用户名: 密码: 验证码:
日粮精氨酸对不同疾病模型肉鸡免疫功能的调节作用与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了日粮精氨酸的添加对不同疾病模型肉鸡免疫功能的影响。首先评定了因传染性法氏囊病病毒攻毒引起的免疫抑制肉鸡的精氨酸需要量,以及精氨酸的添加对肉鸡免疫抑制的调节作用;继而采用球虫攻毒诱导肉鸡肠道损伤,研究了日粮精氨酸的添加对肉鸡肠道炎症及因肠道炎症引起的肠道损伤的调控作用;采用了大肠杆菌脂多糖注射诱导肉鸡系统性炎症反应,研究了日精氨酸添加对肉鸡系统性炎症反应的影响:最后采用沙门氏菌攻毒探讨日粮精氨酸的添加对因革兰氏阴性菌感染引起的肉鸡肠道粘膜屏障功能紊乱的调控作用。
     试验—探讨了因传染性法氏囊病病毒攻毒引起的免疫抑制肉鸡达到最佳生产性能和最佳免疫功能时的精氨酸需要量,以及日粮精氨酸的添加对因传染性法氏囊病病毒攻毒引起的肉鸡免疫抑制的调节作用。试验采用2×5因子安排的随机试验设计,包含5个精氨酸水平(前期:10.0、15.0、20.0、25.0、和30.0g/kg;后期:8.8、13.2、20.0、22.0和26.4g/kg),和2个攻毒处理。500只雌性罗氏308肉鸡被随机分配到10个处理组(每个处理5个重复,每个重复10只鸡)。在第14日龄,处理组肉鸡腿部肌肉注射传染性法氏囊病病毒(IBDV),对照组注射生理盐水。分别在第1、21和42天统计生产性能和器官指数。于第21d采集法氏囊和血液样本。本试验结果显示,IBDV注射显著抑制了(P<0·05)肉鸡的免疫功能,如血清溶菌酶活性、IgA浓度、外周血淋巴细胞转化率(Con A),以及外周血淋巴细胞体外培养液中NO和H202浓度。IBDV注射显著降低了(P<0·05)肉鸡血清抗新城疫抗体滴度。随着日粮精氨酸水平的升高,血清溶菌酶活性、IgA水平、和抗传染性法氏囊病抗体滴度显著升高(P<0·05)。攻毒组肉鸡达到最佳料重比时的精氨酸需要量为18.9g/kg,高于(P<0·05)对照组(16.0g/kg)。攻毒组肉鸡(IgA:16.5g/kg;淋巴细胞转化率:17.4g/kg)达到最佳免疫功能时的精氨酸需要量大于(P<0·05)对照组肉鸡(IgA:12.4g/kg;淋巴细胞转化率:13.1g/kg)。IBDV攻毒显著降低了(P<0.05)攻毒后第二天外周血CD3+、CD4+、和CD8+比例;降低了(P<0.05)攻毒后第2天法氏囊IL-1β的mRNA表达量;降低了(P<0.05)攻毒后第4天血清IL-6浓度。攻毒后第2天,随着日粮精氨酸水平的升高,外周血CD4+和CD8+比例显著升高(P<0.05),血清IL-6水平显著升高(P<0.05)。攻毒后第4天,随着日粮精氨酸水平的升高,IBDV攻毒组肉鸡CD3+淋巴细胞比例线性升高(P<0.05)。
     试验二探讨了日粮精氨酸添加对球虫攻毒肉鸡肠道结构和免疫功能的影响。试验采用2×3因子安排的试验设计,包括3个精氨酸水平(10.0、14.0和20.0g/kg)和2个攻毒处理。在14日龄时,肉鸡强饲球虫疫苗或等量生理盐水。21日龄时,屠宰肉鸡采集空肠组织和空肠黏膜样品,用于组织切片、基因表达和肠道免疫指标的测定。在球虫攻毒期间(14-21d),球虫攻毒显著降低了肉鸡的体增重、采食量和饲料效率(P<0.05)。球虫攻毒显著提高了(P<0.05)空肠黏膜IgA浓度和肠道炎症因子的mRNA表达量(iNOS、IL-1β、IL-8和MyD88)。显著降低了空肠Mucin-2、IgA和IL-1RI的mRNA表达量。随着日粮精氨酸水平的升高,空肠绒毛高度、空肠隐窝深度、黏膜麦芽糖酶活力显著提高(P<0.05)。日粮精氨酸的添加显著降低了球虫攻毒组肉鸡空肠黏膜IgG浓度和TLR4的mRNA表达量。随着日粮精氨酸水平的升高,mTORCl通路基因mTOR和RPS6KB1,以及抗凋亡基因BcI-2mRNA的表达量呈现出二次曲线变化趋势。
     试验三探讨了日粮精氨酸的添加对肉鸡全身性炎症反应的调控作用。本试验采用了2×3因子安排的随机试验设计,分别设置2个攻毒处理(LPS注射和生理盐水注射)和3个精氨酸水平(10.0、14.0和19.0g/kg),每个处理8个重复,每个重复6只鸡。LPS采用隔天连续注射,分别在第14、16、18和20天进行腹腔注射(1mg/kg体重),对照组注射生理盐水。21d采样,并统计14-21d生产性能数据。研究结果表明,LPS注射期间(14-21d),肉鸡体增重和采食量显著降低(P<0·05),饲料效率显著升高(P<0·05)。LPS注射降低了(P<0·05)脾脏CD11+和B淋巴细胞比例,以及脾脏噬异细胞和巨噬细胞吞噬指数。随着日粮精氨酸水平的升高,脾脏CD11+, CD14+和B淋巴细胞比例线性降低(P<0·05)。同时LPS注射提高了(P<0·05)脾脏和盲肠扁桃体IL-1β和IL-6的mRNA表达量,而日粮精氨酸的添加降低了(P<0·05)脾脏IL-1β、TLR4、NFκB和PPAR-y的mRNA表达量,以及降低了(P<0·05)盲肠扁桃体IL-1β、IL-10、TLR和NFκB的mRNA表达量。
     试验四探讨了日粮精氨酸的添加对沙门氏菌攻毒肉鸡肠粘膜屏障功能的影响。试验采用了2×3因子安排的随机试验设计,分别设置2个攻毒处理(强饲沙门氏菌或生理盐水)和3个精氨酸水平(10.0、14.5和19.0g/kg)。试验组肉鸡分别在第7、8和9天口腔强饲1ml含沙门氏菌的培养液,对照组强饲相同量的无菌LB肉汤培养基。分别于第10和16天采样,同时统计攻毒期间肉鸡的生产性能。研究结果表明,沙门氏菌攻毒降低了攻毒组肉鸡7-16d体增重和采食量,然而随着日粮精氨酸水平的升高,体增重和采食量下降的幅度也随之升高。攻毒后第一天,沙门氏菌攻毒显著提高了肉鸡血清D-木糖浓度(P<0.05),并呈现出显著降低肉鸡血清尿酸浓度的趋势(P<0.10);随着日粮精氨酸水平的升高,肉鸡血清尿酸浓度呈现出二次曲线变化趋势(P<0.05),而血清D-木糖浓度呈现出线性降低的趋势(P<0.05)。攻毒后第七天,随着日粮精氨酸水平的升高,攻毒组肉鸡血清尿酸浓度呈现出二次曲线变化趋势(P<0.05),D-木糖浓度则呈现出线性降低的趋势(P<0.05)。攻毒后第七天,随着日粮精氨酸水平的升高,攻毒组肉鸡血清内毒素含量呈现出线性降低的趋势(P<0.10)。攻毒后第一天,饲喂含19.0g/kg精氨酸日粮的肉鸡肝脏沙门氏菌含量显著高于饲喂含10.0和14.5g/kg精氨酸日粮的肉鸡(P<0.05)。
     以上结果表明,在传染性法氏囊病引起的免疫抑制状态下肉鸡需要添加更多的精氨酸以维持其最佳生产性能和免疫功能;日粮精氨酸的添加提高了外周血T淋巴细胞比例,缓解了因IBDV攻毒引起的免疫抑制;日粮精氨酸的添加能够通过抑制TLR4通路以及降低脾脏CD14+淋巴细胞比例来缓解因LPS注射引起的全身性炎症反应,同时本试验还表明过量精氨酸的添加能够降低脾脏淋巴细胞比例;日粮精氨酸的添加通过抑制TLR4通路缓解了肉鸡因球虫攻毒引起的肠道炎症,并通过激活mTORCl通路促进了肉鸡肠道的损伤修复;日粮精氨酸的添加未能缓解肉鸡因沙门氏菌攻毒引起的肠粘膜屏障功能紊乱和体增重下降。
This study was performed to determine the effects of dietary L-arginine (Arg) supplementation on growth performance, immunosuppression, inflammation, and intestinal barrier dysfunction in broiler chickens.
