用户名: 密码: 验证码:
Ti(C,N)基金属陶瓷的界面价电子结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先应用EET理论系统研究了添加不同碳化物时金属陶瓷陶瓷相的价电子结构以及(Ti,Me)(C,N)/Ni(Co、α-Fe、Fe3Al、FeAl、NiAl)金属陶瓷体系的界面价电子结构,分析了界面价电子结构参数与金属陶瓷力学性能之间的关系。在计算的基础上运用液相烧结技术制备了纳米改性Ti(C,N)基金属陶瓷材料,分析了Ti(C,N)基金属陶瓷的组织、力学性能及热冲击性能。主要内容如下:
     首先,介绍了Ti(C,N)基金属陶瓷的发展、制备方法以及成分对组织和力学性能的影响。指出了EET理论的基本原理、研究进展以及应用情况。
     其次,运用EET理论和BLD法研究了添加不同碳化物(Mo2C、WC、NbC、TaC、Cr3C2、VC)对金属陶瓷的陶瓷相价电子结构的影响,分析了价电子结构参数(nA)与金属陶瓷材料润湿性(0)以及力学性能(硬度、强韧性)之间的关系。在此基础上计算了(Ti,Me)(C,N)/Ni(Co、α-Fe、Fe3Al、FeAl、NiAl)金属陶瓷体系的界面价电子结构(最强键共价电子数(nA),晶面电子密度(ρ)和界面价电子密度差(Δρ))。研究表明:(1)与WC、NbC、TaC、Cr3C2、VC等碳化物相比,(Ti,Mo)(C,N)/Ni体系界面价电子密度连续性较好;实验证明,Mo2C对Ni/Ti(C,N)金属/陶瓷材料的润湿性的改善作用最为明显。当碳化物添加量为10wt.%时,不同碳化物对润湿性改善程度依次为:Mo2C>TaC>WC>VC>NbC。(2)(Ti,Me)(C,N)(110)/Ni(Co)(110)体系的界面价电子密度差(Δρ)小于10%,即界面价电子连续性好,界面结构稳定;总体来说,金属及金属间化合物对异相界面价电子密度差的影响顺序为(由强到弱):Ni(Co)>FeAl>α-Fe>Fe3Al>NiAl。(3)综合研究了价电子结构、界面价电子结构与材料强韧性之间的关系,指出采取原位复合制备工艺控制界面结合时,应该尽量在复合材料中存在更多的(110)Ni/(110)C、(110)Co/(110)C等界面,这样使Ti(C,N)基金属陶瓷复合材料具有更优异的综合力学性能。
     接下来在基于界面价电子结构计算的基础上,制备了纳米改性Ti(C,N)基金属陶瓷材料样品,研究了其组织、力学性能及抗热冲击性能。结果表明:(1)XRD与SEM分析表明,(Ti,Mo,W)(C,N)-Ni-Co金属陶瓷组织仍为两相结构(陶瓷相+金属相),其中较粗大的陶瓷相颗粒呈明显的芯/壳(core/rim)结构。(2)随着金属相含量的增加(Ti,Mo,W)(C,N)-Ni-Co金属陶瓷的组织更加均匀;而随着Mo含量的增加,金属陶瓷的组织存在着变细的趋势。研究表明,(Ti,Mo,W)(C,N)-Ni-Co金属陶瓷具有优良的力学性能,其硬度值(HRA)达到91.5以上,抗弯强度达到1350MPa以上。(3)就材料的硬度而言,实验结果与价电子结构计算结果是相符的;(4)高温热冲击实验表明:和普通的金属陶瓷相比,纳米改性金属陶瓷的抗热冲击性能较好;随着热冲击循环次数的增加,试样表面的孔洞数量和尺寸都有明显的增加;裂纹在扩展过程中存在弯曲、偏转及桥接现象。
Valence electron structure of ceramic phases in cermets with different carbides and the interface valence electron structure of (Ti,Me) (C,N)/Ni (Co,α-Fe,Fe3Al,FeAl and NiAl) cermets materials were studied systematically by using Empirical Electron Theory in Solid and Molecules (EET theory) and bond length difference (BLD) method in this paper, and the relationship between interface valence electron structure parameters and mechanical properties of Ti(C, N)-based cermets was also studied. Subsequently, nano-modified Ti(C, N)-based cermets samples were prepared by liquid sintering techniques and the microstructure, mechanical properties and thermal shock performance were investigated.
