用户名: 密码: 验证码:
从铟铁酸锌中用机械活化方法强化浸出铟、锌的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铟是一种典型的稀散金属,它具有十分独特的物化性能。铟大多数以含铁很高的锌精矿产出。锌精矿焙砂经中浸和酸浸两次浸出后,焙砂中的锌无法完全浸出,约有20%的锌残留于浸出渣中,而这部分锌主要以ZnFe2O4的形式存在,铟以替代阳离子的形式进入ZnFe2O4晶格中,由于铁酸锌很稳定,在通常情况下铟、锌很难被浸出。为了强化铟、锌的浸出,本文采用机械活化的方法对铟铁酸锌进行预处理,研究了从铟铁酸锌中用机械活化方法强化浸出铟、锌的机理。
     本文首先以人工合成的铟铁酸锌为研究对象,分别以滚筒磨和行星磨为活化设备,利用X射线衍射(XRD)分析、粒度分析、BET比表面积分析、傅立叶红外光谱(FT-IR)分析、穆斯堡尔谱分析和浸出实验研究了机械活化条件(磨筒转速、活化时间、介质填充率、球料比和介质种类)对铟铁酸锌物化性质和铟、锌浸出性的影响,在此基础上研究了滚筒磨活化和行星磨活化对铟铁酸锌中铟、锌浸出反应动力学的影响。研究表明,滚筒磨和行星磨活化均导致了铟铁酸锌颗粒细化,比表面积增加,晶格缺陷增加,晶格中部分Zn2+和Fe3+发生了转置,机械活化能有效地强化铟铁酸锌中铟、锌在硫酸体系中的浸出。
     以滚筒磨为活化设备时,由于存在临界转速,铟铁酸锌的物化性质和浸出性的改善随转速增加先越来越明显然后越来越不明显;活化时间对铟铁酸锌粒度的影响主要发生在最初的30min,延长活化时间铟铁酸锌的晶体结构破坏程度加大、浸出性增强;当介质填充率为30%~50%时,活化对铟铁酸锌物化性质和浸出性的改善基本一致,当介质填充率大于50%时,随着介质填充率的增大铟铁酸锌物化性质和浸出性的改善变差;球料比越大,铟铁酸锌物化性质变化越显著,铟、锌浸出率越高;磨球介质对铟铁酸锌物化性质和铟铁酸锌浸出行为影响程度大小顺序为氧化锆球>不锈钢球>刚玉球。
     以行星磨为活化设备时,行星磨转速越大、活化时间越长、介质填充率越少、球料比越大,铟铁酸锌物化性质的改善和浸出性的提高越显著;磨球介质种类对铟铁酸锌物化性质和浸出行为影响程度大小顺序为不锈钢球>氧化锆球>刚玉球。
     动力学研究发现,机械活化使铟铁酸锌的浸出过程对反应温度和硫酸浓度的依赖性降低。根据动力学数据确定的未活化、滚筒磨活化30min和行星磨活化15main的铟铁酸锌与硫酸反应时铟浸出反应的表观活化能分别为78.1kJ/mol、73.5kJ/mol和49.1kJ/mol,锌浸出反应的表观活化能分别为73.9kJ/mol、70.3kJ/mol和57.2kJ/mol;铟浸出反应的表观反应级数分别为0.82、0.69和0.57,锌浸出反应的表观反应级数分别从为0.72、0.70和0.61。实验确立的动力学模型能够较好地描述铟铁酸锌在硫酸溶液中的浸出过程。
     在上述研究的基础上,以行星磨活化15min的铟铁酸锌为研究对象,通过高温退火处理研究活化的铟铁酸锌的失活条件和失活机理。研究结果表明,活化的铟铁酸锌在不同温度下退火处理时有两次明显的失活现象。一是在450℃的条件下退火处理4h,此时活性的降低主要是颗粒发生团聚导致的,对比未活化、活化和退火处理样品的浸出数据可知,机械活化引起的颗粒细化并不是改善铟铁酸锌浸出的主要原因,颗粒细化的作用不足25%。二是在1000℃的条件下退火处理4h,此时活性的降低主要是晶格缺陷恢复引起的,但活化的铟铁酸锌仍无法达到完全失活。450℃退火处理样品的浸出反应动力学研究结果表明,行星磨活化引发的颗粒细化在改善铟铁酸锌浸出动力学方面具有一定的作用,但不及晶格破坏对其的影响程度大。
     机械活化使铁酸锌的晶格结构受到破坏,产生各种晶格缺陷。晶格缺陷对晶体材料的几何和电子结构都有较大的影响,因此会影响到材料的反应活性。为了进一步分析机械活化引起的晶格缺陷对铁酸锌微观结构和反应活性影响的本质原因,本文采用基于密度泛函理论(DFT)的第一性原理计算,研究了空位缺陷和锌铁转置缺陷对铁酸锌的几何结构和电子结构的影响。结果发现:铁酸锌是直接带隙的半导体;铁酸锌晶体中Zn-O键是由所谓的sp3杂化轨道互成109°28'的角度成键;铁酸锌具有高稳定性的原因是其四面体内部存在百分率较高的Zn-O配价键。锌空位和铁空位使铁酸锌的晶格常数变大,晶胞变形,氧空位和锌铁转置使铁酸锌的晶格常数变小,晶胞也发生变形。各种缺陷形成的难易程度为:锌铁转置缺陷最容易形成,其次是锌空位、铁空位,最难形成的是氧空位。空位缺陷和锌铁转置缺陷使铁酸锌由半导体属性变为金属属性。锌空位、铁空位、氧空位均使空位周围原子所带的电荷降低。锌空位和铁空位使其相邻的键的作用略微增强;氧空位使其相邻的Fe-O键的强度略微增强、Zn-O键的强度明显减弱。含锌铁转置缺陷的铁酸锌中与四面体(A)位铁原子相连的氧原子所带的电荷数降低,与其相连的Fe-O键的强度增强,键长变短;与八面体[B]位锌原子相连的氧原子所带的电荷数增加,与其相连的Zn-O键的强度减弱,键长变长。
     另外,本文分别对铟取代锌和铟取代铁的铁酸锌的几何结构和电子结构进行了理论计算。结果发现:铟取代导致铁酸锌晶胞膨胀变形;铟在铁酸锌晶胞中以取代锌的形式存在时具有更高的稳定性;铟取代锌的铁酸锌中,In-O键的强度与Zn-O键的强度接近,均表现出共价键性质,In原子周围Fe-O键的强度被削弱;铟取代铁的铁酸锌中,In-O键的强度低于Zn-O键和Fe-O键的强度,In原子周围Zn-O键的强度被削弱,Fe-O键的强度略微增强。
     本论文的研究工作可完善从铟铁酸锌中用机械活化方法强化浸出铟、锌的机理及动力学理论,为高效提取含铟铁酸锌的湿法炼锌渣中的铟、锌提供理论依据和设计模型,具有较高的学术价值和实际指导意义。
