用户名: 密码: 验证码:
东南极普里兹带花岗岩类的年代学、地球化学及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东南极普里兹带是近几年在南极大陆上识别出的一条重要的泛非期构造带,因其成因涉及到冈瓦纳超大陆在寒武纪的形成与演化问题,因此一直是国际地学界关注的焦点。目前对普里兹带的构造属性还存在很大争议,一些人认为是陆内造山,而大部分人认为是板块缝合带。本论文通过对东南极普里兹带(包括普里兹湾和格罗夫山)花岗岩类地球化学特征、年代学及岩石成因方面的研究,确定其岩浆源区、形成的构造环境,并进一步探讨东南极地盾普里兹带的构造属性及其在冈瓦纳古陆形成和演化中所起的作用。通过笔者对普里兹带花岗岩的研究,取得以下几点认识:
     (1)通过对花岗岩的锆石U-Pb定年,确定普里兹带花岗岩类的侵位年龄在550~490 Ma之间(泛非期)。格罗夫山紫苏花岗岩的侵位最早(547Ma),其次是紫苏花岗岩脉(533Ma),然后是花岗岩(526~503Ma)和花岗岩脉(501Ma),在时间上表现出连续演化的特点。普里兹湾拉斯曼丘陵的进步花岗岩和达尔克花岗岩晚于格罗夫山紫苏花岗岩(约530~500 Ma),穆如科尔山花岗岩和兰丁花岗岩侵位最晚(约500Ma)。普里兹带花岗岩类的侵位年龄近似等于或晚于泛非期区域变质作用的年龄60Ma,是泛非期强烈构造热事件的产物。东南极普里兹带花岗岩类岩石类型多样,包括紫苏花岗岩、二长闪长岩、二长岩、石英二长岩和花岗岩,构成一套准铝质-弱过铝质、橄榄玄粗岩岩石系列。这些花岗岩类侵位于不同的高级变质岩中,并发育后期面状的伟晶岩脉,局部地区发育晚期花岗岩岩墙。
     (2)利用电子探针分析确定出普里兹带花岗岩类暗色矿物的种属:角闪石属于钙质角闪石亚族中的铁绿钙闪石;黑云母以铁质黑云母为主,少数样品中黑云母为镁质黑云母和铁叶云母,表现出相对封闭、贫水环境下的壳幔混合型花岗岩的矿物特征。利用矿物的共生组合确定普里兹带花岗岩的岩浆侵位的温压条件:P=5~6.6kbar, T =774~832℃。岩体侵位时氧逸度较低,在?12.16~ ?13.65之间,略高于FMQ(铁橄榄石+磁铁矿+石英)这一平衡反应的缓冲曲线。
     (3)在地球化学特征上,普里兹带花岗岩类具有较高的全碱含量、Fe*值,K2O/Na2O和Ga/Al比值,以及较低的Mg、Cr和Ni丰度,表现出A型花岗岩的特点。拉斯曼丘陵的进步花岗岩并非是S型花岗岩,而是一种特殊的铝质A型花岗岩,由于经过强烈的分异演化和同化混染了泥质岩围岩而富含石榴石等富铝矿物。在微量元素标准化蛛网图中,富集大离子亲石元素和稀土元素,不同程度亏损Sr、Nb-Ta、P和Ti,显示出与俯冲作用有关的岩浆特点。在多个构造判别图解上,大部分普里兹带花岗岩类落在同-后碰撞的花岗岩区域,还有些落在板内花岗岩的区域。
     (4)普里兹带花岗岩类的87Sr/86Sr初始比值高,变化范围较大(0.7075~0.7246);εNd(t)值低,变化范围在?13.37~?9.17之间。Nd同位素模式年龄在2.0~2.3Ga之间,可能与早元古代古老地壳物质的再循环有关。同位素分析结果结合地球化学特征表明,普里兹带花岗岩类岩浆源区来自富集地幔,可能受到壳源物质不同程度的混染。拉斯曼丘陵地区花岗岩的87Sr/86Sr初始比值变化范围较大,可能反映原岩Sr同位素组成的不均一,而Nd同位素模式年龄与该区片麻岩的Nd同位素模式年龄趋于一致,表明花岗岩在成因上可能与该区片麻岩相联系。
     (5)普里兹带花岗岩类应形成于同-后碰撞构造环境下向板内环境过渡的转折期,这时原来被加厚的地壳发生伸展、减薄,先前含金云母和钾质角闪石的富集岩石圈地幔部分熔融底侵于下地壳,这些物质在下地壳又发生减压熔融形成一系列的A型同-后碰撞花岗岩。后碰撞花岗岩的形成预示着造山活动趋于尾声和新一轮的威尔逊旋回的开始。
     (6)普里兹带A型同-后碰撞花岗岩的确定支持普里兹带为碰撞造山带的构造属性,进一步说明东南极本身是由不同的前泛非期微陆块拼接形成的。在泛非期之前东南极乃至东冈瓦纳地盾并不是统一的陆块。
The Prydz Belt is one of the most important Pan-African mobile belts within the East Antarctic Shield. The belt provoked great interest to many geologists in recent years because it was related to the formation and evolution of the Gondwana suppercontinent during the Cambrian. However, at present the tectonic attribute of the Prydz Belt remain highly debated. Some argued for an intraplate orogen, whereas others argued for a suture. In this paper, Geochronology, geochemistry and petrogenesis of granitoids from the Prydz Belt have been investigated and their tectonic significance and behavior during the assembly of Gondwana suppercontinent have been discussed. The main conclusions from the thesis are as follows.