     Firstly, the overall development, preparation methods of Ti(C, N)-based cermets and the effect of composition on the microstructure and mechanical properties were introduced. And then basic principles, research progress and application status of Yu's EET theory were described in detail.
     Secondly, the author investigated the effect of different carbides on the valence electron structure of complex ceramic phases in Ti(C,N) based cermets and then analyzed the relationship among valence electron structure, wettability and mechanical properties (hardness, strength and toughness) of cermets materials. And the interface valence electron structure parameters including nA(covalent electron number on the strongest bond),p (valence electron density on a specific crystal plane) andΔρ(interface valence electron density difference) were calculated based on the former calculations. The author obtain following results:(1) There is a relatively better continuity of valence electron density of (Ti,Mo)(C,N)/Ni system in comparison with other (Ti,Me)(C,N)/Ni cermets (Me stands for WC,NbC,TaC,Cr3C2 and VC) systems. Virtually, corresponding experiments also prove that Mo2C can play a most effective role in improving the wettability of metal(Ni)on ceramic ((Ti,Mo)(C,N)) and the impact sequence of different carbides on the wettability is Mo2C>TaC>WC>VC>NbC when the content of carbides is 10wt.%. (2) There is a more stable and continuous interface for (Ti,Me) (C,N)(110) /Ni (110) or Co(110) system because the interface valence electron density difference is below 10%.Generally speaking, the impact sequence of different metals or intermetallics on the interface valence electron density difference is Ni(Co)>FeAl>α-Fe>Fe3Al>NiAl. (3) After studying the relationship among valence electron structure, interface valence electron structure and strength&toughness the author pointed out that Ti(C, N) based cermets composites will possess better comprehensive mechanical properties if interfaces such as (110)Ni/(110)C and (110)Co/(110)C can be found or obtained in composites as more as possible as far as in-situ synthesis or preparation technique is concerned.
     Subsequently, the author prepared nano-modified Ti(C, N) based cermets samples and investigated the microstructure, mechanical properties and thermal shock properties of the prepared samples based on the above calculations. The following points are noticeable:(1) X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies found that cermets are still composed of ceramic phases and metallic phases and the coarser ceramic particles exhibit so-called core/rim structures. (2) In addition, a more homogeneous microstructure especially the ceramic phase is obtained with the increase of Ni and/or Co contents and the ceramic grains are found to be finer when the content of Mo increases from 5 wt.% to 15 wt.%. Experimental results also show that the mechanical properties are relatively better than common cermets, that is, the hardness (HRA) is above 91.5 and the bend strength is above 1350MPa. (3) As far as the hardness is concerned, the above calculation results agree well with the experimental results. (4) Thermal shock resistance results reveal that nano-modified Ti(C, N) based cermets possesses a better thermal shock resistance in comparison with conventional cermets material. Experiments also reveal that the quantity and size of the voids as well as the size of micro-cracks in cermets increases with thermal shock cycles (N) and the bending, deflection and bridging of thermal cracks are very apparent when thermal cracks propagate in cermets.
引文
[1]刘宁,周凤云.TiN及WC加入量对Ti (C,N)基金属陶瓷组织与性能的影响[J].硬质合金,1994,11(1):13-17.
    [2]熊惟皓,周凤云.粉末粒度对Ti(C,N)基金属陶瓷组织与性能的影响[J].华中理工大学学报,1995,23(12):37-41.
    [3]P. Ettmayer, W. Lengauer. The story of cermets [J]. Powder Metallurgy International,1989,21(2):37-38.
    [4]刘涛,丰平Ti(C, N)基金属陶瓷的研究进展[J].江苏陶瓷,2005,38(6):20-23.
    [5]李沐山.八十年代世界金属陶瓷技术进展[M].株洲:《金属陶瓷》编辑部,1991:117.