Indium is a representative rare scattered metal with many unique physicochemical properties. Indium is produced mainly from zinc concentrate with the presence of iron. After zinc calcine is leached using neutral solution and acid solution, about20%of zinc remains in the leaching residue, and exists in the form of zinc ferrite (ZnFe2O4). The indium enters the crystal lattice of ZnFe2O4through substituting cation ion to form indium-bearing zinc ferrite. Because zinc ferrite is very stable, it is difficult to leach indium and zinc from zinc ferrite under normal conditions. In order to improve the leaching efficiency of indium and zinc, mechanical activation was used to pretreat indium-bearing zinc ferrite, and the mechanism of indium and zinc leaching from indium-bearing zinc ferrite enhanced by mechanical activation was studied.
     In this paper, the effect of mechanical activation conditions (rotation speed, activation time, media filling, ball to material ratio and species of media) on the physicochemical properties and leaching behavior of synthetic indium-bearing zinc ferrite activated by tumbling mill and planetary mill were studied by means of X-ray diffraction (XRD) analysis, particle size analysis, BET specific surface area analysis, scanning electron microscopy (SEM) analysis, Fourier transform infrared spectra (FT-IR) analysis, Mossbauer spectrometry analysis, and leaching tests. The results showed that mechanical activation by tumbing mill and planetary mill led to the decrease of particle size, the increase of specific surface area and lattice defect, and the inversion between Zn2+and Fe3+. Mechanical activation improved efficiently the leaching of indium-bearing zinc ferrite in sulfuric acid solutions.
     For indium-bearing zinc ferrite activated by tumbling mill, the improvement of physicochemical properties and leaching behavior became more obvious with the increase of rotation speed, then was not obvious due to the critical rotation speed. The effect of activation time on particle size mainly ocurred in the initial30min of tumbing mill activtion. Prolonging activation time, the damages of crystal structure aggravated and the leaching efficiencies were improved. When the media filling was30%-50%, the changes of physicochemical properties and leaching behavior were very similar. When the media filling was bigger than50%, the improvement of physicochemical properties and leaching behavior decreased with the increase of media filling. The improvement of physicochemical properties and leaching behavior became more significient with the increase of ball to material ratio. The effect of species of media on physicochemical properties and leaching behavior was determined as zirconium oxide> stainless steel> corundum.
