
     4、以抛物方程算法为基础,根据双基地雷达方程和GPS信号的前向散射特性对GPS海面散射信号进行建模,详细分析了GPS海面散射信号在蒸发波导、表面波导和水平不均匀波导情况下的传播特性,从理论上证明了利用GPS海面散射信号反演大气波导的可行性;研制了用于接收和检测GPS海面散射信号的高灵敏度接收机,通过软件后处理的方式实现对GPS海面散射信号的接收,并将接收到的数据与模型仿真结果进行对比分析;
     5、提出了利用GPS海面散射信号反演大气波导的新概念和新方法,设计了可行有效的验证实验方案,并在我国的东南沿海进行了相关的实验;对实验数据进行了处理和分析,利用实验数据对利用GPS海面散射信号反演蒸发波导的可行性和有效性进行了验证。
Based on the radiowave propagation in atmospheric ducts, the theories and methods of estimating atmospheric ducts using radar clutter and GPS signals scattered from sea surface are researched by using experiment examinations. The main topics and results of the study are as follows:
     1. The basic structure, formative mechanism, cut-off frequencies and critical angles of atmospheric ducts are analyzed. The parabolic equation (PE) and ray-tracing (RT) methods are realized and used to analysis the radiowave propagation characteristics in atmospheric ducts. The results computed by PE are compared with those computed by AREPS software, which show a good agreement. The comparison results provides theoretical bases for atmospheric ducts estimations using radar clutter and GPS signals scattered from sea surface.
     2. The relative theories of estimating atmospheric ducts using single frequency radar clutter are systematically researched in detail and examined by experiment data. Based on the research, a new algorithm, multi-wave optimization algorithm using multi-frequency radar clutter to estimate atmospheric ducts, are developed. Taking the dual frequency (10525 and 24150 MHz) radar as an example, the new algorithm is realized by using Non-Dominated Sorting in Genetic Algorithms-II (NSGA-II) and multi-objective differential evolution (MODE) algorithm and used to estimate evaporation duct with only one parameter and surface-based duct with four parameters.
     3. Three models of objective functions used in atmospheric ducts estimations are presented, and the characteristics of the relations between all values of the three models and ducts parameters are systematically analyzed. The three models are respectively used to estimate evaporation duct parameter under different frequencies conditions. The frequency and antenna height that affect the estimation accuracy are analyzed in detail. Moreover, the flexibility and the advantages in improving estimation accuracy of multi-wave optimization algorithm are thoroughly investigated.
     4. Based on PE, the GPS signals scattered from sea surface are modeled using bistatic radar equation and the forward scattering characteristics of GPS signals. The propagation characteristics are also investigated under evaporation duct, surface-based duct and range-dependent duct. The analysis results theoretically illuminate the feasibility of estimating atmospheric ducts using GPS signals scattered from the sea surface. A high sensitivity GPS receiver is developed to receive and detect the GPS weak signals scattered from the sea surface. The data of GPS signals are processed off line in software receiver and compared with the results simulated according to the bistatic radar equation model.
     5. A new concept and method, estimating atmospheric ducts using GPS signals scattered from sea surface, is presented for the first time. An experiment campaign is designed and launched at Southeast China Sea to validate the new concept and method. The experiment data are processed and analyzed. And the experiment results demonstrate the feasibility and validity that estimating evaporation duct using GPS signals scattered from the sea surface.
引文
[1]刘成国.蒸发波导环境特性和传播特征及其应用研究[D].西安:西安电子科技大学, 2003.
    [2] Caglar Yardim. Statistical estimation and tracking of refractivity from radar clutter [D]. San Diego: University of California, 2007.
    [3]韩杰.基于海杂波反演海面大气折射率剖面的研究[D].青岛:中国电波传播研究所, 2008.
    [4]杨德草.海杂波反演大气波导的模拟退火算法[D].西安:西安电子科技大学, 2009.
    [5]韩星星.雷达海杂波反演海面大气波导的研究[D].西安:西安电子科技大学, 2009.
    [6] H. V. Hitney. Hybrid ray optics and parabolic equation methods for radar propagation modeling. Proc.of Radar 92, IEE conf. pub., 1992, 58-61.
    [7]胡绘斌.预测复杂环境下电波传播特性的算法研究[D].北京:国防科学技术大学, 2006.
    [8]郭建炎.复杂环境电波传播的抛物方程法研究[D].中山大学, 2008.
    [9] M. F. Levy. Parabolic equation methods for electromagnetic wave propagation [M]. London: IEE Press, 2000.
    [10] M. A. Leontovich and V. A. Fock. Solution of propagation of electromagnetic waves along the Earths’surface by the method of parabolic equations. J. Phys. USSR., 1946, 10(2), pp: 13-23.
    [11] Hardin, R.H. and Tappert, F. D. Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rev., 1973, 15, pp: 429-435.
    [12] Ko, H. W., Sari, J.W., and Skura, J. P. Anomalous wave propagation through atmospheric ducts. John Hopkins APL Tech. Dig., 1983, 4(2). pp. 12-26.
    [13] Dockery, G. D., and Konstanzer, G. C. Recent advance in prediction of tropospheric propagation using the parabolic equation. John Hopkins APL Tech. Dig., 1987, 8(4). pp. 404-412.
    [14] R. Kuttler and G. Dockey. Theoretical description of parabolic approximation/ Fourier split-step method of representing electromagnetic propagation in the troposphere. Radio Science, 1991, 26 (2), pp: 381-393.
    [15] G. D. Dockey and J. R. Kuttler. An improved impedance boundary algorithm for Fourier split-step solutions of the parabolic wave equation. IEEE Trans. on AP., 1996, 44(12), pp: 1592-1599.
    [16] J. R. Kuttler. Improved Fourier transform methods for solving the parabolic wave equation. Radio Science, 2002, 37(2), pp: 5-1-5-11.
    [17] Barrios A. E. Parabolic equation modeling in horizontally inhomogeneous environments. IEEE Trans. Antennas Propagat., 1992, 40(7), pp: 791-797.