     Expt.1was conducted to determine the Arg requirement of broiler chickens immunized with infectious bursal disease vaccine (IBDV) based on growth performance and immunological responses and the effects of dietary Arg on immunosuppression of chickens following infectious bursal disease virus (IBDV) inoculation. A total of500one-day-old female Ross broilers were randomly assigned into10treatments (5replicates per group,10birds per replicate). The design of this study was a5x2factorial arrangement (n=5) with5Arg concentrations (starter:10.0,15.0,20.0,25.0, and30.0g/kg; grower-finisher:8.8,13.2,20.0,22.0and26.4g/kg) with or without IBDV inoculation (IBDV or saline inoculation at14days). Chickens were sampled at21,42days of age and2,4and6days post-inoculation (DPI). The IBDV inoculation significantly (P<0.05) suppressed immune functions of broilers, i.e. the serum lysozyme and IgA content, mitogen-stimulated peripheral blood mononuclear cells (PBMC) proliferation (Concanavalin A, Con A), PBMC in vitro NO and H2O2production. The IBDV inoculation caused a suboptimal response to vaccination which was evidenced by the suppression of anti-newcastle disease virus (NDV) antibody titers. Dietary Arg supplementation quadratically increased (P<0.05) the serum lysozyme and IgA concentrations, PBMC proliferation (LPS), and in vitro PBMC H2O2yield in the IBDV inoculated treatments. Serum anti-IBDV antibody titer increased quadratically with increasing dietary Arg concentration (P=0.06). The Arg requirement of vaccinated broilers (1.89%) for minimum FCR in a quadratic model was higher (P<0.05) than that of control broilers (1.60%). The Arg requirements of vaccinated broilers (IgA:1.65%; PBMC proliferation (LPS):1.74%) for optimal immune status in a broken-line model was higher (P<0.05) than control broilers (IgA:1.24%; PBMC proliferation (LPS):1.31%). The IBDV inoculation:decreased (P<0.05) CD3+, CD4+, and CD8+T cell counts at2days post-inoculation (DPI) and monocyte counts at6DPI; reduced (P<0.05) bursal IL-1/? mRNA expression at2DPI and serum IL-6concentration at4DPI. Increasing Arg concentration:increased (P<0.05) CD4+and CD8+T cell counts at2DPI; linearly increased (P<0.05) CD3+T cell counts in IBDV inoculated groups and monocyte counts in control groups at4DPI; increased (P<0.05) serum IL-6concentration in IBDV inoculated groups at2DPI; and increased (P<0.05) serum anti-IBDV antibody titers at42days of age.
     Expt.2was performed to investigate the effects of dietary Arg supplementation on intestinal structure and functionality in broiler chickens undergoing coccidial challenge. The design of this study was a randomized complete block employing a3×2factorial arrangement (n=8) with3dietary concentrations of Arg (10.0,14.0, and20.0g/kg) with or without coccidial vaccine challenge (unchallenged and coccidial challenge). On day14, birds were gavaged with coccidial vaccine or saline. Birds were killed on day21to obtain jejunal tissue and mucosal samples for histological, gene expression and mucosal immunity measurements. Within7days of challenge, the coccidial challenge decreased BW gain and feed intake, and increased feed-to-gain ratio (P<0.05). The jejunal inflammation was evidenced by villus damage, crypt dilation, and goblet cell depletion. Coccidial challenge increased (P<0.05) mucosal IgA concentrations and inflammatory gene (iNOS, IL-1β, IL-8and MyD88) mRNA expression as well as reduced (P<0.05) jejunal Mucin-2, IgA, and IL-1RI mR HA expression. Increasing Arg concentration:(a) increased (P<0.05) jejunal villus height and linearly increased (P<0.05) jejunal crypt depth;(b) quadratically increased (P<0.05) mucosal maltase activity and linearly decreased (P<0.05) mucosal IgG concentration within coccidiosis-challenged groups;(c) linearly decreased (P<0.05) jejunal TLR4mRNA expression within coccidiosis-challenged groups. The mTOR complex1pathway genes(mTOR and RPS6KB1) and anti-apoptosis gene Bcl-2mRNA expression quadratically (P <0.05) responded to increasing Arg supplementation.