     For indium-bearing zinc ferrite activated by planetary mill, the changes of physicochemical properties and leaching behavior became more notable with the increase of rotation speed, activation time and ball to material ratio, and the decrease of media filling. The effect of species of media on physicochemical properties and leaching behavior was determined as stainless steel> zirconium oxide> corundum.
     Kinetic study showed that mechanical activation decreased the dependency of leaching process of indium-bearing zinc ferrite on reaction temperature and H2SO4concentration. The apparent activation energies of indium leaching from the unmilled, activated for30min by tumbling mill and activated for15min by planetary mill indium-bearing zinc ferrite were determined as78.1kJ/mol,73.5kJ/mol and49.1kJ/mol, respectively; the apparent activation energies of zinc leaching were73.9kJ/mol,70.3kJ/mol and57.2kJ/mol, respectively. The apparent reaction orders of indium leaching were0.82,0.69and0.57, respectively; the apparent reaction orders of zinc leaching were0.72,0.70and0.61, respectively. The determined kinetics models can describe the leaching process of indium-bearing zinc ferrite well.
     Base on the above study, the deactivation conditions and deactivation mechanism of indium-bearing zinc ferrite activated for15min by planetary mill were investigated using the method of annealing treatment. The results showed that there were two obvious deactivation phenomenon when the activated sample was treated under different anealing temperatures. The fist one occurred in anealing treatment at450℃for4h. In this deactivation stage, the decrease of activity was mainly caused by particles agglomeration. Comparing the leaching data of annealed sample to those of unilled and activated samples, it can be concluded that the decrease of particle size was not the most important cause in the improvement of leaching process of indium-bearing zinc ferrite. The effect of the decrease of particle size was less than25%. The second one occurred in anealing treatment at1000℃for4h. In this stage, the decrease of activity was mainly caused by lattice defect restoration, but the activated indium-bearing zinc ferrite can not lose activity fully. The study on the leaching kinetics of the sampe treated by anealing at450℃showed that the decrease of particle size induced by planetary mill activation had a positive effect on the improvement of the leaching kinetics of indium-bearing zinc ferrite, but it was less than the effect of the damages of crystal structure.
     Mechanical activation led to the damages of crystal stucture and caused various lattice defects. However, lattice defects have an important effect on the geometric stucture and electronic structure of crystal materials so that it will affect the reaction activity. In order to analysis the essential effect of the lattice defects induced by mechanical activation on the microstructure and reaction activity of zinc ferrite, the effect of the vacancy defects and the inversion defect between Zn2+and Fe3+on the geometric stucture and electronic structure of zinc ferrite was investigated using the first principle calculation based on density function theory (DFT) in this study. The results showed that zinc ferrite was a semiconductor with direct band gap; the Zn-O bonds in ZnFe2O4had sp3covalent bond character with the Zn at the center and the agnle between any two Zn-O valencies was109°28'; the high chemical stability of ZnFe2O4could be attributed to the existence of high percent Zn-O covalent bonds. Both Zn-vacancy and Fe-vacancy increased the lattice parameters and caused lattice deformation; both O-vacancy and inversion defect decreased lattice parameters and also caused lattice deformation. The formation of different lattice defects had different difficult levels. Among them, the inversion defect was the easiest one to form, then Zn-vacancy, Fe-vacancy and O-vacancy. The vacancy defects and inversion defect changed the spinel zinc ferrite from semiconductor properties into metallic properties. Zn-vacancy, Fe-vacancy and O-vacancy decreased the charge of atoms around vacancy defect. Zn-vacancy and Fe-vacancy increased slightly the bond strength around vacancy defect, and O-vacancy increased slightly the strength of Fe-O bonds and decreased significantly the strength of Zn-O bonds around vacancy defect. For zinc ferrite with inversion defect, the charge of O atoms attated with Fe atom located at the tetrahedral (A) site decreased, the strength of Fe-O bonds increased and the bond lengths became short; the charge of O atoms attated with Zn atom located at the octahedral [B] site increased, the strength of Zn-O bonds decreased and the bond lengths became long. In addition, the results of theoretical calculation have confirmed that indium entered into the crystal lattice of zinc ferrite through substituting zinc ions for the industrial indium-bearing zinc ferrite due to the lower indium concentration.