    [6]熊素建,熊计,郭智兴,等.纳米Ti(C, N)基金属陶瓷制备技术研究进展[J].硬质合金,2009,26(3):194-200.
    [7]肖诗钢.现代刀具材料[M].重庆:重庆大学出版社,1992:102-109.
    [8]N. Liu, Y. D. Xu, H. Li. Effects of addition of TiN nano-particles on microstructure and mechanical properties of TiC based cermets [J]. Materials Science and Technology,2002,18(5):586-590.
    [9]N. Liu, Y. D. Xu, H. Li. Effects of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets [J]. Journal of the European. Ceramic Society,2002,22(13):2409-2414.
    [10]V. A. Tracey. Nickel in Hard metals [J]. International Journal of Refractory Metals and Hard Materials,1992,11(1):137-149.
    [11]黄金昌.碳氮化钛基金属陶瓷[J].稀有金属与硬质合金,1994,119(4):43-49.
    [12]邱小林.Ti(C,N)基金属陶瓷的研究进展[J].材料导报,2006,20(F05):420-427.
    [13]Y. Li, N. Liu, X. B. Zhang, et al. Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets [J]. International Journal of Refractory Metals and Hard Materials,2008, 26(3):190-196.
    [14]J. Jinkwan, K. Shinhoo. Effect of ultra-fine powders on the microstructure of Ti(C, N)-xWC-Ni cermets [J]. Acta Materialia,2004,52(6):1379-1386.
    [15]S. Y. Ahn, S. Kang. Effect of various carbides on the dissolution behaviour of Ti(C0.7N0.3) in a Ti(C0.7N0.3)-30Ni system [J]. International Journal of Refractory Metals and Hard Materials,2001,19(4-6):539-545.
    [16]S. Bolognini, G. Feusier. High temperature mechanical behaviour of Ti(C, N)-Mo-Co cermets [J]. International Journal of Refractory Metals and Hard Materials,1998,16(4-6):257-268.
    [17]侯新志,吴文君.刀具材料的研究与进展[J].机床与液压,2004,(3):16-17.
    [18]秦思贵,周武平,熊宁,等.TiC/Cu复合材料的研究进展[J].粉末冶金工业,2006,16(2):38-42.
    [19]董刚,赵乃勤.颗粒/铜基复合镀层的摩擦学性能研究[J].功能材料,2000,31(1):98-99.
    [20]刘福田,李兆前,黄传真.金属陶瓷复合涂层技术[J].济南大学学报(自然科学版),2002,16(1):84-91.
    [21]王随莲,黄传真,徐立强,等.金属陶瓷刀具材料的研究现状[J].机械工程师,2005,(3):7-9.
    [22]李奎,潘复生,等.TiC、TiN、Ti(C,N)粉末制备技术的现状及发展[J].重庆大学学报(自然科学版),2002,25(6):135-138.
    [23]魏红菊,吴一,龙飞,等.超细TiC粉体制备的研究现状及展望[J].材料导报:纳米与新材料专辑,2008,(1):112-114.
    [24]杨锦,李芳,刘颖,等Ti(C,N)粉末制备技术的研究及进展[J].硬质合金,2005,22(1):52-54.
    [25]韩成良,刘宁,许育东,等.铣削刀片用纳米改性金属陶瓷的显微组织和力学性能[J].硬质合金,2004,21(1):14-17.
    [26]盛智勇,张崇才,方琴,等.冷等静压成形及烧结温度对超细WC-TiC-Co硬质合金性能的影响[J].西华大学学报(自然科学版),2008,27(4):69-71.
    [27]王雪红,肖平安,刘吉梓,等.粉末注射成型工艺制备TiC-10%Ni-10%Mo[J].机械工程材料,2009,33(4):55-63.
    [28]N. Liu, W. H. Yin. Effect of TiC/TiN powder size on microstructure and properties of Ti(C, N)-based cermets [J]. Materials Science and Engineering A,2007,445-446:707-716.
    [29]张一欣,郑勇,郑建智,等.冷却方式对Ti(CN)基金属陶瓷显微组织和力学性能的影响[J].硬质合金,2009,26(1):20-23.