    [18] Barrios A. E. A terrain parabolic equation model for propagation in the troposphere. IEEETrans. Antennas Propagat., 1994, 42(1), pp: 90-98.
    [19] Barrios A. E. Terrain parabolic equation model (TPEM) version 1.5. Proc. Naval Command Control and Ocean Surveillance Center, RDT&E Divison, td. 2898, 1996.
    [20] W. L. Patterson. Advanced refractive effects prediction system (AREPS). Boston: IEEE Radar Conference, 2007, pp: 891-895.
    [21] Herbert V. Hitney, Juergen H. Richter, Richerd A. Pappert, et al. Tropospheric radio propagation assessment. Proceedings of the IEEE, 1985, 73(2), pp: 265 - 283.
    [22] Merrill I. Skolnik. Introduction to radar systems (third edition). New York: McGraw–Hill, 2001.
    [23] J. H. Richter. Sensing of radio refractivity and aerosol extinction. IEEE Geoscience and Remote Sensing Symposium, IGARSS’94, 1994, 1, pp: 381–385.
    [24] C. M. Crain. Apparatus for recording fluctuations in the refractive index of the atmosphere at 3.2cm wavelength. Review of Scientific Instruments, 1950, 21, pp: 456.
    [25] G. Birnbaum. A recording microwave refractometer. Review of Scientific Instruments, 1950, 21, pp: 169.
    [26]潘仲伟.高精度大气参数综合测试仪技术总结报告[R].青岛:中国电波传播研究所技术报告, 1991.
    [27] J. R. Rowland and S. M. Babin. Fine-scale measurements of microwave profiles with helicopter and low cost rocket probes. Johns Hopkins APL Tech. Dig., 1987, 8(4), pp: 413–417.
    [28] J. H. Richter. High resolution tropospheric radar sounding. Radio Science, 1969, 4(12), pp: 1261–1268.
    [29] Adam Willitsford and C. R. Philbrick. Lidar description of the evaporative duct in ocean environments. Proceedings of SPIE, Bellingham, WA, Vol. 5885, September 2005.
    [30] Rajan Sumati. Statistical retrieval of water vapor profiles using zenith-pointing and off-axis 22 GHz radiometer measurements [D]. Pennsylvania: The Pennsylvania State University, 1998.
    [31] N. Sengupta and I. A. Glover. Refractivity and humidity profiling using wind profiler and microwave radiometer observations for the inference of radio ducts. URSI General Assembly, New Delhi, India, October 2005.
    [32] Cory A. Springer. The gouge on COAMPS: What is it? why use it? how to use it. Naval Meteorology & Oceanography Command News, 19(2), 1999.
    [33] Naval Research Laboratory, Monterey Marine Metrology Division. Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) Web Page, 3.1.1 edition, 2004.
    [34] Kucas Matthew Evan. Forecasting the nighttime evolution of radio wave ducting in complex terrain using the MM5 numerical weather model [D]. USA, the Pennsylvania State University, 2003.
    [35] K. D. Anderson. Inference of refractivity profiles by satellite-to-ground RF measurements. Radio Science, 1982, 17(3), pp: 653-663.
    [36] Anthony R. Lowry, Chris Rocken, Sergey V. Sokolovskiy, and Kenneth D. Anderson.Vertical profiling of atmospheric refractivity from ground-based GPS. Radio Science, 2002, 37(3), pp: 1041–1059.
    [37]戴福山等.大气波导及其军事应用[M].北京:解放军出版社, 2002.
    [38]左营喜.小型微波折射率仪技术说明书.中国电波传播研究所技术报告, 1995.
    [39] Jiao Lin, Wang Hua and Zhang Yong-gang. Prediction of electromagnetic shadow zone in atmospheric duct. Dalian: the 2006 4th Asia-Pacific Conference on Environmental Electromagnetics, 2006, pp: 128 - 134.
    [40]吴凡.大气波导中的抛物型方程法研究[D].武汉:武汉理工大学, 2008.
    [41]张玉生,康士峰,赵振维,成印河.大气波导与气象物理量场相关性的模拟分析.电波科学学报, 2009, 24(4), pp: 742-747.
    [42]成印河,赵振维,何宜军等.大气波导数值模拟研究.电波科学学报,2009,24(2),pp: 259-263.
    [43]李玲玲.利用GPS信号实时监测海上大气波导[D].青岛:中国电波传播研究所, 2008.
    [44]王宁.大气剖面的微波遥感技术研究[D].青岛:中国电波传播研究所, 2009.
    [45]伍亦亦,洪振杰,郭鹏,郑杰.地基GPS低高度角观测反演大气折射率廓线的模拟仿真.地球物理学报, 2010, 53(5), pp: 1085-1090.
    [46]何宇翔.大气波导模拟分析及雷达资料三维插值处理[D].南京:南京气象学院, 2003.
    [47]赵小龙.蒸发波导环境中的电磁场分布研究[D].西安:西安电子科技大学, 2005.
    [48] G. L. Geernaert. Remote sensing of evaporation ducts for naval warfare. AD-A214849, Naval Research Laboratory, Washington DC, November 1989.
    [49] D. P. Chrissoulidis, E. E. Krezis. Wave-tilt sounding of tropospheric ducts above the sea. AGARD CP-453, Operational Decision Aids for Exploiting or Mitigating Electromagnetic Propagation Effects, April 1990, pp.24-1~24-10.
    [50] L. T. Rogers, K. D. Anderson. Evaporation duct communication: measurement results. AD-A269684, Naval Command, control and Ocean Surveillance Center, RDT&E Division, San Diego, CA, September 1993.
    [51] K. D. Anderson. Radar detection of low–altitude targets in a maritime environment. AD-A274658, November 1993.
    [52] L. Ted Rogers, Claude P. Hattan and Jeffery L. Krolik et al. Using radar sea echo to estimate surface layer refractivity profiles. Germany: IEEE IGARSS'99 Proceedings, 1999, Vol. 1, pp: 658-662.