     In addition, the geometric and electronic structures of In-substituting ZnFe2O4were also studied by first-priciples DFT calculations. The results showed that In substitution induced the increase of lattice parameters and slight deformation of lattice cell.In substituting Zn in the ZnFe2O4had high stability. For ZnFe2O4with In substituting Zn, the bond strengths of In-O and Zn-O were similar and showed covalent character. Moreover, the strength of Fe-O around In-atom decreased. For ZnFe2O4with In substituting Fe, the bond strength of In-O was lower than those of Zn-O and Fe-O. In addition, the bond strength of Zn-O around In-atom decreased and the bond strength of Fe-O around In-atom increased.
     This study can perfect the mechanism of enhancing leaching indium and zinc from indium-bearing zinc ferrite by mechanical activation and kinetics theory. It can provide theoretical basis and design model for the indium and zinc recovery from hydrometallurgical zinc residue contains indium-bearing zinc ferrite. It owns high academic value and practical guiding significance.
引文
[1]王顺昌,齐守智.铟的资源、应用和市场[J].世界有色金属,2000,(12):22-24
    [3]王树楷.铟冶金[M].北京:冶金工业出版社,2006.
    [4]李建敏,刘晓红,王贺云,等.铟的市场、应用及其提取技术[J].江西冶金,2006,26(1):41-43
    [5]冯同春,杨斌,刘大春,等.铟的生产技术进展及产业现状[J].冶金丛刊,2007,(2):42-46
    [6]陈坚,姚吉升,周友元,等.ITO废靶回收金属铟[J].稀有金属,2003,27(1):101-103
    [7]Pramanik N C, Dasl S, Biswas P K. The effect of Sn (Ⅳ) on transformation of co-precipitated hydrated In (Ⅲ) and Sn (Ⅳ) hydroxides to indium tin oxide (ITO) powder [J]. Materials Letters,2002,56 (5):671-679
    [8]Li S, Qiao X, Chen J, et al. Effects of temperature on indium tin oxide particles synthesized by co-precipitation [J]. Journal of Crystal Growth,2006,289(1):151-156
    [9]Helander M G, Wang Z B, Qiu J, et al. Chlorinated indium tin oxide electrodes with high work function for organic device compatibility [J]. Science,2011,332(6032):944-947
    [10]Tang F, Chang J, Chou W, et al. Effective oxygen plasma treatment on indium tin oxide electrode to improve organic solar cell efficiency [J]. Physica Status Solidi (a),2012, 209(2):369-372
    [11]Rider D A, Tucker R T, Worfolk B J, et al. Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells [J]. Nanotechnology,2011,22(8):1-9
    [12]Alfantazi A M, Moskalyk R R. Processing of indium:a review [J]. Minerals Engineering, 2003,16(8):687-694
    [13]王智勇.完善铟冶炼工艺提升粗铟质量的探讨[J].湖南有色金属,2008,24(5):20-22
    [14]邓孟俐,谢冰.锌冶炼工艺过程中铟、锗的综合回收[J].稀有金属与硬质合金,2007,35(2):21-24
    [15]宁顺明,陈志飞.从黄钾铁矾渣中回收锌铟[J].中国有色金属学报,1997,7(3):56-58
    [16]沈奕林,覃庶宏,熊志军.铁矾渣的处理及萃取提铟新工艺研究[J].有色金属:冶炼部分,2001,(4):33-35
    [17]袁铁锤,高亮,宁顺明,等.黄钾铁矾法处理含铟高铁锌精矿[J].有色金属:冶炼部分,2008,(1):11-14
    [18]许冬,阮胜寿,贾荣,等.锌冶炼废渣中铟回收技术综述[J].材料研究与应用,2009, 3(4):231-233
    [19]袁铁锤,宁顺明,陈志飞,等.从高铟锌精矿中综合回收锌和铟[J].湖南有色金属,2008,24(1):27-28,69
    [20]刘永成,戴永年.真空蒸馏处理锌合金的应用[J].昆明理工大学学报,1996,(6):38-41
    [21]杨斌,刘永成,吴昆华.真空蒸馏处理锌合金的研究[J].云南冶金,1998,27(4):31-41