     1. SHRIMP U-Pb zircon analyses reveal that granitoids from the Prydz Belt in East Antarctica were intruded from 550 Ma to 490 Ma, immediately to about 60 Ma after the metamorphic peak. In the Grove Mountains, charnockite, charnockite dykes, granite and granite dykes were dated at 547 Ma, 533 Ma, 526~503 Ma and 501 Ma, respectively. In the Prydz Bay area, the Progress granite and the Dalkoy granite were dated at 530~500Ma, whereas the emplacement ages of the Landing granite and the Munro Kerr Mountains granite are as young as 500Ma. These diverse granitoids from charnockite, monzonite, quartz-monzonite to granite constitute a metaluminous to weakly peraluminous granitic serious. They also show the same chemical characteristics as the shoshonitic suits.
     2. The results of representative minerals by electron microprobe analyses suggest that orthopyroxene is ferrohypersthene in charnockites, and eulite in charnockites dykes, whereas amphibole is ferropargasite, and biotite is annite (expect for a few Mg-rich biotite) in all granitoids. The mineralogical characteristics indicate an affinity of crust-mantle mixed granites in a relatively H2O-poor and reduced environment. P-T calculations suggest that granitoids from the Prydz Belt were emplaced at 5~6.6kbar and 774~832℃. Using the equation given by Wones (1989), oxygen fugacities are estimated to be -12.16 to -13.65, which are slightly above the QFM (quartz-fayalite-magnetite) buffer.
     3. Granitoids from the Prydz Belt are geochemically characterized by having high K2O + Na2O contents, K2O/Na2O and Ga/Al ratios and Fe* values, and low MgO, Cr, Ni contents, in agreement with A-type granites. The Progress granite in the Larsemann Hills should be defined as aluminous A-type granite, rather than S-type granite as considered by formers. This granite may have undergone extremely fractionation and contamination by the country pelites. In the primitive-mantle-normalized trace elements diagrams, all the granitoids show LILE and HREE enriched patterns with variably trough at Sr, Nb-Ta, Ti and P, a distinctive feature of subduction-related magmas. In a few tectonic diagrams, most granitoids plot the field of within-plate granites, and some belong to the syn- and post-collision granites.
     4. Isotopically, granitoids from the Prydz Belt display very low initial Nd isotope compositions and high initial Sr isotope compositions. The initial Nd values vary over a narrow range of -13.37~ -9.17, while the initial Sr values vary considerably from 0.7075 to 0.7246. Nd-depleted mantle model ages of 2.0~2.3Ga imply their derivation from old palaeoproterozoic crustal sources. Petrographical, geochemical and isotopic evidence indicate that granitoids from the Prydz Belt were generated from a phlogopite-bearing subcontinental enriched lithospheric mantle. Granitoids in the Larsemann Hills have variable initial Sr values, probably implying an inhomogeneity of Sr isotope composition in the source. On the other hand, these granitoids have Nd-depleted mantle model ages same as those of paragneisses, suggesting a close genetic link between them.