    [53] Jeffery L. fiolik, Joseph Tabrikian, and S. Vasudevan et al. Using radar sea clutter to estimate refractivity profiles associated with the capping inversion of the marine atmospheric boundary layer. Germany: IEEE IGARSS'99 Proceedings, 1999, Vol. 1, pp: 649-651.
    [54] Ian M. Brooks, Andreas K. Goroch and David P. Rogers. Observations of strong surface radar ducts over the Persian Gulf. Journal of Applied Meteorology, 1999, 38, pp: 1293-1310.
    [55] Joseph Tabrikian, Jeffrey L. Krolik and Sathya Vasudevan. Estimating tropospheric refractivity parameters from radar sea clutter. Israel: Proceedings of the IEEE Signal Processing Workshop, 1999, pp: 345–348.
    [56] L. Ted Rogers, Claude P. Hattan and Janet K. Stapleton. Estimating evaporation duct heights from radar sea echo. Radio Science, 2000, July-August, 35(4), pp: 955-966.
    [57] S. Vasudevan and Jeffyey L. Krolik. Refractivity estimation from radar clutter by sequential importance sampling with a Markov model for microwave propagation. USA: IEEE Acoustics, Speech, and Signal Processing, 2001, Vol. 5, pp: 2905-2908.
    [58] Richard Anderson, Sathyanarayanan Vasudevan, Jeffrey L. Krolik, and L. Ted Rogers. Maximum a posteriori refractivity estimation from radar clutter using a Markov model for microwave propagation. Australia: IEEE Geoscience and Remote Sensing Symposium, 2001, Vol.2, pp: 906-909.
    [59] Peter Gerstoft, L. Ted Rogers, Lee J. Wagner, and William S. Hodgkiss. Estimation of radio refractivity structure using radar clutter. USA: MTS/IEEE Conference and Exhibition, 2001, Vol. 1, pp: 636-641.
    [60] Peter Gerstoft, L. Ted Rogers, William S. Hodgkiss, and Galina Rovner. Refractivity-from-clutter using global environmental parameters. Australia: IEEE Geoscience and Remote Sensing Symposium, 2001, Vol.6, pp: 2746-2748.
    [61] S. Vasudevan, Richard Anderson and Jeffrey L. Krolik. MAP sequence estimation of microwave refractivity from radar clutter via a particle filtering implementation of the Viterbi algorithm. IEEE Acoustics, Speech, and Signal Processing, 2002, Vol.3, pp: III-2869-2872.
    [62] S. Vasudevan. Recursive Bayesian refractivity estimation using radar sea clutter return [D]. Department of Electrical and Computer Engineering, Duke University, 2002.
    [63] Peter Gerstoft, L. Ted Rogers, William S. Hodgkiss. Posteriori estimation of low altitude propagation loss from radar sea clutter data. IEEE OCEANS Proceedings, 2003, Vol.4, pp: 22-26.
    [64] Peter Gerstoft, L. Ted Rogers, William S. Hodgkiss, et al. Refractivity estimation using multiple elevation angles. IEEE Journal of Oceanic Engineering, 2003, July, 28(3), pp: 513-525.
    [65] Peter Gerstoft, L. Ted Rogers, Jeffrey L. Krolik, et al. Inversion for refractivity parameters from radar sea clutter. Radio Science, 2003, 38(3), doi: 10.1029/2002RS002640.
    [66] Amalia Barrios. Estimation of surface-based duct parameters from surface clutter using a ray trace approach. Radio Science, 2004, 39, RS6013, doi: 10.1029/2003RS002930.
    [67] Shawn Kraut, Richard H. Anderson, and Jeffrey L. Krolik. A generalized Karhunen–Loeve basis for efficient estimation of tropospheric refractivity using radar clutter. IEEE Transactions on Signal Processing, 2004, January, 52(1), pp: 48-60.
    [68] C. Yardim, P. Gerstoft, W.S. Hodgkiss, and C.F. Huang. Refractivity from clutter (RFC) estimation using a hybrid genetic algorithm-Markov Chain Monte Carlo method. Washington: IEEE Antennas and Propagation Society International Symposium, 2005, Vol. 1B, pp: 743-746.
    [69] Caglar Yardim, Peter Gerstoft and William S. Hodgkiss. Estimation of radio refractivity from radar clutter using Bayesian Monte Carlo analysis. IEEE Transactions on Antennas and Propagation, 2006, April, 54(4), pp: 1318-1327.
    [70] Caglar Yardim, Peter Gerstoft, William S. Hodgkiss. Tracking refractivity from clutter using Kalman and particle filters. IEEE Transactions on Antennas and Propagation, 2008, 56(4), pp: 1058-1070.
    [71] Caglar Yardim, Peter Gerstoft, William S. Hodgkiss, et al. Statistical estimation of refractivity from radar sea clutter. Boston: IEEE Radar Conference, 2007, pp: 938-943.
    [72] Caglar Yardim, Peter Gerstoft, William S. Hodgkiss. Statistical maritime radar duct estimation using hybrid genetic algorithm-Markov chain Monte Carlo method. Radio Science, 2007, 42, pp. 1-15.
    [73] S. Vasudevan, Richard H. Anderson, Shawn Kraut,et al. Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter. Radio Science, 2007, 42, RS2014, doi:10.1029/2005RS003423.
    [74] Caglar Yardim, Peter Gerstoft, and William S. Hodgkiss. Effects of sea clutter on atmospheric refractivity estimation. Chicago: URSI General Assembly, 2008.
    [75] Caglar Yardim, Peter Gerstoft, and William S. Hodgkiss. Clutter-based evaporation duct estimation performance using meteorological statistics. Chicago: URSI General Assembly, 2008.
    [76] Caglar Yardim, Peter Gerstoft, and William S. Hodgkiss. Sensitivity analysis and performance estimation of refractivity from clutter techniques. Radio Science, 2009, 44, RS1008, doi: 10.1029/2008RS003897.