    [22]Yao J H, Li X H, Li Y W. Study on indium leaching from mechanically activated hard zinc residue [J]. Journal of Mining and Metellurgy,2011,47 B (1):63-72
    [23]杨岳云.从铅浮渣反射炉烟灰中回收铟生产实践[J].湖南有色金属,2006,22(4):15-18
    [24]范元俊.从铅烟尘中提取铟的萃取试验与实践[J].湖南有色金属,2000,16(增刊):1-3,6
    [25]刘朗明.从铅浮渣反射炉烟尘中提铟的生产实践[J].中国有色冶金,2004,(3):28-30
    [26]周正华.铜烟灰回收铟工艺研究[J].稀有金属,2007,21(专辑):118-121
    [27]关鲁雄,雷坚志,郑有材,等.铜冶炼厂低铟烟尘中浸取有价金属的研究[J].稀有金属,2008,32(1):88-93
    [28]曹应科.从铜冶炼砷烟灰中回收铟[J].湖南有色金属,2005,21(1):5-8
    [29]Li Y, Liu Z, Li Q, et al. Recovery of indium from used indium-tin oxide (ITO) targets [J]. Hydrometallurgy,2011,105(3-4):207-212
    [30]王树楷.混酸溶浸-硫化沉锡工艺处理ITO废料回收铟锡[J].中国工程科学,2009,11(9):34-38
    [31]刘家祥,甘勇,张艳.利用ITO废靶材回收金属铟[J].稀有金属,2004,28(5):947-1950
    [32]Murakami Y, Shindo D, Zhang Q, et al. Microstructural investigation on the mechanism to extract indium from wasted materials [J]. Materials Science and Engineering A,2002, 332(1-2):64-69
    [33]Li X, Zhang Y, Yao J, et al. Kinetics of indium extraction from mechanically activated ITO scrap [J]. Materials Sciences and Applications,2011,51(2):521-525
    [34]陈坚,姚吉升,周友元,等.ITO废靶回收金属铟[J].稀有金属,2003,27(1):101-103
    [35]彭容秋.锌冶金[M].长沙:中南大学出版社,2005.
    [36]东北工学院有色金属冶炼教研室.锌冶金[M].北京:冶金工业出版社,1978.
    [37]Jha M K, Kumar V, Singh R J. Review of hydrometallurgical recovery of zinc from industrial wastes [J]. Resources, Conservation and Recycling,2001,33(1):1-22
    [38]丁德玲.锌粉和纳米氧化锌的制备[D].北京:北京化工大学,2006.
    [39]Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature [J]. Applied Physics Letters,2002,81(19):3648-3650
    [40]Wang Z. Zinc oxide nanostructures:growth, properties and applications [J]. Journal of Physics:Condensed Matter,2004,16(25):830-857
    [41]Roy S, Basu S. Improved zinc oxide film for gas sensor applications [J]. Bulletin of Materials Science,2002,25(6):513-515
    [42]Peulon S, Lincot D. Cathodic electrodeposition from aqueous solution of dense or open structured zinc oxide films [J]. Advanced Materials,1996,8(2):166-170
    [43]王敦青,焦秀玲,陈代荣.硫化锌性质、用途及制备方法概述[J].山东化工,2003,32(2):12-15
    [44]Ndukwe I C. Solution growth, characterization and applications of zinc sulphide thin films [J]. Solar Energy Materials and Solar Cells,1996,40(2):123-131
    [45]Gallagher D, Heady W E, Racz J M. Homogeneous precipitation of doped zinc sulfide nanocrystals for photonic applications [J]. Journal of Materials Research,1995,10(4): 870-876
    [46]李跃刚.硫酸锌的现状与未来发展趋势[J].中国高新技术企业,2009,(11):82-83
    [47]刘三军,欧乐明.中国锌冶炼工业现状[J].矿物保护与利用,2003,(6):36-40
    [48]梅光贵,王德润,周敬元,等.湿法炼锌学[M].长沙:中南大学出版社,2001.
    [49]Souza A D, Pina P S, Leao V A. Bioleaching and chemical leaching as an integrated process in the zinc industry [J]. Minerals Engineering,2007,20(6):591-599
    [50]王华,田海军.密闭鼓风炉炼锌工艺实践[J].有色冶金设计与研究,2009,30(5):24-26
    [51]周敬元.铅锌冶炼技术现状及发展动向[J].有色金属工业,2001,(5):42-47
    [52]白桦,李阳.铅锌密闭鼓风炉的熔炼机理及改进[J].有色冶金节能,2008,(1):33-36,11
    [53]郭天立,高良宾.当代竖罐炼锌技术述评[J].中国有色冶金,2007,(1):5-6,36
    [54]张杰.提高竖罐炼锌工艺蒸锌冶炼回收率的实践[J].有色矿冶,2011,27(6):22-23
    [55]王振岭.电炉炼锌[M].北京:冶金工业出版社,2001.