     5. Both magmatism and high-grade metamorphism in the Prydz Belt are probably related to the continental collision, including lithospheric thinning, magmatic underplating and crustal relaxation. The granitoids were derived by partial melting of the underplating materials of mantle magmas from enriched subduction-modified lithosphere, accompanying by the contamination of crustal components. The Landing granite and Murro Kerr granite may the final represent welding of different terranes and therefore sign the end of the post-collisional orogenic episode in the whole Pan-African belt and the beginning of a next Wilson cycle.
     6. Syn- and post-collisional A-type granitoids from the Prydz Belt support the idea that Prydz Belt represents a collisional orogen and the East Antarctic Shield itself was finally amalgamated by different terranes during the Pan-African period. Accordingly, East Antarctic Shield as well as East Gondwana were not a united continental blocks before the Pan-African time.
引文
陈廷愚,赵越,任留东,沈炎彬.1994.南极地质演化及其与冈瓦纳古陆裂解的有关问题.华北地质矿产杂志, 9(1):3-20.
    陈廷愚,谢良军,赵越,任留东,王彦斌等.1995.南极洲地质图(1:5000000)(附说明书),北京:地质出版社
    洪大卫,王式洸,韩保福,靳满元.1995.碱性花岗岩的构造环境分类及其鉴别标志.中国科学,25(4):418-426
    刘昌实,杨心宜.1991.岩浆的长期分离结晶对岩石锶同位素初始比值的影响.大地构造与成矿学,15(2): 152-159.
    刘小汉,赵越,刘晓春,俞良军.2002.东南极格罗夫山地质特征-冈瓦纳最终缝合带的新证据.中国科学(D), 32(6):457-468.
    陆松年.2001.从罗迪尼亚到冈瓦纳超大陆-对新太古代超大陆研究几个问题的思考.地学前缘,8(4): 441-448.
    邱检生,王德滋等.2000.福建沿海铝质 A 型花岗岩的地球化学及岩石成因.地球化学,29(4):313-321.
    宋彪,张玉海,万渝生,简平.2002.锆石 SHRIMP 样品靶制作、年龄测定及有关现象讨论.地质论评 48(增刊): 26-30.
    涂光炽,张玉泉,赵振华.1984.华南两个富碱侵入岩带的初步研究.花岗岩地质和成矿关系.南京:江苏科学技术出版社. 21-37.
    王德滋,彭亚明,袁朴.1985.福建魁歧花岗岩的岩石学和地球化学特征及成因探讨.地球化学,14(3): 197-205.
    王德滋,周金城.1999.我国花岗岩研究的回顾与展望.岩石学报 15(2):161-169.
    王彦斌, 2002.南极拉斯曼丘陵及邻区高级片麻岩的地球化学、同位素年代学研究.中国地质科学院博士学位论文 位梦华.1986.奇异的大陆-南极洲 北京:地质出版社
    肖庆辉,邓晋福,马大铨,洪大卫等.2002.花岗岩研究思维与方法 北京: 地质出版社
    谢应雯,张玉泉.1990.横断山区花岗岩类中角闪石的标型特征及其成因意义.矿物学报,10(1):35-45.
    许继锋.1993.米仓山碱性岩中的主要矿物研究及其成因信息.岩石矿物学杂志,12(3):269-278.
    杨富贵,王中刚等.1999.西北准噶尔地区碱性花岗岩体中角闪石的地质地球化学意义.矿物学报, 19(1): 70-76.
    叶笑江,张宗清.1990.Nd 比值测定中的 Sm、Nd 分离 HDEHP 分离法,分析测试通报,9(3):6-10.
    俞良军,刘小汉,刘晓春,赵越,方爱民,琚宜太.2002.东南极格罗夫山变质基性岩地球化学特征.岩石学报, 18(1):91-99.