    [30]龙春光,刘厚才,等.原位反应合成法制备TiC/Al预制块的研究[J].轻合金加工技术,2001,29(9):44-46.
    [31]雷燕.纳米复合Ti(C,N)基金属陶瓷材料研究[D].武汉:华中科技大学(博士学位论文),2005:66-77.
    [32]陈怡元,邹正光,龙飞.碳源对自蔓延高温合成TiC粉末的影响[J].桂林工学院学报,2006,26(4):534-537.
    [33]吴一,尹传强,邹正光,等.自蔓延高温合成TiC-Al2O3/FeAl复合材料的研究[J].材料工程,2005,(7):3-6.
    [34]邹正光,傅正义,袁润章Ti-C-xFe体系自蔓延高温合成及机理[J].材料研究学报,2000,14(5):531-537.
    [35]邹正光,李晓敏,吴一,等.碳源对自蔓延高温合成TiC-Al2O3/Fe3Al复合材料的影响[J].矿冶工程,2006,26(3):68-70.
    [36]栾振涛,周丽,殷凤仕SHS-PHIP法制备TiC-Ni(Mo):金属陶瓷[J].热加工工艺,2003,(6):35-36.
    [37]Y. Zheng, X. S. Wang. Fabrication of nancomposite Ti(C, N)-based cermets by spark plasma sintering [J]. Materials Chemistry and Physics,2005,92(1):64-70.
    [38]夏珊,叶金文,刘颖,等.粉末预处理和合金固溶对SPS烧结Ti(CN)基金属陶瓷的影响[J].稀有金属材料与工程,2009,38(A01):419-423.
    [39]于海军,郑勇,卜海建,等.热等静压处理对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2006,23(3):134-138.
    [40]周泽华,丁培道.Ti(C,N)基金属陶瓷中添加成分的研究现状[J].材料导报,2000,14(4):21-22.
    [41]S. Z. Xu, H. P. Wang, S. Z. Zhou. The influence of TiN content on properties of Ti(C, N) solid solution [J]. Materials Science and Engineering A,1996, 209(1-2):294-297.
    [42]E. Conforto, D. Mari, T. Cutard. The role of molybdenum in the hard-phase grains of (Ti, Mo) (C, N)-Co cermets [J]. Philosophical Magazine,2004, 11(6):1717-1733.
    [43]贺从训,夏志华.Ti(C,N)基金属陶瓷的研究[J].稀有金属,1999,23(1):4-12.
    [44]J. Qu, W. H. Xiong, D. M. Ye, et al. Effect of WC content on the microstructure and mechanical properties of Ti(C0.5N0.5)-WC-Mo-Ni cermets[J]. International Journal of Refractory Metals and Hard Materials, 2010,28(2):243-249.
    [45]N. Liu, Y. D. Xu, Z. H. Li. Influence of molybdenum addition on the microstructure and mechanical properties of TiC-based cermet with nano-TiN modification [J]. Ceramics International,2003,29(8):919-925.
    [46]P. Lindahl, P. Gustafson, U. Rolander. Microstructure of model cermets with high Mo or W content International [J]. International Journal of Refractory Metals and Hard Materials,1999,17(6):411-421.
    [47]W. T. Kwon, J. S. Park, S. W. Kim. Effect of WC and group IV carbides on the cutting performance of Ti(C, N) cermet tools [J]. International Journal of Machine Tools and Manufacture,2004,44(4):341-346.
    [48]P. Lindahl, U. Rolander, H.O. Andren. Atom-probe analysis of the binder phase in TiC-TiN-Mo2C-(Ni, Co) cermets [J]. International Journal of Refractory Metals and Hard Materials,1993,12(12):115-119.
    [49]陈怡元,邹正光,龙飞TiC/Fe复合材料的研究进展[J].稀有金属与硬质合金,2007,35(1):53-56.
    [50]邹正光,付正义.TiC/Fe体系自蔓延高温合成过程中金属相Fe的作用[J].材料科学与工程,1998,16(3):46-48.
    [51]张卫方,韩杰才.SHS/PHIP技术制备TiC-Al2O3-Fe金属陶瓷及其微观组织分析[J].航空材料学报,1999,19(3):27-32.