     Expt.3was conducted to investigate the effect of dietary Arg supplementation on inflammatory response and innate immunity of broiler chickens. Two experiments were conducted in this part. Experiment1was designed as a2×3factorial arrangement (n=8cages/treatment;6birds/cage) with3dietary Arg concentrations (1.05,1.42, and1.90%) and2immune treatments (injection of lipopolysaccharide (LPS) or saline) which were given in48h interval between14and21d of age. Correlation between dietary Arg concentration (0.99,1.39,1.76,2.13, or2.53%) and circulating B cell percentage (%of circulating lymphocytes) was determined in Experiment2. In Experiment1, LPS injection decreased BW gain and feed intake, and increased feed-to-gain of challenged broilers (14to21d; P<0.05). LPS injection suppressed (P<0.05) splenic CD11+and B cell percentages (%of splenic lymphocytes) and phagocytosis by splenic heterophils and macrophages; Arg supplementation linearly decreased the percentage of CD11+, CD14+and B cells in the spleen (P<.10). LPS injection increased (P<0.05) IL-1β and IL-6mRNA expression in the spleen and cecal tonsils. Arginine supplementation decreased (P<0.05) the mRNA expression of IL-1β, TLR4, and PPAR-γ in the spleen, and IL-1β, IL-10, TLR4, and NFκB in the cecal tonsils. In Experiment2, increasing dietary Arg concentration linearly and quadratically reduced circulating B cells percentage (P<0.01).
     Expt.4was conducted to investigate the effects of dietary Arg supplementation on intestinal barrier functions of broiler chickens undergoing Salmonella enterica serovar Typhimurium challenge. The design of this study was a randomized complete block employing a3×2factorial arrangement with3dietary concentrations of Arg (10.0,14.5, and19.0g/kg) with or without Salmonella challenge (unchallenged and coccidial challenge). On day7,8and9, birds were gavaged with Salmonella or saline. Birds were killed on day10and16to obtain ileum tissue and liver samples. Within9days of challenge, the Salmonella challenge decreased BW gain and feed intake. With the increase of dietary Arg concentration, the reduction percentage of growth performance increased. At1DPC, Salmonella challenge significantely increased (P<0.05) serum D-xylose concentration and tended to decrease (P<0.10) serum Uric acid concentration; increasing dietary Arg concentration quadratically affected (P<0.05) srume Uric acid concentration and linearly decreased (P<0.05) serum D-xylose concentration; the chickens fed diet containing19.0g/kg Arg had the highest (P<0.05) liver viable Salmonella colonies (CFU). At7DPC, increasing dietary Arg concentration quadratically effected (P<0.05) serum Uric acid concentration in Salmonella challenged groups, linearly decreased (P<0.05) srum D-xylose concentration, and tended to decease (P<0.10) serum endotoxin concentration.
     Collectively, these results indicate that additional dietary Arg supplementation is required to get the optimal growth performance and immune function for immunosuppressive broilers, and Arg supplementation attenuated IBDV inoculation induced immunosuppression via modulating circulating T cell subpopulations. Dietary Arg supplementation attenuated intestinal mucosal disruption of coccidiosis-challenged chickens probably through suppressing TLR4and activating mTOR complex1pathways, and attenuated the overexpression of pro-inflammatory cytokines probably through the suppression of the TLR4pathway and CD14+cells percentage, while, it failed to ameliorate Salmollena challenge induced intestinal barrier dysfunction and growth performance reduction.
引文
1. Kidd M, Peebles E, Whitmarsh S et al. Growth and immunity of broiler chicks as affected by dietary arginine. Poultry Science,2001,80,1535-1542.
    2. Wu GY, Bazer FW, Davis TA et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids,2009,37,153-168.
    3. Barbul A, Rettura G, Levenson S et al. Arginine:a thymotropic and wound-healing promoting agent, 1977,28,101.
    4. Barbul A, Wasserkrug HL, Yoshimura N et al. High arginine levels in intravenous hyperalimentation abrogate post-traumatic immune suppression. Journal of Surgical Research,1984,36,620-624.
    5. Ignarro LJ, Buga GM, Wood KS et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences,1987,84, 9265.
    6. Hibbs JB. Nitric oxide:a cytotoxic activated macrophage effector molecule. Biochemical and biophysical research communications,1988,157,87-94.
    7. Hibbs J. Synthesis of nitric oxide from L-arginine:a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Research in immunology,1991,142, 565-569.
    8. Luiking YC, Poeze M, Ramsay G et al. The Role of Arginine in Infection and Sepsis. Journal of Parenteral and Enteral Nutrition,2005,29, S70-S74.
    9. Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology,2005,5,641-654.
    10. Closs El, Simon A, Vekony N et al. Plasma membrane transporters for arginine. The Journal of nutrition,2004,134,2752S.
    11. Bogdan C. Nitric oxide and the immune response. Nature Immunology,2001,2,907-916.
    12. Ochoa JB, Udekwu AO, Billiar TR et al. Nitrogen oxide levels in patients after trauma and during sepsis. Annals of surgery,1991,214,621.
    13. Makarenkova VP, Bansal V, Matta BM et al. CD11b+/Gr-1+ Myeloid Suppressor Cells Cause T Cell Dysfunction after Traumatic Stress. The Journal of Immunology,2006,176,2085-2094.
    14. Zea AH, Rodriguez PC, Culotta KS et al.1-Arginine modulates CD3 [zeta] expression and T cell function in activated human T lymphocytes. Cellular immunology,2004,232,21-31.
    15. Popovic PJ, Zeh HJ, Ochoa JB. Arginine and immunity. The Journal of nutrition,2007,137,1681S-1686S.
    16. Tani S, Itoh H, Okabayashi Y et al. New model of acute necrotizing pancreatitis induced by excessive doses of arginine in rats. Digest Dis Sci,1990,35,367-374.
    17. Takano H, Lim HB, Miyabara Y et al. Manipulation of the-arginine-nitric oxide pathway in airway inflammation induced by diesel exhaust particles in mice. Toxicology,1999,139,19-26.
    18. Stechmiller JK, Childress B, Porter T. Arginine Immunonutrition in Critically Ill Patients:A Clinical Dilemma. American Journal of Critical Care,2004,13,17-23.
    19. Van den Bossche J, Lamers WH, Koehler ES et al. Pivotal Advance:Arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes. Journal of Leukocyte Biology,2012,91,685-699.
    20. Piacenza L, Peluffo G, Radi R.1-Arginine-dependent suppression of apoptosis in Trypanosoma cruzi: Contribution of the nitric oxide and polyamine pathways. Proceedings of the National Academy of Sciences,2001,98,7301-7306.