    俞良军,刘小汉,刘晓春,赵越,琚宜太,刘晓春.2002.东南极格罗夫山镁铁质麻粒岩的变质作用.岩石学报, 18(4):501-516.
    郁云妹,王玉荣.1987.黑云母在富钠、氟、锂气成-高温热液作用下的实验研究.地质论评,33(3):258-266
    张宗清,叶笑江.1987.稀土元素的质谱同位素稀释和 143Nd/144Nd 比值的精确测定方法,中国地质科学院地质研究所所刊,Vol.17,108-128.
    赵越,宋彪,张宗清等.1993 东南极拉斯曼丘陵及其邻区的泛非热事件.中国科学(B), 23(9):1001-1008
    赵越,刘小汉,张宗清等.1993.东南极拉斯曼丘陵早古生代麻粒岩相变质事件―Sm-Nd 同位素年代学证据,南极研究(中文版), 5(2):52-56.
    Anderson J L. 1983. Proterozoic anorogenic granite plutonism of North America: Geological Society of America Memoir, 161:133-154.
    Barbarin B. 1999. A review of the relationships between granitoid types, their origrins and their geodynamic environments. Lithos, 46: 605-626.
    Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multication parameters. Chem Geol, 48: 43-55.
    Black L P, Harley S L, Sun S S, McCulloch M T. 1987. The Rayner complex of East Antarctica: complex isotopic systematics within a Proterozoic mobile belt. Journal of Metamorphic Geology, 5: 1-26.
    Black L P, Kinny P D, Sheraton J W, Delor C P. 1991. Rapid production and evolution of late Archaean felsic crust in the Vestfold Block of East Antarctica. Precambrian Research, 50: 283-310.
    Black L P, Sheraton J W, Tingey R J, McCulloch M T. 1992. New U-Pb zircon ages from the Denman Glacier area, East Antarctica, and their significance for Gondwana reconstruction. Antarctic Science 4: 447-460.
    Boger S D, Carson C L, Wilson C J L, Fanning C M. 2000. Neoproterozoic deformation in the Radok Lake region of the northern Prince Charles Mountains, East Antarctica: evidence for a single protracted orogenic event. Precambrian Research, 104: 1-24.
    Boger S D, Wilson C J L, Fanning C M. 2001. Early Paleozoic tectonism within the East Antarctic craton: the final suture between east and west Gondwana? Geology, 29: 463-466.
    Boger S D, Carson C L, Fanning C M, Hergt J M, Wilson C J L, Woodhead J D. 2002. Pan-African intraplate deformation in the northern Prince Charles Mountains, East Antarctica. Earth and Planetary Science Letters, 195:195-210.
    Boger S D, Wilson C J L. 2005. Early Cambrian crustal shortening and a clockwise P-T-t path from the southern Prince Charles Mountains, East Antarctica: implications for the formation of Gondwana. Journal of Metamorphic Geology, 23: 603-623.
    Carson C J, Dirks P H G M, Hand M, Sims J P, Wilson C J L. 1995. Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica. Geological Magazine, 132: 151-170.
    Carson C J, Fanning C M, Wilson C J L. 1996. Timing of the Progress Granite, Larsemann Hills: additional evidence for Early Palaeozoic within east Antarctic Shield and implitions for Gondwana assembly. Australian Journal of Earth Sciences, 43: 539-553.
    Carson C J, Powell R, Wilson C J L, Dirks P H G M. 1997. Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, East Antarctica. Journal Metamorphic Geology, 15:105-126.
    Carson C L, Boger S D, Fanning C M, Thost C J L. 2000. SHRIMP U-Pb geochronology from Mt Kirk by northern Ptince Charles Mountains, East Antarctica. Antarctic Science, 12:429-442.
    Castro A et al.. 1991.H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth -Science Reviews.31: 237-253.
    Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174.
    Clemens J D, Holloway J R, and White A G R.1986. Origin of an A-type granite: Experimental constraints:Amrican Mineralogist, 17: 317-324.
    Collerson K D, Sheraton J W. 1986. Bedrock geology and crustal evolution of the Vestfold hills. In:Pickard J. (eds) The Antarctic Oasis: Terrestrial Enviroments and History of the Vestfold Hills. Academic Press, Sydney, 21-62.