    [52]L. X. Pang, K. N. Sun, J. T. Sun, et al. Interface electron structure of Fe3Al/TiC composites[J]. Transactions of Nonferrous Metals Society of China,2006,16(2):294-298.
    [53]尹衍升,龚红宇,谭训彦,等.Al2O3/(纳米)Fe3Al复合材料位错形貌的TEM观测[J].复合材料学报,2004,21(2):153-156.
    [54]邹正光,吴一,尹传强,等.TiC-Al2O3/Fe3Al复合粉末的燃烧合成[J].材料导报,2006,20(4):136-138.
    [55]杨开明,朱敏,刘峰晓,等.反应热压制备FeAl/TiC复合材料的研究[J].硬质合金,2004,21(1):21-26.
    [56]刘峰晓,刘咏,黄伯云,等.加Ni的FeAl/TiC复合材料的制备与性能研究[J].矿冶工程,2004,24(5):86-88.
    [57]高明霞,颐潘,F. J. Oliveria,等.自发熔渗法制备TiC/NiAl复合材料和其微观组织特征[J].复合材料学报,2004,21(5):11-15.
    [58]武振生,王树奇,陈康敏,等.Ti-C-Al-Ni系热爆复合产物TiC/NiAl的组织形态研究[J].稀有金属材料与工程,2006,35(增刊2):87-90.
    [59]张杰,刘灿楼,胡镇华.碳含量对Ti(C,N)基金属陶瓷组织和性能的影响[J].粉末冶金技术,1997,15(2):122-125.
    [60]熊惟皓,胡镇华Ti(C,N)基金属陶瓷中碳化物的界面行为[J].材料导报,1998,12(2):14-16.
    [61]王全兆,刘越,关德慧,等.TiN含量对Ti(C, N)/NiCr金属陶瓷微观结构和力学性能的影响[J].金属学报,2005,41(11):1121-1126.
    [62]郑勇,刘文俊,游敏,等.Cr3C2和VC对Ti(C, N)基金属陶瓷中环形相的价电子结构和性能的影响[J].硅酸盐学报,2004,32(4):422-428.
    [63]何林,黄传真,孙静,等.Cr3C2含量对Ti(C,N)基金属陶瓷力学性能的影响[J].材料工程,2003,(7):7-9.
    [64]章晓波,刘宁TiC-ZrC-Co-Ni金属陶瓷的抗热震性能[J].硬质合金,2009,26(1):39-43.
    [65]刘宁,徐根应,许育东.金属陶瓷热冲击疲劳裂纹形成机制[J].复合材料学报,1998,15(2):36-41.
    [66]李燕,朱绍峰,陈凤琴.钼含量对Ti(C, N)-Co金属陶瓷抗热震性能的影响[J].热处理,2009,24(3):25-28.
    [67]X. B. Zhang, N. Liu, Y. Li, et al. Mechanical properties and thermal shock resistance of nano Modified Ti(C,N)-based cermets[J]. Journal of the Chinese Ceramic Society,2008,36(4):503-509.
    [68]许育东.颗粒型陶瓷-金属复合材料热冲击疲劳行为研究[D].合肥:合肥工业大学(硕士学位论文),1997:44-50.
    [69]许育东.纳米增强金属陶瓷的组织及热冲击性能[J].复合材料学报,2006,23(5):44-50.
    [70]章晓波,刘宁,于超,等.纳米改性Ti(C, N)基金属陶瓷的抗热震性能研究[J].金属热处理,2008,33(3):47-50.
    [71]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,23(4):217-225.
    [72]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社1993:231-482.
    [73]刘志林.合金价电子结构与成份设计[M].长春:吉林科学技术出版社,1990:1-214.
    [74]刘志林.固相合金中的C-Me偏聚理论[J].科学通报,1989,34(14):1055-1057.
    [75]许育东,刘宁,石敏,等.(Ti,Mo, W, Ta, V,Nb)(C, N)多元陶瓷相的价电子结构[J].硅酸盐通报,2005,24(2):8-12.
    [76]刘志林,孙振国,李志林.余氏理论和程氏理论在合金研究中的应用[J].自然科学进展,1998,8(2):150-160.