    21. Bingisser RM, Tilbrook PA, Holt PG et al. Macrophage-Derived Nitric Oxide Regulates T Cell Activation via Reversible Disruption of the Jak3/STAT5 Signaling Pathway. The Journal of Immunology,1998,160,5729-5734.
    22. Harari O, Liao JK. Inhibition of MHC Ⅱ gene transcription by nitric oxide and antioxidants. Current pharmaceutical design,2004,10,893.
    23. Rivoltini L, Carrabba M, Huber V et al. Immunity to cancer:attack and escape in T lymphocyte-tumor cell interaction. Immunological reviews,2002,188,97-113.
    24. Kim Y-M, de Vera ME, Watkins SC et al. Nitric Oxide Protects Cultured Rat Hepatocytes from Tumor Necrosis Factor-a-induced Apoptosis by Inducing Heat Shock Protein 70 Expression. JBiol Chem,1997,272,1402-1411.
    25. Hortelano S, Dallaporta B, Zamzami N et al. Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Letters,1997,410,373-377.
    26. Tan J, Applegate TJ, Liu S et al. Supplemental dietary L-arginine attenuates intestinal mucosal disruption during coccidial vaccine challenge in broiler chickens. The British journal of nutrition, 2014, In the Press
    27. Briine B, von Knethen A, Sandau KB. Nitric oxide (NO):an effector of apoptosis. Cell death and differentiation,1999,6,969-975.
    28. Dodd F, Limoges M, Boudreau R et al. L-arginine inhibits apoptosis via a NO-dependent mechanism in Nb2 lymphoma cells. Journal of cellular biochemistry,2000,77,624-634.
    29. Dalton DK, Haynes L, Chu CQ et al. Interferon γ eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. The Journal of experimental medicine,2000,192,117.
    30. Gabrilovich DI, Nagaraj S. Myeloid-derived-suppressor cells as regulators of the immune system. Nature Reviews Immunology,2009,9,162.
    31. Moulian N, Truffault F, Gaudry-Talarmain YM et al. In vivo and in vitro apoptosis of human thymocytes are associated with nitrotyrosine formation. Blood,2001,97,3521-3530.
    32. Rodriguez PC, Hernandez CP, Quiceno D et al. Arginase Ⅰ in myeloid suppressor cells is induced by COX-2 in lung carcinoma. The Journal of experimental medicine,2005,202,931.
    33. Ochoa JB, Strange J, Kearney P et al. Effects of L-arginine on the proliferation of T lymphocyte subpopulations. Journal ofParenteral and Enteral Nutrition,2001,25,23-29.
    34. Rodriguez PC, Zea AH, Culotta KS et al. Regulation of T Cell Receptor CD3ζ Chain Expression byl-Arginine. JBiol Chem,2002,277,21123.
    35. Rodriguez PC, Hernandez CP, Morrow K et al.1-Arginine Deprivation Regulates Cyclin D3 mRNA Stability in Human T Cells by Controlling HuR Expression. The Journal of Immunology,2010,185, 5198-5204.
    36. Rodriguez PC, Zea AH, DeSalvo J et al. L-Arginine Consumption by Macrophages Modulates the Expression of CD3ζ Chain in T Lymphocytes. The Journal of Immunology,2003,171,1232-1239.
    37. Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood,2007,109,1568-1573.
    38. Yeramian A, Martin L, Serrat N et al. Arginine Transport via Cationic Amino Acid Transporter 2 Plays a Critical Regulatory Role in Classical or Alternative Activation of Macrophages. The Journal of Immunology,2006,176,5918-5924.
    39. D'Amato JL, Humphrey BD. Dietary arginine levels alter markers of arginine utilization in peripheral blood mononuclear cells and thymocytes in young broiler chicks. Poultry Science,2010, 89,938-947.
    40. Klasing KC, Barnes DM. Decreased Amino Acid Requirements of Growing Chicks Due to Immunologic Stress. The Journal of nutrition,1988,118,1158-1164.
    41. Cook M. A review of science leading to host-targeted antibody strategies for preventing growth depression due to microbial colonization. Journal of animal science,2010,89,1981-1990.
    42. Coates ME, Fuller R, Harrison G et al. A comparision of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicmin. British Journal of Nutrition, 1963,17,141-150.
    43. Lillie RJ, Sizemore J, Bird H. Environment and stimulation of growth of chicks by antibiotics. Poultry Science,1953,32,466-475.
    44. Coburn LA, Gong X, Singh K et al. L-arginine Supplementation Improves Responses to Injury and Inflammation in Dextran Sulfate Sodium Colitis. Plos One,2012,7, e33546.
    45. Jahanian R. Immunological responses as affected by dietary protein and arginine concentrations in starting broiler chicks. Poultry Science,2009,88,1818-1824.
    46. Kwak H, Austic R, Dietert R. Influence of dietary arginine concentration on lymphoid organ growth in chickens. Poultry Science,1999,78,1536-1541.
    47. Khajali F, Tahmasebi M, Hassanpour H et al. Effects of supplementation of canola meal-based diets with arginine on performance, plasma nitric oxide, and carcass characteristics of broiler chickens grown at high altitude. Poultry Science,2011,90,2287-2294.
    48. Allen P. Effects of daily oral doses of L-arginine on coccidiosis infections in chickens. Poultry Science,1999,78,1506-1509.
    49. Abdukalykova ST, Zhao X, Ruiz-Feria CA. Arginine and Vitamin E Modulate the Subpopulations of T Lymphocytes in Broiler Chickens. Poultry Science,2008,87,50-55.
    50. Lee J, Austic R, Naqi S et al. Dietary arginine intake alters avian leukocyte population distribution during infectious bronchitis challenge. Poultry Science,2002,81,793-798.
    51. Munir K, Muneer MA, Masaoud E et al. Dietary arginine stimulates humoral and cell-mediated immunity in chickens vaccinated and challenged against hydropericardium syndrome virus. Poultry Science,2009,88,1629-1638.
    52. Perez-Carbajal C, Caldwell D, Farnell M et al. Immune response of broiler chickens fed different levels of arginine and vitamin E to a coccidiosis vaccine and Eimeria challenge. Poultry Science, 2010,89,1870-1877.
    53. Tayade C, Jaiswal T, Mishra S et al.1-Arginine stimulates immune response in chickens immunized with intermediate plus strain of infectious bursal disease vaccine. Vaccine,2006,24,552-560.