    Condie K C. 1982. Plate tectonics and evolution. New York: Prgamon: 1-310
    Creaser R A, White A J R.1991. Yardea dacite – Large volume, high temperature felsic volcanism from the Middle Proterozoic of South Australia. Geology, 19: 48-51.
    Dirks P H G M, Carson C J, Wilson C G L. 1993. The deformational history of the Larsemann Hills, Prydz Bay: the importance of the Pan-African (500) in East Antarctic. Antartic Science, 5:179-192.
    Dirks P H G M, Hoek J D, Wilson C J L, Sims J R. 1994. The Proterozoic deformation of the Vestfold Hills basement complex, East Antarctica: implications for the tectonic evolution of adjacent granulite belts. Precambrian Research, 65:277-295.
    Dirks P H G M, Wilson C G L. 1995a. Crustal evolution of the East Antarctica mobile belt in Prydz Bay: continental collision of 500Ma? Precambrian Research, 75:189-207.
    Dirks P H G M, Hand M. 1995b. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica. Australian Journal of Earth Sciences, 42:157-172.
    Ebadi A, Johannes W. 1991. Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2O-CO2: Contributions to Mineralogy and Petrology, 106: 286-295.
    Eby G N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20: 641-644.
    Fattah A, Rahman A. 1994. Nature of biotite from alkaline, calc-alkaline and peraluminous magmas. Journal of Petrology, 35: 54-59.
    Feldstein S N, Lange R A.1999. Plocence potassic magmas from the Kings River region, Sierra Nevada,California: evidences for melting of a subduction-modified mantle. Journal of Petrology, 40: 1301-1320.
    Fitzsimons I C W, Harley S L. 1991. Geological relationships in high-grade gneisses of the Brattstrand Bluffs coastline, Prydz Bay, East Artarctica. Australian Journal of Earth Sciences, 38:497-519.
    Fitzsimons I C W, Thost D E. 1992. Geological relationships in high-grade basement gneiss of the northern Prince Charles Mountains, East Antarctica. Australian Journal Earth Sciences, 39:173-193.
    Fitzsimons I C W. 1996. Metapelitic migmatites from Brattstrand Bluffs, East Antarctica-metamorphism, melting and exhumation of the mid crust. Journal of Petrology, 37:395-414.
    Fitzsimons I C W, Kinny P D, Harley S L, 1997. Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova, 9:47-51.
    Fitzisimons I C W. 2000a. Grenvile-age basement provinces in East Antarctica: Evidence for three separate collisional orogens. Geology, 28:879-882.
    Fitzisimons I C W. 2000b. A review of tectonic events in the East Antarctic Shield and their implications for Gandwana and earlier supercontinents. Journal of African Earth Sciences, 31:3-23.
    Fitzsimons I C W. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica, in: M. Yoshida, B. Windley, S. Dasgupta (Eds.), Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Geol. Soc. London Spec. Publ. 206 (2003) 93-130.
    Frost B R, Frost C D, et al. 2000. Origin of the charnockites of the Louis Lake batholith, Wind River Range,Wyoming. Journal of Petrology, 41: 1759-1776.
    Frost B R, Barnes C G, et al. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42: 2033-2048.
    Gao S, Ling W, Qiu Y, et al. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochim. Cosmochim. Acta, 63: 2071-2088.
    Grew E S, Manton W I. 1986. A new correlation of sapphirine granulites in the Indo-Antarctic metamorphic terrain, late Proterozoic dates from the Eastern Ghats Province of India. Precambrian Research, 33:123-137.
    Grunow A, Hanson R, Wilson T. 1996. Were aspects of Pan-African deformation linked to Iapetus opening?.Geology, 24:1063-1066.
    Harley S L. 1987. Precambrian geological relationships in high-grade gneisses of the Rauer Islands, East Artarctica. Australian Journal of Earth Sciences, 34:175-207.
    Harley S L. 1988. Proterozoic granulites from the Rauer Group, East Artarctica. I. Decompressional pressure-temperature paths deduced from mafic and felsic gneisses. Journal of Petrology, 29:1059-1095.