    [77]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学技术出版社,2002:7-423
    [78]刘艳,刘志林,刘伟东,等.应用相结构因子研究合金元素的固溶强化[J].自然科学进展,2002,12(11):1172-1176.
    [79]宋月鹏,刘国权,李志林,等.高温奥氏体Y-FeC晶胞的价电子结构计算[J].钢铁研究学报,2007,19(3):41-61.
    [80]尹桂丽,周立岱,林成.磷对钢冷脆行为影响的相界面电子结构分析[J].辽宁工业大学学报(自然科学版),2009,29(3):190-193.
    [81]郑伟涛,张瑞林,余瑞璜Ag-Au, Au-Cu二元合金形成能和高温相图的研究[J].科学通报,1990,35(9):705-708.
    [82]张伟,刘伟东,王彦春,等.Mg-Al-Ca合金中第二相价电子结构计算与强化机制分析[J].稀有金属材料与工程,2009,38(1):120-125.
    [83]J. Y. Cai, J. Z. Peng, X. Z. Yang, et al. A model of valence electron structure for embrittlement of TiAl [J]. Materials Letters,2008,62(24):3957-3959.
    [84]吴文霞,薛志勇,洪兴,等Fe, Co, Ni的价电子结构分析及物理性能计算[J].中国科学(G辑:物理学力学天文学),2009,39(3):372-377.
    [85]王焕荣,叶以富,闵光辉,等.TiC价电子结构及其性质分析[J].科学通报,2001,46(3):215-217.
    [86]刘宁,张瑞林.VC, NbC, TaC的价电子结构及其本质硬度[J].合肥工业大学学报(自然科学版),1998,21(1):15-19.
    [87]刘宁,刘逊芬.Mo2C相价电子结构及其本质硬度[J].合肥工业大学学报(自然科学版),1997,20(4):14-19.
    [88]刘宁,胡镇华,崔昆.陶瓷相(Ti,W)C的价电子结构与力学性能的关系[J].硅酸盐学报,1997,25(4):420-426.
    [89]许育东,石敏,刘宁,等.(Ti, Me)(C, N)/Ni的润湿性及其价电子结构[J].复合材料学报,2005,22(4):75-80.
    [90]石敏,许育东,刘宁,等.金属陶瓷中(Ti, Me)(C, N)/Ni界面价电子结构[J].矿冶工程,2005,25(6):93-97.
    [91]S. Q. Zhou, W. Zhao, W. H. Xiong, et al. Thermodynamics of the formation of contiguity between ceramic grainsand interface structures of Ti(C,N)-based cermets[J]. International Journal of Refractory Metals and Hard Materials,2009,27(4):740-746.
    [92]Y. Zheng, M. You, W. H. Xiong, et al. Valence-electron structure and properties of main phases in Ti(C, N)-based cermets [J]. Materials Chemistry and Physics,2007,82(3):877-881.
    [93]郑勇,熊惟皓,等.Ti (C, N)固溶体的价电子结构及其与硬度和塑性间的关系[J].稀有金属材料与工程,2002,31(1):13-16.
    [94]程开甲,程漱玉.论材料科学的理论基础[J].自然科学进展,1996,6(1):1-7.
    [95]程开甲,程漱玉.TFD模型和余氏理论对材料设计的应用[J].自然科学进展,1993,3(5):417-432.
    [96]孙振国,李志林,刘志林.合金异相界面电子密度的计算方法[J].科学通报,1995,40(24):2219-2222.
    [97]刘志林,孙振国,李志林.铸铁凝固理论中的结构形成因子[J].科学通报,1995,40(4):310-313.
    [98]刘志林,孙振国,李志林.奥氏体/马氏体异相界面的电子密度[J].科学通 报,1995,40(22):2040-2240.
    [99]章桥新.(Ti, W)(C, N)的价电子结构研究[J].稀有金属与硬质合金,2001,(1):5-7.
    [100]章桥新TiC1-xNx固溶体的价电子结构及其性能研究[J].稀有金属与硬质合金,2000,(4):28-30.
    [101]刘宁,吕庆荣,姜勇Ti(C, N)基金属陶瓷抗弯强度的价电子判据研究[J].硅酸盐学报,1999,27(3):298-304.