    54. Han J, Liu Y, Fan W et al. Dietary L-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids,2009,37,643-651.
    55. Long FY, Guo YM, Wang Z et al. Conjugated linoleic acids alleviate infectious bursal disease virus-induced immunosuppression in broiler chickens. Poultry Science,2011,90,1926-1933.
    56. Butter C, Sturman T, Baaten B et al. Protection from infectious bursal disease virus (IBDV)-induced immunosuppression by immunization with a fowlpox recombinant containing IBDV-VP2. Avian Pathology,2003,32,597-604.
    57. Jiang Z, Schatzmayr G, Mohnl M et al. Net effect of an acute phase response—Partial alleviation with probiotic supplementation. Poultry Science,2010,89,28-33.
    58. Hussain I, Qureshi M. Nitric oxide synthase activity and mRNA expression in chicken macrophages. Poultry Science,1997,76,1524-1530.
    59. Allen P, Fetterer R. Effect of Eimeria acervulina infections on plasma L-arginine. Poultry Science, 2000,79,1414-1417.
    60. Adedokun S, Ajuwon K, Romero L et al. Heal endogenous amino acid losses:Response of broiler chickens to fiber and mild coccidial vaccine challenge. Poultry Science,2012,91,899-907.
    61. Shaughnessy RG, Meade KG, Cahalane S et al. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter. Veterinary Immunology and Immunopathology,2009,132,191-198.
    62. Shao Y, Guo Y, Wang Z. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Poultry Science,2013,92, 1764-1773.
    63. Xie H, Newberry L, Clark F et al. Changes in serum ovotransferrin levels in chickens with experimentally induced inflammation and diseases. Avian Diseases,2002,46,122-131.
    64. Van Den Berg TP. Acute infectious bursal disease in poultry:a review. Avian Pathology,2000,29, 175-194.
    65. Rajput ZI, Xiao CW, Hu SH et al. Enhancement of immune responses to infectious bursal disease vaccine by supplement of an extract made from Momordica cochinchinensis (Lour.) Spreng. seeds. Poultry Science,2010,89,1129-1135.
    66. Stechmiller JK, Childress B, Cowan L. Arginine supplementation and wound healing. Nutrition in clinical practice,2005,20,52-61.
    67. Star L, Rovers M, Corrent E et al. Threonine requirement of broiler chickens during subclinical intestinal Clostridium infection. Poultry Science,2012,91,643-652.
    68. Sharma JM, Kim I-J, Rautenschlein S et al. Infectious bursal disease virus of chickens:pathogenesis and immunosuppression. Developmental & Comparative Immunology,2000,24,223-235.
    69. Emadi M, Jahanshiri F, Kaveh K et al. Nutrition and immunity:the effects of the combination of arginine and tryptophan on growth performance, serum parameters and immune response in broiler chickens challenged with infectious bursal disease vaccine. Avian Pathology,2011,40,63-72.
    70. Liu H, Zhang M, Han H et al. Comparison of the expression of cytokine genes in the bursal tissues of the chickens following challenge with infectious bursal disease viruses of varying virulence. Virology Journal,2010,7,1-9.
    71. Williams A, Davison T. Enhanced immunopathology induced by very virulent infectious bursal disease virus. Avian Pathology,2005,34,4-14.
    72. Araki K, Turner AP, Shaffer VO et al. mTOR regulates memory CD8 T-cell differentiation. Nature, 2009,460,108-112.
    73. Rauf A, Khatri M, Murgia MV et al. Differential modulation of cytokine, chemokine and Toll like receptor expression in chickens infected with classical and variant infectious bursal disease virus. Veterinary research,2011,42,85.
    74. Tan B, Li XG, Kong X et al. Dietary L-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids,2009,37,323-331.
    75. Council. NR. Nutrient requirements of poultry.9th rev. ed.:Washington, DC:Natl. Acad. Press., 1994.
    76. Eterradossi N, Saif Y. Infectious bursal disease. Diseases of Poultry,2008,10,185-208.
    77. Pylkko P, Lyytikainen T, Ritola O et al. Vaccination influences growth of Arctic charr. Diseases of aquatic organisms,2000,43,77-80.
    78. Hammond JC, Bird HR. Size of Thymus and Bursa Fabricius in Relation to Rate of Growth in Chicks. Poultry Science,1942,21,116-119.
    79. Corzo A, Moran E, Hoehler D. Arginine need of heavy broiler males:applying the ideal protein concept. Poultry Science,2003,82,402-407.
    80. Saif YM. Immunosuppression induced by infectious bursal disease virus. Veterinary Immunology and Immunopathology,1991,30,45-50.
    81. Costas B, Conceicao LEC, Dias J et al. Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). Fish & Shellfish Immunology,2011,31,838-847.
    82. Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nature Immunology, 2002,3,1129-1134.
    83. Tan J, Liu S, Guo Y et al. Dietary 1-arginine supplementation attenuates lipopolysaccharide-induced inflammatory response in broiler chickens. British Journal of Nutrition,2014,111,1394-1404.
    84. Field CJ, Gougeon R, Marliss EB. Changes in circulating leukocytes and mitogen responses during very-low-energy all-protein reducing diets. The American journal of clinical nutrition,1991,54, 123-129.
    85. Rautenschlein S, Yeh HY, Sharma JM. The role of T cells in protection by an inactivated infectious bursal disease virus vaccine. Veterinary Immunology and Immunopathology,2002,89,159-167.
    86. Serbina NV, Jia T, Hohl TM et al. Monocyte-mediated defense against microbial pathogens. Annual review of immunology,2008,26,421.
    87. Sharma J, Fredericksen T. Mechanism of T cell immunosuppression by infectious bursal disease virus of chickens. Progress in clinical and biological research,1987,238,283-294.
    88. Nijsten M, Hack C, Helle M et al, Interleukin-6 and its relation to the humoral immune response and clinical parameters in burned patients. Surgery,1991,109,761-767.
    89. Kalinski P, Moser M. Consensual immunity:success-driven development of T-helper-1 and T-helper-2 responses. Nature Reviews Immunology,2005,5,251-260.
    90. Khatri M, Sharma JM. Infectious bursal disease virus infection induces macrophage activation via p38 MAPK and NF-kB pathways. Virus Research,2006,118,70-77.
    91. de Jonge WJ, Kwikkers KL, te Velde A A et al. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. The Journal of Clinical Investigation,2002, 110,1539-1548.
    92. Bernard AC, Mistry SK, Morris Jr SM et al. Alterations in arginine metabolic enzymes in trauma Shock, 2001,15,215-219.