    Harley S L, Fitzisimon I C W. 1991. Pressure-temperation evolution of metapelitic granulites in a polymetamorphic terrane: the Roup Group, East Antarctica. Journal of Metamorphic Geology, 9:231-243.
    Harley S L, Fitzisimon I C W. 1995. High-grade metamorphism and deformation in the Prydz Bay region, East Antarctica: terranes, events and regional correlations. In: Yoshida Y, Santosh M (eds) India and Antarctica During the Precambrian. Geological Society India, Memoir, 34:73-100.
    Harley S L, Snape I, Black L P. 1998. The evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane. Precambrian Research, 89:175-205.
    Harley S L. 2003. Archaean-Cambrian crustal development of East Antarctica: metamorphic characteristics and tectonic implications. In: Yoshida M, Windley B. F, Dasgupta S. (eds) Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206:93-130.
    Hensen B J, Zhou B. 1995. A Pan-African granulite facies metamorphic episode in Prydz Bay, Antarctica: evidence from Sm-Nd garnet dating. Australian Journal Earth Sciences, 42:249-258.
    Hensen B J, Zhou B, Thost D E. 1997. Recognition of multiple high grade metamorphic events with garnet Sm-Nd chronology in the northern Prince Charles Mountains, Antarctica. In : Ricci C. A. (ed) The Artarctica Region, Geological Evolution and Processes, Terra Antartica Publication, Siena, 97-104.
    Holland T, Blundy J. 1994. Non-deal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 116, 433-447.
    Irvine TN, Baragar WR.1971. A guide to the chemical classification of the commen volcanic rocks. Can. J. Earth Sci., 8:523-548.
    Jacobs J, Kreutzer H, Weber K. 1995. K-Ar, 40Ar/39Ar and apatite fission track evidence for Neoproterozoic and Mesozoic basement rejuvenation events in the Heimefrontfjella and Mannfallknausane (East Antarctica). Precambrian Research, 75:251-262.
     Jahn B M, Wu F Y, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic exidence from post-collisional mafic-ultramafic intrusions of the Dabie complex, central Chine. Chem.Geol., 157(1-2): 119-146.
    Kelsey D E, Powell R, Wilson C J L, Steele D A. 2003a. (Th + U)-Pb monazite ages from Al-Mg-rich metapelites, Rauer Group, East Antarctica. Contributions to Mineralogy and Petrology, 146:326-340.
    Kelsey D E,White R W, Powell R, Wilson C J L, Quinn C D. 2003b. New constraints on metamorphism in the Rauer Group, Prydz Bay, East Antarctica. Journal of Metamorphic Geology,21:739-759.
    Kinny P D, Black L P, Sheraton J W. 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands. Antarctic Science, 5:193-206.
    King P L.1997. Chracterization and origin of aluminous A-type granites from the Lachlak fold belt, southeastern Australia. Journal of Petrology, 38: 371-391.
    Lanyon R, Black L P, Seitz H M. 1993. U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestfold Hills. Contributions to Mineralogy and Petrology, 115:184-203.
    Leake B E. 1990. Granite magmas : their sources, initiation and consequences of emplacement. Jour Geol Soc Lond. 147: 579-589.
    Leake B E. 1997. Nomenclature of Amphiboles: Report of the Subcommitte on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61: 295-232.
    Liegeois J R . 1998. Some words on the Post- collisional magmatism. Lithos, 45:XV-XVll Liu X C, Zhao Y, Liu X H, 2002. Geological aspects of the Grove Mountains, East Antarctica. Royal Society of New Zealand Bulletin, 35:161-166.
    Liu X C, Zhao Z, Zhao Y, Chen J, Liu X H. 2003. Pyroxene exsolution in mafic granulites from the Grove Mountains, East Antarctica: constraints on Pan-African metamorphic conditions. European Journal of Mineralogy, 15:55-65.
    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of the America Bulletin 101, 635-643.