    [77] Shinju Park and Frédéric Fabry. Retrieval of the lower atmospheric refractivity profile from ground echo patterns. Finland: The Fifth European Conference Radar in Meteorology and Hydrology, 2008.
    [78] Rémi Douvenot, Vincent Fabbro, Peter Gerstoft, et al. A duct mapping method using least squares support vector machines. Radio Science, 43, RS6005, doi:10.1029/2008RS003842, 2008.
    [79] Re′mi Douvenot, Vincent Fabbro, Peter Gerstoft, Christophe Bourlier, et al. Real time refractivity from clutter using a best fit approach improved with physical information. Radio Science, 2010, 45, RS1007, doi: 10.1029/2009RS004137.
    [80] Martín-Neira, M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA Journal, 1993, 17, pp: 331–355.
    [81] Auber. J., Bibaut, A., and Rigal, J. Characterization of multipath on land and sea at GPS frequencies. In Proc. ION GPS-94, the 7th International Technical Meeting of the Satellite Division of The Institute of Navigation, Salt Lake City, USA, 1994, pp. 1155–1171.
    [82] Katzberg, S. J., and Garrison, J. L. Jr. Utilizing GPS to determine ionospheric delay over the ocean. NASA Tech. Memo., 4750, 1996.
    [83] Garrison, J. L., Katzberg, S. J., and Howell, C. T. Detection of ocean reflected GPS signals: theory and experiment. USA: IEEE Proceedings of Southeastcon, Blacksburg, 1997, pp: 290-294.
    [84] Garrison, J. L., Katzberg, S. J., and Hill, M. I. Effect of sea roughness on bistatically scattered range coded signals from the Global Positioning System. Geophys. Res. Lett., 1998, 25, pp: 2257–2260.
    [85] Cinzia Zuffada, Robert Treuhaft and Stephen Lowe, et al. Altimetry with reflected GPS signals: results from a lakeside experiment. USA: IEEE Geoscience and Remote Sensing Symposium, 2000, Vol.7, pp: 2864-2866.
    [86] Michael Armatys, Attila Komjathy, Penina Axelrad, et al. A Comparison of GPS and scatterometer sensing of ocean wind speed and direction. USA: IEEE Geoscience and Remote Sensing Symposium, 2000, Vol.7, pp: 2861-2863.
    [87] James L. Garrison,Stephen J. Katzberg,Valery U. Zavorotny, et al. Comparison of sea surface wind speed estimates from reflected GPS signals with buoy measurements. USA: IEEE Geoscience and Remote Sensing Symposium, 2000, Vol.7, pp: 3087-3089.
    [88] Stephen T. Lowe, Cinzia Zuffada, John L. LaBrecque, et al. An ocean-altimetry measurement using reflected GPS signals observed from a low-altitude aircraft. USA: IEEE Geoscience and Remote Sensing Symposium, 2000, Vol.5, pp: 2185-2187.
    [89] Tanos Elfouhaily, Cinzia Zuffada. On deriving near-surface wind vector information from GPS ocean reflections: simulation and measurements. USA: IEEE Geoscience and Remote Sensing Symposium, 2000, Vol.7, pp: 3081-3083.
    [90] Donald R. Thompson, Tanos M. Elfouhaily, and Richard F. Gasparovic. Polarization dependence of GPS signals reflected from the ocean. USA: IEEE Geoscience and Remote Sensing Symposium, 2000, Vol.7, pp: 3099-3101.
    [91] Valery U. Zavorotny and Alexander G. Voronovich. Bistatic GPS signal reflections at various polarizations from rough land surface with moisture content. USA: IEEE Geoscience and Remote Sensing Symposium, 2000, Vol.7, pp: 2852-2854.
    [92] Valery U. Zavorotny, Alexander G. Voronovich, Steven J. Katzberg, et al. Extraction of sea state and wind speed from reflected GPS signals: modeling and aircraft measurements. USA: IEEE Geoscience and Remote Sensing Symposium, 2000, Vol.4, pp: 1507-1509.
    [93] Valery U. Zavorotny and Alexander G. Voronovich. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2), pp: 951-964.
    [94] Attila Komjathy, Valery U. Zavorotny, Penina Axelrad, et al. GPS signal scattering from sea surface: wind speed retrieval using experimental data and theoretical model. Remote Sens. Environ., 2000, 73, pp: 162–174.
    [95] Daniel Zahn, Kamal Sarabandi. Simulation of bistatic scattering for assessing the application of existing communication satellites to remote sensing of rough surfaces. USA: IEEE Geoscience and Remote Sensing Symposium, 2000, Vol.4, pp: 1528-1530.
    [96] Cinzia Zuffada, and Valery Zavorotny. Coherence time and statistical properties of the GPS signal scattered off the ocean surface and their impact on the accuracy of remote sensing of sea surface topography and winds. Australia: IEEE Geoscience and Remote Sensing Symposium, 2001, Vol.7, pp: 3332-3334.
    [97] Cinzia Zuffada, Adrian Fung, Marco Okolicanyi, et al. The collection of GPS signal scattered off a wind-driven ocean with a down-looking GPS receiver: polarization properties versus wind speed and direction. Australia: IEEE Geoscience and Remote Sensing Symposium, 2001, Vol.7, pp: 3335 - 3337.
    [98] W. J. Emery, P. Axelrad, R.S. Nerem, et al. Student reflected GPS experiment (SuRGE). Australia: IEEE Geoscience and Remote Sensing Symposium, 2001, Vol.3, pp: 1518-1520.
    [99] Manuel Martín-Neira, Marco Caparrini, J. Font-Rossello, et al. The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1), pp: 142-150.
    [100] A. K. Fung, Cinzia Zuffada and C. Y. Hsieh. Incoherent bistatic scattering from the sea surface at L-band. IEEE Transactions on Geoscience and Remote Sensing, 2001, May, 39(5), pp: 1006-1012.
    [101] G. Ruffini, M. Caparrini, F. Soulat, et al. Using GNSS reflections for ionospheric studies. Netherlands: the Space Weather Workshop Proceedings, ESA-ESTEC, 2001, pp. 159-168.