    [56]陈德喜,段力强.我国电炉炼锌工艺的技术进步与发展[J].有色金属(冶炼部分),2003,(2):20-23
    [57]谢大锦,朱华山,陈加希,等.湿法提锌工艺与技术[M].北京:冶金工业出版社,2006.
    [57]Wu M, Nakano M, She J. A model-based expert control system for the leaching process in zinc hydrometallurgy [J]. Expert Systems with Applications,1999,16(2):135-143
    [58]Vahidi E, Rashchi F. Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA [J]. Minerals Engineering,2009,22(2):204-206
    [59]Li M, Peng B, Chai L, et al. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon [J]. Journal of Hazardous Materials,2012,237-238: 323-330
    [60]Turan M D, Altundogan H S, Tumen Fikret. Recovery of zinc and lead from zinc plant residue [J]. Hydrometallurgy,2004,75(1-4):169-176
    [61]何醒民.我国湿法炼锌技术的发展与展望[J].工程设计和研究,2005,(118):25-27,54
    [62]Loan M, Newman O M G, Cooper R M G, et al. Defining the Paragoethite process for iron removal in zinc hydrometallurgy [J]. Hydrometallurgy,2006,81(2):104-129
    [63]Ju S, Zhang Y, Zhang Y, et al. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy [J]. Journal of Hazardous Materials,2011,92(2):554-558
    [64]董巧龙.锌精矿常压浸出与加压浸出工艺比较[J].中国有色冶金,2007,(4):24-27
    [65]Filippou D. Innovative hydrometallurgical processes for the primary processing of zinc [J]. Mineral Processing and Extractive Metallurgy Reviews,2004,25(3):205-252
    [66]Santos Silvia M C, Machado Remigio M, Correia M J N, et al. Ferric sulphate/chloride leaching of zinc and minor elements from a sphalerite concentrate [J]. Minerals Engineering,2010,23(8):606-615
    [67]骆建伟.锌精矿氧压浸出工艺浅述[J].工程设计与研究,2006,(119):3-5,13
    [68]肖纯,杨声海.硫化锌精矿空气氧化硫酸浸出的动力学研究[J].有色金属(冶炼部分):2008,(1):7-10
    [69]Akcil A, Ciftci H. Metals recovery from multimetal sulphide concentrates (CuFeS2-PbS-ZnS):combination of thermal process and pressure leaching [J]. International Journal of Mineral Processing,2003,71(1-4):233-246
    [70]Li C, Wei C, Xu H, et al. Oxidative pressure leaching of sphalerite concentrate with high indium and iron content in sulfuric acid medium [J]. Hydrometallurgy,2010,102(1-4): 104-129
    [71]Yan G U, Zhang T, Liu Y, et al. Pressure acid leaching of zinc sulfide concentrate [J]. Transactions of Nonferrous Metals Society of China,2010,20(1):s136-s140
    [72]蒋崇文,罗艺,钟宏.低品位氧化锌矿氨-碳酸氢铵浸出制备氧化锌工艺的研究[J].精细化工中间体,2010,40(3):53-56,69
    [73]Bodas M G. Hydrometallurgical treatment of zinc silicate ore from Thailand [J]. Hydrometallurgy,1996,40 (1-2):37-49
    [74]林祚彦,华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究[J].有色金属(冶炼部分),2003,(5):9-11,23
    [75]Feng L, Yang X, Shen Q, et al. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores [J]. Hydrometallurgy,2007,89(3-4):305-310
    [76]Harvey T G. The hydrometallurgical extraction of zinc by ammonium carbonate:A review of the Schnabel Process [J]. Mineral Processing and Extractive Metallurgy Review,2006,27(4):231-279
    [77]Chen A, Zhao Z, Jia X, et al. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore [J]. Hydrometallurgy,2009,97(3-4):228-232
    [78]Wang R, Tang M, Yang S, et al. Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system [J]. Journal of Central South University of Technology,2008, 15(5):679-683