    Manton W I, Grew E S, Hoffman J, Sheraton J W. 1992. Granitic rocks of the Jetty Peninsula, Amery Ice Shelf area, East Antarctica .In: Yoshida Y, Kaminuma K, Shiraishi K. (eds) Recent Progress in Antarctic Earth Science, Terra Scientific Publishing Company, Tokyo, 179-189.
    Martin H. 1994. The Kuiqi peralkaline granitic complex(SE Chine), petrology and geochemistry. Journal of Petrology, 35: 983-1015.
    Mcdonough W F, McCulloch M T, and Sun S S.1985. Isotopic and geochemical systematics in TertiaryRecent basalt from southeastern Australia and implications for the evolution of the sub-continental lithosphere. Geochim. Cosmochim. Acta .49,2051-2067
    Meert J G., van der Voo R. 1997. The assembly of Gondwana 800-550 Ma. Journal of Geodynamics 23:223-235. Michell A H.1990. A review of compositional variation of amphiboles in alkaline plutonic complexs.Lithos, 26:135-156.
    Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth Sci. Rev. , 37: 215-224.
    Moores E M. 1991. Southwest U.S.-East Antartica (SWEAT) connection: a hypothesis. Geology, 19:425-428. Nelson D R and McCulloch M T.1989. Enriched mantle components and mantle recycling of sediments. In
    Kimberlites and Related Rocks, Vol, 1;There Compositions, Occurrence, Origin and Emplacement(ed. J. Ross);Geol.Soc.Spec.Publ.30,489-515.
    Nichols G T and Ferry R F.1991.Adecompressional P-T path ,Reinbolt Hills, East Antarctica. Journal of Metamorphic Geology ,9:257-266
    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagram for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
    Pearce J A. 1996. Sources and settings of granitic rocks. Episodes 19: 120-125.
    Peccerillo R, Taylor S R. 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 58: 63-81.
    Pitcher W S,1983.Granite type and tectonic environment. In Hsu K(ed) Mountain Building Processes. Academic Press. London, 19-40.
    Powell C M, Pisarevsky S A. 2001. Late Neoproterozoic assembly of East Gondwana. Geology, 30: 3-6. Qiao Guangsheng. 1998. Normalization of isotopic dilution analyses-a new program for isotope mass spectrometric analysis. Scientia Sinica (Series A), 31: 1263 -1268.
    Rogers N W, Hawkesworth C J, and Marsh J S.1985.The Geochemistry of potassic lavas from Vulsini, central Italy and implications for mantle enrichment process beneath the Rome region. Contrib.Mineral.Petrol.90:244 -257
    Schmidt M W, 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 110: 304 -310.
    Schmidt M W, 1996. Experimental constraints on rcycling of potassium from subducted ocean crust. Science, 272:1927-1930
    Seitz H M, 1994. Estimation of emplacement pressure for 2350Ma high-Mg tholeiite dykes, Vestfold Hills, Antarctica. European Journal of Mineralogy, 6:195-208.
    Shackleton R M.1996. The final collision between East and West Gondwana: where is it? Journal African Earth Science,23:271-287.
    Sheraton J W, Black L P, McCulloch M T. 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Archaean continental crust in East Antarctica. Precambrian Research, 26:169-198.
    Shiraishi K, Hiroi Y, Ellis D J, Fanning C M, Motoyoshi Y, Nakai Y. 1992. The first report of a Cambrian orogenic belt in East Antarctica – an ion microprobe study of the Lützow-Holm Complex. In: Yoshida Y, Kaminuma K.,
    Shiraishi K. (eds) Recent Progress in Antarctic Earth Science. Terra Scientific Publishing Company, Tokyo, 29-35.
    Sims J R, Dirks P H G M, Carson C, Wilson C J L. 1994. The structural evolution of the Rauer Group, East Antarctica: mafic dykes as passive markers in a composite Proterozoic terrain. Antarctic Science, 6:379-394.
    Stern R L. Arc assembly and continental collision in the Neoproterozoic East African Orogen:implications for the consolidation of Gondwanaland. Annu.Rev. Earth Planet.Sci.,22:319-351.
    Stüwe K, Powell R. 1989. Low pressure granulite facies metamorphism in the Larsemann Hills area, East Antarctica: petrology and tectonic implications for the Prydz Bay area. Journal of Metamorphic Geology, 7:465-484.