    93. Swaggerty CL, Genovese KJ, He H et al. Broiler breeders with an efficient innate immune response are more resistant to Eimeria tenella. Poultry Science,2011,90,1014-1019.
    94. Matthews JO, Southern LL. The effect of dietary betaine in Eimeria acervulina-infected chicks. Poultry Science,2000,79,60-65.
    95. Witlock D, Ruff M. Comparison of the intestinal surface damage caused by Eimeria mivati, E. necatrix, E. maxima, E. brunetti, and E. acervulina by scanning electron microscopy. The Journal ofparasitology,1977,63,193-199.
    96. Peek HW, Landman WJM. Coccidiosis in poultry:anticoccidial products, vaccines and other prevention strategies. Veterinary Quarterly,2011,31,143-161.
    97. Cox CM, Dalloul RA. Beta-glucans as immunomodulators in poultry:use and potential applications. Avian Biology Research,2010,3,171-178.
    98. Laurent F, Mancassola R, Lacroix S et al. Analysis of Chicken Mucosal Immune Response to Eimeria tenella and Eimeria maxima Infection by Quantitative Reverse Transcription-PCR. Infection and immunity,2001,69,2527-2534.
    99. Allen P. Nitric oxide production during Eimeria tenella infections in chickens. Poultry Science,1997, 76,810-813.
    100. Vespa GN, Cunha FQ, Silva JS. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infection and immunity,1994,62,5177-5182.
    101. Alvarez MN, Peluffo G, Piacenza L et al. Intraphagosomal Peroxynitrite as a Macrophage-derived Cytotoxin against Internalized Trypanosoma cruzi:consequences for oxidative killing and role of microbial peroxiredoxins in infectivity. JBiol Chem,2011,286,6627-6640.
    102. Hong YH, Lillehoj HS, Lillehoj EP et al. Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chickens. Veterinary Immunology and Immunopathology,2006,114,259-272.
    103. Dinarello CA. Proinflammatory cytokines. CHEST Journal,2000,118,503-508.
    104. Smith JA. Neutrophils, host defense, and inflammation:a double-edged sword. Journal of Leukocyte Biology,1994,56,672-686.
    105. Bruewer M, Luegering A, Kucharzik T et al. Proinflammatory Cytokines Disrupt Epithelial Barrier Function by Apoptosis-Independent Mechanisms. The Journal of Immunology,2003,171, 6164-6172.
    106. Al-Sadi R, Ye D, Dokladny K et al Mechanism of IL-1(3-induced increase in intestinal epithelial tight junction permeability. The Journal of Immunology,2008,180,5653-5661.
    107. Rose ME, Long P, Bradley J. Immune responses to infections with coccidia in chickens:gut hypersensitivity. Parasitology,1975,71,357-368.
    108. Persia M, Young E, Urterback P et al Effects of dietary ingredients and Eimeria acervulina infection on chick performance, apparent metabolizable energy, and amino acid digestibility. Poultry Science,2006,85,48-55.
    109. Adams C, Vahl H, Veldman A. Interaction between nutrition and Eimeria acervulina infection in broiler chickens:development of an experimental infection model. British Journal of Nutrition, 1996,75,867-873.
    110. Temperley N, Berlin S, Paton I et al. Evolution of the chicken Toll-like receptor gene family:a story of gene gain and gene loss. BMC genomics,2008,9,62.
    111. Keestra AM, van Putten JPM. Unique Properties of the Chicken TLR4/MD-2 Complex:Selective Lipopolysaccharide Activation of the MyD88-Dependent Pathway. The Journal of Immunology, 2008,181,4354-4362.
    112. Zhou Z, Wang Z, Cao L et al. Upregulation of chicken TLR4, TLR15 and MyD88 in heterophils and monocyte-derived macrophages stimulated with Eimeria tenella in vitro. Experimental Parasitology,2013,133,427-433.
    113. Tan J, Liu S, Guo Y et al. Dietary L-arginine supplementation attenuates lipopolysaccharide-induced inflammatory response in broiler chickens. The British journal of nutrition,2013,111,1394-1404
    114. Pearce LR, Huang X, Boudeau J et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. The Biochemical journal,2007,405,513-522.
    115. Christie GR, Hajduch E, Hundal HS et al. Intracellular Sensing of Amino Acids in Xenopus laevis Oocytes Stimulates p70 S6 Kinase in a Target of Rapamycin-dependent Manner. J Biol Chem, 2002,277,9952-9957.
    116. Kong X, Tan B, Yin Y et al.1-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. JNUTR BIOCHEM,2012,23,1178-1183.
    117. Murakami M, Ichisaka T, Maeda M et al. mTOR Is Essential for Growth and Proliferation in Early Mouse Embryos and Embryonic Stem Cells. Molecular and Cellular Biology,2004,24, 6710-6718.
    118. Rhoads JM, Niu X, Odle J et al. Role of mTOR signaling in intestinal cell migration. American Journal of Physiology-Gastrointestinal and Liver Physiology,2006,291, G510-G517.
    119. Simms D, Cizdziel PE, Chomczynski P. TRJzol:A new reagent for optimal single-step isolation of RNA. Focus,1993,15,532-535.
    120. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-AACT Method. Methods,2001,25,402-408.
    121. Dee KC, Puleo DA, Bizios R. Inflammation and Infection. In An Introduction To Tissue-Biomaterial Interactions, pp.89-108:John Wiley & Sons, Inc.2003.
    122. Khatri M, Palmquist JM, Cha RM et al. Infection and activation of bursal macrophages by virulent infectious bursal disease virus. Virus Research,2005,113,44-50.
    123. Johansson ME, Phillipson M, Petersson J et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences,2008,105, 15064-15069.
    124. Uni Z, Platin R, Sklan D. Cell proliferation in chicken intestinal epithelium occurs both in the crypt and along the villus. Journal of Comparative Physiology B,1998,168,241-247.
    125. Solaymani-Mohammadi S, Singer SM. Host Immunity and Pathogen Strain Contribute to Intestinal Disaccharidase Impairment following Gut Infection. The Journal of Immunology,2011,187, 3769-3775.
    126. Yang R, Murillo FM, Delannoy MJ et al. B Lymphocyte Activation by Human Papillomavirus-Like Particles Directly Induces Ig Class Switch Recombination via TLR4-MyD88. The Journal of Immunology,2005,174,7912-7919.
    127. Vora P, Youdim A, Thomas LS et al. β-Defensin-2 Expression Is Regulated by TLR Signaling in Intestinal Epithelial Cells. The Journal of Immunology,2004,173,5398-5405.