    [102] Omar Torres, Stephen J. Katzberg. Analysis of reflected Global Positioning System(GPS) signals from land for soil moisture determination and topography mapping. USA: Proc. SPIE, 2002, Vol. 4814, 9, doi:10.1117/12.451371.
    [103] Estel Cardellach, Robert Treuhaft, Garth Franklin, et al. Carrier phase delay altimetry from low elevation GPSR measurements. Spain: Workshop on Oceanography with GNSS Reflections, 2003.
    [104] B. Mojarrabi, J. Homer, K. Kubik, and I. D. Longstaff. Power budget study for passive target detection and imaging using secondary applications of GPS signals in bistatic radar systems. IEEE Geoscience and Remote Sensing Symposium, 2002, Vol.1, pp: 449-451.
    [105] James L. Garrison, Attila Komjathy, Valery U. Zavorotny, et al. Wind speed measurement using forward scattered GPS signals. IEEE Transactions on Geoscience and Remote Sensing, 2002, January, 40(1), pp: 50-65.
    [106] James L Garrison, Luca Bertuccelli. Model function development for GPS reflection measurements. IEEE Geoscience and Remote Sensing Symposium, 2002, Vol.2, pp: 1293-1295.
    [107] James L Garrison. Anisotropy in reflected GPS measurements of ocean winds. IEEE Geoscience and Remote Sensing Symposium, 2003, Vol.7, pp: 4480-4482.
    [108] Tanos Elfouhaily, Donald R. Thompson, and L. Linstrom. Delay-doppler analysis of bistatically reflected signals from the ocean surface: theory and application. IEEE Transactions on Geoscience and Remote Sensing, 2002, March, 40(3), pp: 560-573.
    [109] Donald R. Thompson, Lloyd A. Linstrom and Richard F. Gasparovic, et al. Doppler analysis of GPS reflections from the ocean surface. IEEE Geoscience and Remote Sensing Symposium, 2003, Vol.7, pp: 4489 - 4491.
    [110] Donald R. Thompson, Tanos M. Elfouhaily, and James L. Garrison. An improved geometrical optics model for bistatic GPS scattering from the ocean surface. IEEE Transactions on Geoscience and Remote Sensing, 2005, December, 43(12), pp: 2810-2821.
    [111] Thomas P. Yunck and George A. Hajj. Atmospheric and Ocean Sensing with GNSS. Earth Observation with CHAMP, 2005, III, pp: 421-430.
    [112] D. Masters, S. Katzberg, P. Axelrad. Airborne GPS bistatic radar soil moisture measurements during SMEX02. IEEE Geoscience and Remote Sensing Symposium, 2003, Vol.2, pp: 896-898.
    [113] G. Ruffini, F. Soulat, M. Caparrini, O. Germain, et al. The GNSS-R eddy experiment I: altimetry from low altitude aircraft. Spain: Workshop on Oceanography with GNSS Reflections, 2003.
    [114] O. Germain, G. Ruffini, F. Soulat, M. Caparrini, et al. The GNSS-R eddy experiment II: L-band and optical speculometry for directional sea-roughness retrieval from low altitude aircraft. Spain: Workshop on Oceanography with GNSS Reflections, 2003.
    [115] G. Ruffini, F. Soulat, M. Caparrini, et al. The eddy experiment: accurate GNSS-R ocean altimetry from low altitude aircraft. Geophysical Research Letters, 31, L12306, doi:10.1029/2004GL019994, 2004.
    [116] O. Germain, G. Ruffini, F. Soulat, et al. The eddy experiment: GNSS-R speculometry for directional sea-roughness retrieval from low altitude aircraft. Geophysical Research Letters, 2004, 31, L21307, doi:10.1029/2004GL020991.
    [117] G. Ruffini, O. Germain, F. Soulat, M. Taani, et al. GNSS-R: operational applications. Spain : Workshop on Oceanography with GNSS Reflections, 2003.
    [118] Giulio Ruffini and Franc?ois Soulat. On the GNSS-R interferometric complex field coherence time. Starlab Technical Brief TB0005: ICF Coherence Time, 2004.
    [119] V. Zavorotny, D. Masters, A. Gasiewski, et al. Seasonal polarimetric measurements of soil moisture using tower-based GPS bistatic radar. IEEE Geoscience and Remote Sensing Symposium, 2003, Vol.2, pp: 781-783.
    [120] Huaizu. You, G. Heckler, J. L. Garrison, et al. Stochastic model and experimental measurement of ocean-scattered GPS signal statistics. IEEE Geoscience and Remote Sensing Symposium, 2003, Vol.7, pp: 4492-4494.
    [121] Huaizu. You, James L. Garrison, Gregory Heckler, et al. Stochastic voltage model and experimental measurement of ocean-scattered GPS signal statistics. IEEE Transactions on Geoscience and Remote Sensing, 2004, October, 42(10), pp: 2160-2169.
    [122] Huaizu. You, J. L. Garrison, G. Heckler and D. Smajlovic. Correlation time analysis of delay-doppler waveforms generated from ocean-scattered GPS signals. AK: IEEE Geoscience and Remote Sensing Symposium, 2004, pp: 428-431.
    [123] Huaizu You, James L. Garrison, Gregory Heckler, et al. The autocorrelation of waveforms generated from ocean-scattered GPS signals. IEEE Geoscience and Remote Sensing Letters, 2006, January, 3(1), pp: 78-82.
    [124] Cinzia Zuffada, Adrian Fung, Jay Parker, et al. Polarization properties of the GPS signal scattered off a wind-driven ocean. IEEE Transactions on Antennas and Propagation, 2004, January, 52(1), pp: 172-188.
    [125] F. Soulat, M. Caparrini, O. Germain, et al. Sea state monitoring using coastal GNSS-R. Geophysical Research Letters, 31, L21303, doi:10.1029/2004GL020680, 2004.