    [79]Frenay J. Leaching of oxidized zinc ores in various media [J]. Hydrometallurgy,1985, 15(2):243-253
    [80]Zhao Z, Long S, Chen A. et al. Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution [J]. Hydrometallurgy,2009,99(3-4):255-258
    [81]赵中伟,贾希俊,陈爱良,等.氧化锌矿的碱浸出[J].中南大学学报(自然科学版),2010,41(1):39-43
    [82]刘晓丹,张元福.铵盐浸出氧化锌矿动力学的研究[J].贵州工业大学学报(自然科学版),2004,33(2):82-84,89
    [83]Nyirenda R L, Lugtmeijer A D. Ammonium carbonate leaching of carbon steelmaking dust. detoxification potential and economic feasibility of a conceptual process [J]. Minerals Engineering,1993,6(7):785-797
    [84]王亦男,杨声海,唐谟堂.盐酸体系浸出含铟高浸渣工艺研究[J].湿法冶金,2008,27(1):41-44
    [85]黄祖强,黎铉海,潘柳萍.机械活化对锌焙砂浸出的影响[J].矿产综合利用,2002,(3):26-28
    [86]Leclerc N, Meux E, Lecuire J. Hydrometallurgical extraction of zinc from zinc ferrites [J]. Hydrometallurgy,2003,70(1-3):175-183
    [87]陈少纯,周令治,邹家炎,等.铁酸锌的还原分解和其中锗的行为研究[J].广东有色金属学报,1991,1(1):26-31
    [88]彭海良.常规湿法炼锌中铁酸锌的行为研究[J].湖南有色金属,2004,20(5):20-22
    [89]窦明民.锌冶金中铁酸锌生成及离解机理研究[J].云南冶金,2003,32(增刊):63-65,99
    [90]吕伯康,刘洋.锌渣浸出渣高温挥发富集铟锗试验研究[J].南方金属,2007,(3):7-9
    [91]蒋继穆.我国锌冶炼工业进展概况[J].中国有色建设,2007,(2):33-36
    [92]Havlik T, Friedrich B, Stopic S. Pressure leaching of EAF dust with sulphuric acid [J]. Erzmetall,2004,57(2):113-120
    [93]Langova S, Riplova J, Vallova S. Atmospheric leaching of steel-making wastes and the precipitation of goethite from the ferric sulphate solution [J]. Hydrometallirgy,2007, 87(3-4):157-162
    [94]Langova S, Juraj Lesko, Matysek D. Selective leaching of zinc from zinc ferrite with hydrochloric acid [J]. Hydrometallurgy,2009,95(3-4):179-182
    [95]Matsumoto K, Taniguchi S, Kikuchi A. Acid leaching behavior of zinc ferrite in an agitated vessel [J]. Nippon Kinzoku Gakkaishi,1999,63(3):345-351
    [96]Nunez C, Vinals J. Kinetics of leaching of zinc ferrite in aqueous hydrochloric acid solutions [J]. Metallurgical and Materials Transactions B,1984,15(2):221-228
    [97]Zhang Y, Li X, Pan L, et al. Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite [J]. Hydrometallurgy,2010,100(3-4):172-176
    [98]Zhang Y, Li X, Pan L, et al. Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite [J]. Hydrometallurgy,2010,102(1-4):95-100
    [99]张凡,马启坤,刘韬.中浸渣的机械活化浸出工艺研究[J].云南冶金,2002,31(4):31-34
    [100]李希明,陈家墉.机械活化对铁酸锌浸取行为的影响[J].有色金属,1991,43(2):44-47
    [101]Peters K. Mechanochemische Reaktionen [J]. Frankfurt,1962:78-98
    [102]赵中伟.含金硫化矿的机械化学及其浸出动力学研究[D].长沙:中南大学,1995
    [103]Mulak W, Balaz P, Chojnacka M. Chemical and morphological changes of millerite by mechanical activation [J]. International Journal of Mineral Processing,2002,66(1-4): 233-240
    [104]Balaz P, Achimovicova M. Mechano-chemical leaching in hydrometallurgy of complex sulphides [J]. Hydrometallurgy,2006,84(1-2):60-68
    [105]陈世琯.机械活化及其在浸出过程中的应用[J].上海有色金属,1998,19(2):91-96
    [106]Balaz P. Mechanical activation in hydrometallurgy [J]. International Journal of Mineral Processing,2003,72(1-4):341-354
    [107]张超.机械化学热量仪与机械化学能量学研究[D].长沙:中南大学,2008
    [108]段菊英.搅拌磨的结构特点和发展方向[J].中国科技信息,2006,(15):52-53
    [109]神保元二.搅拌磨现状与发展趋势[J].化工装备技术,1991,12(2):46-48
    [110]龚挑腾,刘世勋.行星磨机[J].中国有色金属学报,1994,4(1):101-104