    [102]刘宁,胡镇华.陶瓷相(Ti, W)C的价电子结构与力学性能的关系[J].硅酸盐学报,1997,25(4):420-426.
    [103]刘宁,熊惟皓Ti(C, N)基金属陶瓷抗弯强度的价电子判据研究[J].硅酸盐学报,1999,27(3):298-304.
    [104]孙家涛,范润华,刘冰,等.碳化物价电子结构及其界面电子密度分析[J].人工晶体学报,2004,33(3):316-319.
    [105]范润华,尹衍升,孙家涛.铁铝化合物/碳化物复合材料的界面电子结构[J].自然科学进展,2004,14(3):307-311.
    [106]徐文武TiCx/Fe、TiC-Me-Fe系列金属陶瓷价电子结构与性能的关系[D].桂林:桂林工学院(硕士学位论文),2007:32-33.
    [107]尹衍升,龚红宇,谭训彦,等.Fe3Al/Al203纳微米复合材料的界面电子结构研究[J].人工晶体学报,2003,32(2):99-105.
    [108]师瑞霞,尹衍升,李嘉,等.Co包覆纳米Al2O3/TiC复合材料的界面电子结构计算及材料制备[J].人工晶体学报,2006,35(2):388-394.
    [109]Y. F. Zhang, J. Q. Li, L. X. Zhou. A Theoretical Study on the Chemical Bonding of 3d-transition-metal Carbides [J]. Solid State Communications, 2002,121(8):411-416.
    [110]J. Xiong, Z. X. Gao, B. L. Shen, et al. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0.7N0.3 cermet [J]. Materials and Design,2007,28(5):1689-1694.
    [111]Y. Li, N. Liu, X. B. Zhang, et al. Effect of WC content on the microstructure and mechanical properties of (Ti, W)(C,N)-Co cermets[J]. International Journal of Refractory Metals and Hard Materials,2008,26(1):33-40.
    [112]胡耀波,熊惟皓,林真.NbC对Ti(C,N)基金属陶瓷性能的影响[C].第一届国际模具技术会议,2000:268-272.
    [113]望军,吕凌,孙晓燕,等.VC对微米级Ti(CN)基金属陶瓷微观结构和力学性能的影响[J].工具技术,2008,42(8):14-16.
    [114]许育东,刘宁,石敏,等.纳米改性Ti(C, N)基金属陶瓷研究进展[J].硬质合金,2005,22(2):112-116.
    [115]陈名海Ti(C, N)基金属陶瓷中润湿性与陶瓷相价电子结构的关系[D].合肥:合肥工业大学(硕士学位论文),2003:26-35.
    [116]李燕,刘宁.细晶粒TiCN-Co金属陶瓷的显微结构与力学性能[J].材料热处理学报,2008,29(1):1-4.
    [117]Jr M. Humenik, W. D. Kingery. Metal-ceramic interactions:Ⅲ, surface tension and wettability of metal-ceramic systems [J]. Journal of the American Ceramic Society,1954,37(1):18-23.
    [118]刘宁,黄新民,周杰,等.Ti(C, N)基金属陶瓷显微组织的研究[J].硅酸盐学报,1999,27(6):750-756.
    [119]刘宁,熊惟皓.金属陶瓷断裂韧性的价电子结构设计[J].合肥工业大学学报(自然科学版),1999,22(4):1-5.
    [120]武志胜.Ni含量对TiC-Co-Ni复合材料力学性能的影响[J].纤维复合材料,2005,(01):26-29.
    [121]Z. S. Liu, H. Fredriksson. On the Precipitation of TiC in Liquid Iron by Reactions between Different Phases [J]. Metallurgical and Materials Transactions A,1997,28:471-483.
    [122]Z. P. Xing, J. T. Guo, F Y. Han. Micro structure and Mechanical Behavior of the NiAl-TiC in-situ Composite [J]. Metallurgical and Materials Transactions A,1997,28(4):1079-1087.
    [123]李顺林,卢翔,朱正吼,等.金属基纳米复合材料的制备技术研究[J].南京航空航天大学学报.,2003,35(5):572-578.