    [126] F. Soulat, M. Caparrini, et al. Oceanpal experimental campaigns. Netherlands: Proceedings of the GNSS-R’06 Workshop, 14-15 June 2006.
    [127] Scott Gleason, Stephen Hodgart, Yiping Sun, et al. Detection and processing of bistatically reflected GPS signals from low earth orbit for the purpose of ocean remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 2005, June, 43(6), pp: 1229-1241.
    [128] Scott Gleason. Detecting bistatically reflected GPS signals from low earth orbit over land surfaces. IEEE International Geoscience and Remote Sensing Symposium, Denver, Colorado, USA, July 2006.
    [129] Michiel de Vries. GPS based bistatic radar–beyond specular reflection. IEEE Digital Avionics Systems Conference, 2005, Vol.1, pp: 4.E.2 - 41-12.
    [130] J. Kosteleck′y, J. Klokoˇcn′?k, C. A. Wagner. Geometry and accuracy of reflecting points in bistatic satellite altimetry. J. Geod, 2005, 79, pp: 421–430.
    [131] Gabriel Soriano, Maminirina Joelson, and Marc Saillard. Doppler spectra from a two-dimensional ocean surface at L-band. IEEE Transactions on Geoscience and Remote Sensing, 2006, September, 44(9), pp: 2430-2437.
    [132] Ahmad Awada, Ali Khenchaf and Arnaud Coatanhay. Bistatic radar scattering from an ocean surface at L-band. IEEE Conference on Radar, 2006.
    [133] Maria Belmonte Rivas and Manuel Martin-Neira. Coherent GPS reflections from the sea surface. IEEE Geoscience and Remote Sensing Letters, 2006, January, 3(1), pp: 28-31.
    [134] L. C. Shen, J. C. Juang, C. L. Tseng, et al. New application of reflected GPS signals L1/L2 observation techniques with an integrated GPS receiver for remote measurements and digital terrain elevation mapping. Warsaw: IEEE Instrumentation and Measurement Technology Conference Proceedings, 2007, pp: 1-6.
    [135] Lie-Chung Shen, Jyh-Ching Juang, Ching-Lang Tsai, et al. Application of integrated reflected GPS Signals L1/L2 observation and DTED techniques with an integrated GPS receiver for remote sensing stream flow. Pisa: IEEE Waveform Diversity and Design Conference, 2007, pp: 6-12.
    [136] Lie-Chung Shen, Jyh-Ching Juang, Ching-Lang Tsai, et al. Improving instantaneous atmospheric corrections for reflected GPS signals L1/L2 observation techniques with an integrated GPS receiver. Pisa: IEEE Waveform Diversity and Design Conference, 2007, pp: 1-5.
    [137] Michael S. Grant, Scott T. Acton and Stephen J. Katzberg. Terrain moisture classification using GPS surface-reflected signals. IEEE Geoscience and Remote Sensing Letters, 2007, January, 4(1), pp: 41-45.
    [138] Rodriguez-Alvarez, N. Marchan, J. F. Camps A. , et al. Soil moisture retrieval using GNSS-R techniques: measurement campaign in a wheat field. Geoscience and Remote Sensing Symposium, IGARSS 2008, 2, pp: II-245-248.
    [139] Rodriguez-Alvarez N., Bosch-Lluis X., Camps, A., et al. Soil moisture retrieval using GNSS-R techniques: experimental results over a bare soil field. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11), pp: 3616-3624.
    [140] Rodriguez-Alvarez N., Camps A., Vall-llossera M., et al. Land geophysical parameters retrieval using the interference pattern GNSS-R technique. Geoscience and Remote Sensing, IEEE Transactions on Volume: PP , Issue: 99, pp: 1-14, 2010.
    [141] Marchan-Hernandez J. F., Valencia, E., Rodriguez-Alvarez, N., et al. Sea-state determination using GNSS-R data. Volume: PP , Issue: 99 , pp: 621-625, 2010.
    [142] Stephen T. Low, Peter Kroger, Garth Franklin, et al., A delay/doppler mapping receiversystem for GPS-reflection remote sensing, IEEE Transaction on Geosciences and remote sensing, 2002, 40(5), pp: 1150-1163.
    [143]符养,周兆明. GNSS-R海洋遥感方法研究.武汉大学学报?信息科学版, 2006, 31(2), pp:128-131.
    [144]张训械,张冬娅,胡雄等.利用GPS反射信号遥感全球海态.全球定位系统, 2004, 29(5), pp: 2-9.
    [145]张训械,邵连军,王鑫等. GNSS-R地基实验.全球定位系统, 2006, 31(5), pp: 4-8.
    [146]张益强,杨东凯,张其善等. GPS海面散射信号探测技术研究.电子与信息学报, 2006, 28(6), pp: 1091-1094.
    [147]杨东凯,张益强,张其善等.基于GPS卫星信号的海面风场遥感方法研究与实现.理论研究, 2006, 3 pp: 10-12.
    [148]张益强,张其善,杨东凯等.基于GPS遥感的延迟映射接收机关键技术.北京航空航天大学学报, 2006, 32(3), pp: 332-336.
    [149]周兆明,符养,严卫等.利用GPS反射信号遥感Michael飓风海面风场研究.武汉大学学报?信息科学版, 2006, 31(11), pp: 991-994.
    [150]胡荣磊,张其善,张益.双射频前端GPS遥感延迟映射接收机设计.测控技术, 2006, 25(5), pp: 46-50.
    [151]邵连军,张训械,王鑫,孙强.利用GNSS-R信号反演海浪波高.武汉大学学报(信息科学版), 2008, 33(5), pp: 475-478.
    [152]毛克彪,王建明,张孟阳等. GNSS-R信号反演土壤水分研究分析.遥感信息, 2009.3, pp: 92-97.
    [153]林伟,察豪,史建伟,丁飞.浅谈海上大气波导形成及其测量预报技术.微计算机信息, 2006, 22(2-1), pp: 156-158.