    128. Hong YH, Song W, Lee SH et al. Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poultry Science,2012,91,1081-1088.
    129. Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate plgR expression and its role in mucosal immunity. Mucosal Immunol,2011,4,598-602.
    130. Tezuka H, Abe Y, Iwata M et a. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature,2007,448,929-933.
    131. Dil N, Qureshi MA. Involvement of lipopolysaccharide related receptors and nuclear factor κB in differential expression of inducible nitric oxide synthase in chicken macrophages from different genetic backgrounds. Veterinary Immunology and Immunopathology,2002,88,149-161.
    132. Shang HF, Wang YY, Lai YN et al. Effects of arginine supplementation on mucosal immunity in rats with septic peritonitis. Clinical Nutrition,2004,23,561-569.
    133. Zhu H, Liu Y, Xie X et al. Effect of L-arginine on intestinal mucosal immune barrier function in weaned pigs after Escherichia coli LPS challenge. Innate Immunity,2013,19,242-252
    134. Batista MA, Nicoli JR, dos Santos Martins F et al. Pretreatment With Citrulline Improves Gut Barrier After Intestinal Obstruction in Mice. Journal of Parenteral and Enteral Nutrition,2012,36, 69-76.
    135. Withanage G, Wigley P, Kaiser P et al. Cytokine and chemokine responses associated with clearance of a primary Salmonella enterica serovar Typhimurium infection in the chicken and in protective immunity to rechallenge. Infection and immunity,2005,73,5173-5182.
    136. O'Neill LA, Dinarello CA. The IL-1 receptor/toll-like receptor superfamily:crucial receptors for inflammation and host defense. Immunology today,2000,21,206-209.
    137. Sutton C, Brereton C, Keogh B et al. A crucial role for interleukin (IL)-1 in the induction ofIL-17-producing T cells that mediate autoimmune encephalomyelitis. The Journal of experimental medicine,2006,203,1685-1691.
    138. Kim WH, Jeong J, Park AR et al. Chicken IL-17F:Identification and comparative expression analysis in Eimeria-infected chickens. Developmental& Comparative Immunology,2012,38, 401-409.
    139. Li L, Kim J, Boussiotis VA. IL-1β-Mediated Signals Preferentially Drive Conversion of Regulatory T Cells but Not Conventional T Cells into IL-17-Producing Cells. The Journal of Immunology,2010,185,4148-4153.
    140. ZHOU Z, HU S, WANG Z et al. Expression of Chicken Toll Like Receptors and Signal Adaptors in Spleen and Cecum of Young Chickens Infected with Eimeria tenellal. Journal of Integrative Agriculture,2013.
    141. Liu Y, Huang J, Hou Y et al Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. British Journal of Nutrition,2008,100,552-560.
    142. Kurt-Jones EA, Popova L, Kwinn L et al. Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. Nature Immunology,2000,1,398-401.
    143. Adams JM, Cory S. The Bcl-2 protein family:arbiters of cell survival. Science,1998,281, 1322-1326.
    144. Major P, Toth S, Goldova M et al. Dynamic of apoptosis of cells in duodenal villi infected with Eimeria acervulina in broiler chickens. Biologia,2011,66,696-700.
    145. Arstall MA, Sawyer DB, Fukazawa R et al. Cytokine-Mediated Apoptosis in Cardiac Myocytes The Role of Inducible Nitric Oxide Synthase Induction and Peroxynitrite Generation. Circulation research,1999,85,829-840.
    146. Takeuchi T, Kitagawa H, Imagawa T et al. Apoptosis of villous epithelial cells and follicle-associated epithelial cells in chicken cecum. The Journal of veterinary medical science, 1999,61,149-154.
    147. Yang J, Liu X, Bhalla K et al. Prevention of Apoptosis by Bcl-2:Release of Cytochrome c from Mitochondria Blocked. Science,1997,275,1129-1132.
    148. Finucane DM, Bossy-Wetzel E, Waterhouse NJ et al. Bax-induced Caspase Activation and Apoptosis via Cytochromec Release from Mitochondria Is Inhibitable by Bcl-xL. J Biol Chem, 1999,274,2225-2233.
    149. Yagnik GP, Takahashi Y, Tsoulfas G et al. Blockade of the L-arginine/NO synthase pathway worsens hepatic apoptosis and liver transplant preservation injury. Hepatology,2002,36,573-581.
    150. Gotoh T, Terada K, Mori M. hsp70-DnaJ chaperone pairs prevent nitric oxide-mediated apoptosis in RAW 264.7 macrophages. Cell death and differentiation,2001,8,357-366.
    151. Klasing K. Nutrition and the immune system. British poultry science,2007,48,525-537.
    152. Gulati P, Gaspers LD, Dann SG et al. Amino Acids Activate mTOR Complex 1 via Ca2+/CaM Signaling to hVps34. Cell Metabolism,2008,7,456-465.
    153. Lee MY, Jo SD, Lee JH et al, L-leucine increases [3H]-thymidine incorporation in chicken hepatocytes:Involvement of the PKC, PI3K/Akt, ERK1/2, and mTOR signaling pathways. Journal of cellular biochemistry,2008,105,1410-1419.
    154. Uni Z, Geyra A, Ben-Hur H et al. Small intestinal development in the young chick:Crypt formation and enterocyte proliferation and migration. British poultry science,2000,41,544-551.
    155. Wu X, Ruan Z, Gao Y et al. Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn-and soybean meal-based diet. Amino Acids,2010,39,831-839.
    156. Tayade C, Koti M, Mishra S. L-Arginine stimulates intestinal intraepithelial lymphocyte functions and immune response in chickens orally immunized with live intermediate plus strain of infectious bursal disease vaccine. Vaccine,2006,24,5473-5480.
    157. Munyaka PM, Tactacan G, Jing M et al. Immunomodulation in young laying hens by dietary folic acid and acute immune responses after challenge with Escherichia coli lipopolysaccharide. Poultry Science,2012,91,2454-2463.
    158. Loiarro M, Ruggiero V, Sette C. Targeting TLR/IL-1R signalling in human diseases. Mediators of inflammation 2010.
    159. Zhang X, Zhong X, Zhou Y et al. Dietary RRR-a-tocopherol succinate attenuates lipopolysaccharide-induced inflammatory cytokines secretion in broiler chicks. British Journal of Nutrition,2010,104,1796-1805.
    160. Tan B, Yin Y, Kong X et al. L-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids,2010,38,1227-1235.
    161. Webel DM, Johnson RW, Baker DH. Lipopolysaccharide-induced reductions in food intake do not decrease the efficiency of lysine and threonine utilization for protein accretion in chickens. The Journal of nutrition,1998,128,1760-1766.