    [124]章晓波,刘宁,陈焱,等.纳米TiN改性Ti (C,N)基金属陶瓷的组织和性能[J].中国有色金属学报,2008,18(7):1280-1285.
    [125]徐智谋,易新建,郑家燊,等.粉末相组成对(Ti, W, Ta, Mo)(C,N)-(Co,Ni)金属陶瓷组织及性能的影响[J].复合材料学报,2003,20(4):39-45.
    [126]刘宁,刘宁,黄新民,周杰,宫晨利,石敏,张庶元Ti (C, N)基金属陶瓷中陶瓷相芯/壳组织的观察与分析[J].硅酸盐学报,2000,28(4):381-384.
    [127]许育东,刘宁,石敏,等.Mo添加量对纳米改性金属陶瓷显微组织的影响[J].矿冶工程,2005,25(2):77-80.
    [128]赵田臣,孟凡爱,裴龙刚,等.高速列车金属陶瓷复合材料制动闸片的制备与性能[J].机械工程材料,2004,28(7):27-28.
    [129]S. Y. Ahn, S. Kang. Formation of core/rim structures in Ti(C, N)-2WC-2Ni cermets via a dissolution and precipiation process [J]. Journal of the American Ceramic Society.,2000,83(6):213-217.
    [130]Q. Ma, L. C. Lim. Microstructural evolution in the phase mixtures of "Ti(C, N)-Mo" at 1600℃ [J]. Materials Science and Engineering A,1999, 264(5):39-46.
    [131]J. K. Yang, H. C. Lee. Microstructural evolution during the sintering of a "Ti(C, N)-Mo2C-Ni alloy" [J]. Materials Science and Engineering A,1996, 264(1-2):213-217.
    [132]T. Nishimnra, K. Mnrayama, T. Kitada. Some properties of cermets sintered in nitrogen gas [J]. International Journal of Refractory Metals and Hard Materials,1985,35:31-35.
    [133]许育东.高性能Ti(C,N)基金属陶瓷材料及其刀具切削性能研究[D].合肥:合肥工业大学(博士学位论文),2005:7-69.
    [134]D. V. Rahimi, M. Rajmani, S. M. Fachihi, et al. Microstructure and cutting containing performance investigation of Ti(C, N)-based cermets vanous types of secondary carbides [J]. International Journal of Machine Tool and Manufacture,2007,47(5):768-772.
    [135]刘峰晓,贺跃辉,黄伯云,等Ti(C, N)基金属陶瓷的发展现状及趋势[J].粉末冶金技术,2004,22(4):236-240.
    [136]X. B. Zhang, N. Liu, C. L. Rong. Effect of molybdenum content on the microstructure and mechanical properties of ultra-fine Ti(C, N) based cermets [J]. Materials characterization,2008,59(12):1690-1696.
    [137]郑勇,熊惟皓.微米级和亚微米级Ti(C,N)基金属陶瓷的组织和性能[J].材料工程,2001,5(5):37-40.
    [138]许育东,刘宁,曾庆梅.纳米改性金属陶瓷的组织和力学性能[J].复合材料学报,2003,20(1):33-37.
    [139]N. Liu, G. Y. Xu, Y. D. Xu. Thermal shock fatigue behaviors of cemented carbide YG20 [J]. Transactions Nonferrous Metals Society of China.1998, 7(2):149-151.
    [140]刘宁,徐根应,许育东Ti(C,N)基金属陶瓷的抗热冲击性能[J].中国有色金属学报,1997,7(4):134-140.
    [141]徐根应,刘宁,许育东.含20%Ni金属陶瓷的热冲击疲劳[J].稀有金属材料与工程,1997,26(3):9-13.
    [142]许育东,刘宁,石敏,等.纳米增强金属陶瓷的组织及热冲击性能[J].复合材料学报,2006,23(5):44-50.
    [143]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,1999:200.
    [144]高濂,靳喜海,郑珊.纳米复相陶瓷[M].北京:化学工业出版社,2004:112.
    [145]郑修麟.工程材料的力学行为[M].西安:西北工业大学出版社,2004:276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700