    [154]朱庆林.基于单站地基GNSS的电波折射参数估计[D].西安:西安电子科技大学, 2010.
    [155] Steven Michael Babin. A new model of the oceanic evaporation duct and its comparison with current models [D]. USA: University of Maryland, 1996.
    [156] Steven M. Babin, George S. Young, James A. Carton. A new model of the oceanic evaporation duct. Journal of Applied Meteorology, 1997, 36, pp: 193-204.
    [157] Katherine L. Twigg. A smart climatology of evaporation duct height and surface radar propagation in the Indian ocean [D]. California: Naval Postgraduate School, 2007.
    [158] B. R. Bean, E. J. Dutton. Radio meteorology. New York: Dover publications, 1964.
    [159]蔺发军,刘成国,潘中伟.近海面大气波导探测及与其它研究结果的比较.电波科学学报, 2002, 17(3), pp: 269-281.
    [160] Theodore Paul Mouras, Charles Thomas Houser. Effects of atmospheric refraction on U. S. Ground Warfare. AD-A134827, Naval Postgraduate School, Monterey, California, September 1983.
    [161]蔺发军,刘成国,成思,杨玉萍.海上大气波导的统计分析.电波科学学报, 2005, 20(1), pp: 64-68.
    [162] Adolf J. Giger. Low-angle microwave propagation: physics and modeling. Bouston: Artect House, 1991, p: 16.
    [163] K. D. Anderson. Surface-search radar performance in the evaporation duct: globalpredictions[R]. Naval Ocean Systems Center, 1983.
    [164] M. R. Battaglia. Modeling the radar evaporative duct[R]. Department of Defence, 1985.
    [165] R. A. Paulus. Practical application of an evaporation duct model. Radio Science, 1985, 20(4), pp: 887-896.
    [166] ITU-R P.453-9. The radio refractive index: its formula and refractivity data. 2003.
    [167]江长荫.低仰角无线电定位测速的大气层电波传播误差.电波与天线, 1982, (1), pp: 1-62.
    [168]刘成国,潘中伟.中国低空大气波导的极限频率和穿透角.通信学报, 1998, 19(10), pp: 90-95.
    [169] K. H. Craig, Parabolic equation modeling of the effects of multipath and ducting on radar systems. IEE Proceedings-F, 1991, 138(2), pp: 153-162.
    [170] G. D. Dockery. Modeling electromagnetic wave propagation in the troposphere using the parabolic equation. IEEE Trans. on AP., 1988, 36(10), pp: 1464-1470.
    [171]王红光,张蕊,康士峰,赵振维.大气波导传播的抛物方程模型研究综述.装备环境工程, 2008, 5(1), pp: 11-15.
    [172]刘成国,高海林.一种低仰角雷达射线的准确快速描迹方法.现代雷达, 2006, 28(11), pp: 1-4.
    [173]张瑜,袁秋林.雷达至目标的电波射线描迹方法研究.河南师范大学学报(自然科学版), 2006, 34(2), pp: 50-53.
    [174]黄小毛,张永刚,王华,唐海川.射线跟踪技术用于分析波导环境下电波异常折射误差.微波学报, 2006, 22(增刊), pp: 192-198.
    [175]孙方,王红光,康士峰,林乐科.大气波导环境下的射线追踪算法.电波科学学报, 2008, 23(1), pp: 179-183.
    [176] Merril I.Skolnik.雷达手册.北京:电子工业出版社, 2003.
    [177] Barton D. K. Modern Radar System Analysis. Artech House, Norwood, Mass, 1988.
    [178]左群声,徐国良,马林等译.雷达系统导论(第三版)[M].北京:电子工业出版社, 2006.
    [179] A. Semnani and M. Kamyab. An enhanced method for inverse scattering problems using Fourier series expansion in conjunction with FDTD and PSO. Progress In Electromagnetics Research, PIER, 2007, 76, pp: 45–64.
    [180] Z.-S. Wu, J.-P. Zhang, and L.-X. Guo. An improved two-scale model with volume scattering for the dynamic ocean surface. Progress In Electromagnetics Research, PIER, 2009, 89, pp: 39–56.
    [181] SongH N, Hu W D, Yu W J and Wu J H. Model and simulation of low grazing angle radar sea clutter. Chinese Journal of National University of Defense Technology, 2000, 22(3), pp: 30-34.
    [182] Morchin W C. Airborne early warning radar. Norwood, MA: Artech House, 1990.
    [183] Peng S R, Tang Z R. Reflectivity model of ground/sea clutter. Journal of Air Force Radar Academy, 2000, 14(4), pp: 1-4.
    [184] Horst M M, Dyer F B, Tuley M T. Radar sea clutter model.International Conference on Antennas and Propagation, London, England, November 28-30, 6-10,1978.
    [185] Barton D K.Modern. Radar system analysis mass. MA: Artech House, 1988.
    [186] Morchin W. C. Airborne early warning radar sea clutter. Chinese Journal of National University of Defense Technology, 2000, 22(3), pp: 30.
    [187]王波,吴振森,赵振维,王红光.基于蚁群算法的雷达海杂波反演蒸发波导研究.电波科学学报,2009, 20(4), pp: 598-603.
    [188] B. Wang, Z.-S. Wu, Z. Zhao, and H.-G. Wang. Retrieving evaporation duct heights from radar sea clutter using particle swarm optimization (PSO) algorithm. Progress In Electromagnetics Research M, 2009, 9, pp: 79-91.
    [189] WANG Bo, ZHAO Zhen-wei, WU Zhen-sen, WANG Hong-guang. Retrieving surface-based duct parameters from radar sea clutter using a particle swarm optimization approach. Guilin: IET International Radar Conference, 2009.
    [190] Holland J. H. Adaptation in Nature and Artificial Systems. The University of Michigan Press, 1975, MIT Press, 1992.
    [191]雷英杰,张善文,李续武等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社, 2005.
    [192]王小平,曹立明.遗传算法-理论、应用与实现[M].西安:西安交通大学出版社, 2002.