    162. Bansal V, Syres KM, Makarenkova V et al. Interactions Between Fatty Acids and Arginine Metabolism:Implications for the Design of Immune-Enhancing Diets. Journal of Parenteral and Enteral Nutrition,2005,29, S75-S80.
    163. Ochoa JB, Makarenkova V, Bansal V. A rational use of immune enhancing diets:when should we use dietary arginine supplementation? Nutrition in clinical practice,2004,19,216-225.
    164. Seifert S, Fritz C, Carlini N et al. Modulation of innate and adaptive immunity by the probiotic Bifidobacterium longum PCB133 in turkeys. Poultry Science,2011,90,2275-2280.
    165. Chuammitri P, Redmond SB, Kimura K et al. Heterophil functional responses to dietary immunomodulators vary in genetically distinct chicken lines. Veterinary Immunology and Immunopathology,2011,142,219-227.
    166. Harmon B. Avian heterophils in inflammation and disease resistance. Poultry Science,1998,77, 972-977.
    167. Ibuki M, Kovacs-Nolan J, Fukui K et al. β1-4 mannobiose enhances Salmonella-killing activity and activates innate immune responses in chicken macrophages. Veterinary Immunology and Immunopathology,2011,139,289-295.
    168. Pohlenz C, Buentello A, Mwangi W et al. Arginine and glutamine supplementation to culture media improves the performance of various channel catfish immune cells. Fish & Shellfish Immunology,2012,32,762-768.
    169. Gong Y, Hart E, Shchurin A et al. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. The Journal of Clinical Investigation,2008,118,3012-3024.
    170. Chaturvedi R, Cheng Y, Asim M et al. Induction of Polyamine Oxidase 1 by Helicobacter pylori Causes Macrophage Apoptosis by Hydrogen Peroxide Release and Mitochondrial Membrane Depolarization. JBiol Chem,2004,279,40161-40173.
    171. Wang MZ, Ding LY, Wang JF et al. Effects of n-6:n-3 polyunsaturated fatty acid ratio on heterophil:lymphocyte ratio and T lymphocyte subsets in the peripheral blood of the Yangzhou gosling. Poultry Science,2011,90,824-829.
    172. Maroufyan E, Kasim A, Ebrahimi M et al. Dietary methionine and n-6/n-3 polyunsaturated fatty acid ratio reduce adverse effects of infectious bursal disease in broilers. Poultry Science,2012,91, 2173-2182.
    173. Klasing K, Korver D. The role of diet in modulating the immune response of broilers:the example of PUFAs. Recent Advances in Animal Nutrition in Australia,1999,12,1-6.
    174. Dinarello CA. Proinflammatory Cytokines. CHEST Journal,2000,118,503-508.
    175. Shanmugasundaram R, Selvaraj RK. In vivo lipopolysaccharide injection alters CD4+CD25+cell properties in chickens. Journal of animal science,2012,90,2498-2504.
    176. Moraes LA, Piqueras L, Bishop-Bailey D. Peroxisome proliferator-activated receptors and inflammation. Pharmacology & Therapeutics,2006,110,371-385.
    177. Zhang HJ, Guo YM, Yang Y et al. Dietary conjugated linoleic acid enhances spleen PPAR-y mRNA expression in broiler chicks. British poultry science,2006,47,726-733.
    178. Wu Z, Rothwell L, Hu T et al. Chicken CD 14, unlike mammalian CD 14, is trans-membrane rather than GPI-anchored. Developmental & Comparative Immunology,2009,33,97-104.
    179. Schiitt C. CD14. The international journal of biochemistry & cell biology,1999,31,545-549.
    180. Kogut M, He H, Kaiser P. Lipopolysaccharide Binding Protein/CD 14/TLR4-Dependent Recognition of Salmonella LPS Induces the Functional Activation of Chicken Heterophils and Up-Regulation of Pro-Inflammatory Cytokine and Chemokine Gene Expression in These Cells. Animal biotechnology,2005,16,165-181.
    181. Brownlie R, Allan B. Avian toll-like receptors. Cell Tissue Res,2011,343,121-130.
    182. Panaro MA, Cianciulli A, Gagliardi N et al. CD14 major role during lipopolysaccharide-induced inflammation in chick embryo cardiomyocytes. FEMS Immunology & Medical Microbiology,2008, 53,35-45.
    183. Leturcq D, Moriarty A, Talbott G et al. Antibodies against CD14 protect primates from endotoxin-induced shock. Journal of'Clinical Investigation,1996,98,1533.
    184. de Zoete MR, Keestra AM, Roszczenko P et al. Activation of Human and Chicken Toll-Like Receptors by Campylobacter spp. Infection and immunity,2010,78,1229-1238.
    185. O'Neill LAJ, Bowie AG. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol,2007,7,353-364.
    186. Keestra AM, de Zoete MR, Bouwman LI et al. Unique features of chicken Toll-like receptors. Developmental& Comparative Immunology.2013,41,316-323
    187. Calkins CM, Bensard DD, Heimbach JK et al.1-Arginine attenuates lipopolysaccharide-induced lung chemokine production. American Journal of Physiology-Lung Cellular and Molecular Physiology,2001,280, L400-L408.
    188. Al-Sadi R, Boivin M, Ma T. Mechanism of cytokine modulation of epithelial tight junction barrier. Frontiers in bioscience:a journal and virtual library,2008,14,2765-2778.
    189. Withanage G, Kaiser P, Wigley P et al. Rapid expression of chemokines and proinfiammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar typhimurium. Infection and immunity,2004,72,2152-2159.
    190. Costa KA, Soares ADN, Wanner SP et al.1-Arginine Supplementation Prevents Increases in Intestinal Permeability and Bacterial Translocation in Male Swiss Mice Subjected to Physical Exercise under Environmental Heat Stress. The Journal of nutrition,2014,114,218-223.
    191. Viana ML, Santos RGC, Generoso SV et al. Pretreatment with arginine preserves intestinal barrier integrity and reduces bacterial translocation in mice. Nutrition,2010,26,218-223.
    192. Al-Sadi RM, Ma TY. IL-1β Causes an Increase in Intestinal Epithelial Tight Junction Permeability. The Journal of Immunology,2007,178,4641-4649.
    193. Abe T, Sugano E, Saigo Y et al. Interleukin-1β and barrier function of retinal pigment epithelial cells (ARPE-19):aberrant expression of junctional complex molecules. Investigative ophthalmology & visual science,2003,44,4097-4104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700