    Stüwe K, Braun HM, Peer H. 1989. Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica. Australian Journal Earth Sciences, 36:219-241.
    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Sanuder, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins,
    Geological Society Special Publication No. 42, pp.313-345. Sylvester P J.1989. Post-collisional alkaline granites. Journal of Geology, 97: 261-281.
    Taylor S R, McLennant S M.1985. Th Continental Crust: Its Composition and Evolution.Blackwell,Oxford,pp.312 Thost D E, Hensen B J, Motoyoshi Y. 1994. The geology of a rapidly uplifted medium and low pressure granulite facies terrane of Pan African age: the Bolingen Islands, Prydz Bay, East Antarctica. Petrology, 2:293-316.
    Tingey R G. 1991. The regional geology of Archaean and Proterozoic rocks in Antarctica. In: Tingey R J. (ed) The geology of Antarctica, Oxford University Press, Oxford, 1-73.
    Torsvik T H, Carter L M, Ashwal L D, Bhushan S K, Pandit M K, Jamtveit B. 2001. Rodinia refined or obscured: palaeomagnetism of the Malani igneous suite (NW India). Precambrian Research, 108:319-333.
    Turner S P, Foden J D, Morrison R S.1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, 28: 151-179.
    Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Calsteren PV, Deng W.1996. Post-collision shoshonitic volcanism on the Tibetan plateau: lmplications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37: 45-71.
    Warner M, Morgan J, Barton P, Morgan P, Price C, Jones K.1996. Seismic reflections from the mantle represent relict subduction zones within the continental lithosphere. Geology, 24: 39-42.
    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogensis. Contrb Mineral Petrol, 95: 407-419.
    Wilson T, Grunow A M, Hanson R E. 1997. Gondwana assembly: The view from southern African and East Gondwana: Journal of Geodynamics, 23:263-286.
    Wones D R.1989. Significance of the assemblage titanite + magnetite + quartz in granitic rocks. Am. Mineral. 74: 744-749.
    Wyllie P J, Sekine T.1982. The formation of mantle phlogopite in subduction zone hybridization. Contrib.Mineral.Petrol.,79: 385-380.
    Yoshida M, Jocobs J, Santos M, Rajesh H M. 2003. Role of Pan-African events in the Circum-East Antarctic Orogen of East Gondwana: Supercontinent Assembly and Breakup. In: Yoshida M, Windley B F, Dasgupta S. (eds) Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206:57-75.
    Zhang M, Suddaby P, Thompson R N, Thirlwall M F, Menzies M A.1995. Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. Journal of Petrology, 36: 1275-1303.
    Zhang L, Tong L, Liu X H, Scharer U. Conventional U-Pb age of the high-grade metamorphic rocks in the Larsemann Hills, East Antarctica, in: Z Pang, J. Zhang, J. Sun (Eds.), Advances in Solid Earth Sciences, Science Press, Beijing, 1996, pp. 27-35.
    Zhao Y, Song B, Wang Y. 1992. Geochronology of tne metamorphic evolution of the larsemann Hills,East Antarctica.In: Yoshida,Y,et al. (eds) Resent Progress in Antartic Earth Science. Terra Scientific Publishing Company, Tokyo, 155-161.
    Zhao Y, Liu X C, Song B, Zhang Z, Li J, Yao Y, Wang Y. 1995. Constraints on the stratigraphic age of metasedimentary rocks of the Larsemann Hills, East Antarctia: possible implication for Neo-Proterozoic tectonics. Precambrian Research, 75:175-188.
    Zhao Y, Liu X C, Fanning C M, Liu X H. 2000. The Grove Mountains, a segment of a Pan-African orogenic belt in East Antarctica. Abstract Volume of 31th International Geological Congress, Rio de Janeiro, Brazil.
    Zhao Y, Liu X H, Liu X C, Song B. 2003. Pan-African events in Prydz Bay, East Antarctica, and their implications for East Gondwana tectonics. In: Yoshida M, Windley B F, Dasgupta S. (eds) Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206,231-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700