    [193] Dorigo M., Maniezzo V., Colorni A. Ant System: Optimization by a Colony of Cooperating Agent. IEEE Transactions on Systems, Man and Cybernetics, 1996, 26(1): 29-41.
    [194]尚峰,吴华芹.蚁群算法求解函数优化的算法设计.济源职业技术学院学报, 2007, 6(2), pp: 18-20.
    [195]赵永翔.多目标差分演化算法的构造及其应用[D].武汉理工大学, 2007.
    [196]吴亮红.差分进化算法及应用研究[D].湖南大学, 2007.
    [197]余兵.差分进化算法及其应用[D].西安工程大学, 2007.
    [198] Rainer Storn, Kenneth Price. Differential Evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces. Global Optimization, 1997, 11, pp: 341-359.
    [199] Price K. V. An Introduction to Differential Evolution. New Ideas in Optimization, 1999, pp: 79-108.
    [200] James L. Jaeger and Michael D. Valentine. Dual frequency radar receiver [P]. United States Patent, 1982.
    [201]金欣磊.基于PSO的多目标优化算法研究及应用[D].浙江大学, 2006.
    [202] Carlos M. Fonseea and Peter J. Fleming. Genetic algorithms of multiobjective optimization: formulation , discussion and generalization. Proceedings of the Fifth International Conference on Genetic Algorithms,San Mateo,California, 1993.
    [203] Dvaid A. Van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary algorithm research: A history and analysis. Wright Paterson AFB, Air Focre Instiute of Technology, 1998.
    [204] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and elitist multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, April, 6(2), pp: 182-197.
    [205] N. Srinivas and K. Deb, Multiobjective function optimization using nondominated sorting genetic algorithms, Evol. Comput., 1995, Fall, 2(3), pp: 221–248.
    [206] Hui Li and Qingfu Zhang. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, 2009, April, 13(2), pp: 284-302.
    [207]欧阳骏,杨峰,杨仕文,聂在平. INSGA-Ⅱ算法及其在天线综合中的应用.电子科技大学学报, 2008, 37(6), pp: 886-889.
    [208] K. E. Parsopoulos, D. K. Tasoulis, N. G. Pavlidis etc. Vector evaluated differential evolution for multiobjective optimization [A]. IEEE Congress on Evolutionary Computation[C], Portland, 2004, pp: 204-211.
    [209] H.A.Abbass, R. Sarker, C.Newton. P., DE: A pareto-frontier differential evolution approach for multi-objective optimization problems [A]. IEEE Congress on Evolutionary Computation[C], Piscataway, 2001, pp: 971-978.
    [210] H. A. Abbass, R. Sarker. The Pareto Differential Evolution algorithm. International Journal on Artificial Intelligence Tools, 2002, 11(4), pp: 531-552.
    [211] B.V.Babu, M. Mathew, L. Jehan. Differential Evolution for multi-objective optimization [A]. IEEE Congress on Evolutionary Computation[C], Canberra, 2003, pp: 2696-2703.
    [212] K. Nateri, Madanvan. Multiobjective optimization using a Pareto differential evolution approach [A]. Proceeding of the congress on evolutionary computation[C], Honolulu, USA, 2002, pp: 1145-1150.
    [213] G. C. Balvedi and F. Walter. GPS Signal Propagation in Tropospheric Ducts. Finland: URSI Convention on Radio Science, 2008.
    [214] G. C. Balvedi and F. Walter,“Analysis of GPS Signal Propagation in Tropospheric Ducts Using Numerical Methods”, 11th URSI Commission F Open Symposium on Radio Wave Propagation and Remote Sensing Proceedings, Rio de Janeiro, RJ, Brazil, 2007.
    [215]郭立新,王蕊,吴振森.随机粗糙面散射的基本理论与方法[M].北京:科学出版社, 2010.
    [216] Anders Andersson och Daniel Hallgren. Passive aircraft altimetry using GPS as a bistatic radar-a simulation model [R]. Instutitionen for Systemteknik, Linkoping, 2003.
    [217] L R Moyer, C. J. Morgan, D. A. Rugger. An exact expression for resolution cell area in special case of bistatic radar systems. IEEE Transactions on Aerospace and Electronic Systems, 1989, July, 25(4), pp: 584-587.
    [218] R.A. Walker. Operation and modelling of GPS sensors in harsh environments [D]. School of Electrical and Electronic Systems Engineering, Queensland University of Technology, 1999.
    [219]陈军,潘高峰等译. James Bao-Yen Tsui著. GPS软件接收机基础(第2版).北京:电子工业出版社, 2007.
    [220] Nesreen I. Ziedan. GNSS Receivers for Weak Signals. USA, MA: ARTECH HOUSE, 2006.
    [221] Tsui, J. B. Y., Global Positioning System Receivers: A Software Approach, New York: John Wiley & Sons, 2000.
    [222]章勇. GPS信号模拟技术及软件接收机的研究[D].上海交通大学, 2008.
    [223]梁前浩. GPS中频信号仿真与微弱信号捕获、跟踪方法研究[D].北京交通大学, 2008.
    [224]余小辉. GPS Ll信号处理技术研究与实现[D].哈尔滨工程大学,2009.
    [225]牛国朋.单频软件GPS接收机设计与实现研究[D].中国科学院光电研究院,2006.
    [226]徐敏.实时GPS软件接收机研究与实现[D].上海交通大学, 2007.
    [227]王安华.软件GPS接收机的设计与实现[D].重庆大学通信工程学院, 2009.
    [228]杨东凯,张飞舟,张波译.软件定义的GPS和伽利略接收机[M].北京:国防工业出版社, 2009.
    [229] Frank van Diggelen. A-GPS: Assisted GPS, GNSS, and SBAS. USA: Artech House, 2009.
    [230] V. K. Ivanov, V. N. Shalyapin, and Yu. V. Levadnyi. Determination of the evaporation duct height from standard meteorological data. Izvestiya, Atmospheric and Oceanic Physics, 2007, 43(1), pp. 36–44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700