    [111]沈辉,宗友强,李福平,等.行星磨粉碎氧化锆的工艺及应用[J].稀有金属,2003,27(1):210-215
    [112]Mishra B K. Charge dynamics in planetary mill [J]. Kona Powder Part,1995,13, 151-158
    [113]Rosenkranz S, Breitung-Faes S, Kwade A. Experimental investigations and modelling of the ball motion in planetary ball mills [J]. Powder Technology,2011,212(1):224-230
    [114]Mishra B K. A review of computer simulation of tumbling mills by the discrete element method Part Ⅱ-Practical applications [J]. International Journal of Mineral Processing, 2003,71(1-4):95-112
    [115]黎铉海.机械活化强化含砷金精矿浸出的工艺及机理研究[D].长沙:中南大学,2002
    [116]孙军锋,董为民,张建勇,等.基于实验的球磨机临界转速率的分析与研究[J].机械科学与技术,2010,29(10):1302-1305
    [117]吕卫阳,丁浩.立式振动磨的介质运动和粉碎机理[J].建材地质,1997,(S1):156-157
    [118]王晓明.立式振动磨介质动力学仿真研究[D].西安:西安建筑科技大学,2007
    [119]姚金环,黎铉海,潘柳萍,等.机械活化强化矿物浸出过程的研究进展[J].现代化工,2011,31(7):12-15
    [120]Balaz P, Achimovicova M, Bastl Z, et al. Influence of mechanical activation on the alkaline leaching of enargite concentrate [J]. Hydrometallurgy,2000,54(2-3):205-216
    [121]Balaz P, Bast Z, Briancin J, et al. Surface and bulk properties of mechanically activated zinc sulphide [J]. Journal of Materials Science,1992,27(3):653-657
    [122]Eylnery J R, Ylli F. Study of a mechanochemical transformation in iron pyrite [J]. Journal of Alloys and Compounds,2000,298(1-2):306-309
    [123]司伟,高宏,姜妲,等.机械活化镍铁尾矿的酸浸工艺研究[J].矿产综合利用,2010,(3):3-6
    [124]Balaz P, Post E, Bastl Z. Thermoanalytical study of mechanically activated cinnabar [J]. Thermochimica Acta,1992,200:371-377
    [125]张燕娟.机械活化强化从含铟铁酸锌的锌浸渣中浸出铟、锌的理论及工艺研究[D].南宁:广西大学,2011
    [126]许俊强.机械活化强化硬锌渣浸铟工艺及动力学研究[D].南宁:广西大学,2004
    [127]Aglietti E F, Porto Lopez J M, Pereira E. Mechanochemical effects in kaolinite grinding. I. Textural and physicochemical aspects [J]. International Journal of Mineral Processing, 1986,16(1-2):125-133
    [128]赵中伟,龙双,陈爱良,等.难选高硅型氧化锌矿机械活化碱法浸出研究[J].中南大学学报(自然科学版),2010,41(4):1246-1250
    [129]Zhang Y, Zhang S, Du H, et al. Effect of mechanical activation on alkali leaching of chromite ore [J]. Transactions of Nonferrous Metals Society of China,2010,20(5): 888-891
    [130]Zhao Z, Li H, Sun P, et al. Influence of mechanical activation on leaching kinetics of arsenopyrite [J]. Transactions of Nonferrous Metals Society of China,2002,12(2): 330-333
    [131]王淀佐,邱冠周,徐竞,等.FeAsS、FeS2、Au的NaClO-NaOH体系热力学分析与金的一步浸出[J].有色金属,1998,50(1):40-44
    [132]黎铉海,阳健,韦岩松,等.机械活化强化锌渣氧粉铟浸出的工艺研究[J].稀有金属,2008,32(6):811-814
    [133]Tang A, Su L, Li C, et al. Effect of mechanical activation on acid-leaching of kaolin residue [J]. Applied Clay Science,2010,48(3):296-299
    [134]张雪轻,李春,梁斌.钛铁矿机械活化强化浸出的研究[J].钢铁钒钛,2005,26(2):11-15
    [135]Zhao Z, Li H, Sun P, et al. Influence of crystal structure on mechanical activation effect [J]. Transactions of Nonferrous Metals Society of China,2003,13(1):188-194
    [136]Balaz P, Achimovicova M. Selective leaching of antimony and arsenic from mechanically activated tetrahedrite, jamesonite and enargite [J]. International Journal of Mineral Processing,2006,81(1):44-50
    [137]Zhao Z, Zhang Y, Chen X, et al. Effect of mechanical activation on the leaching kinetics of pyrrhotite [J]. Hydrometallurgy,2009,99(1-2):105-108
    [138]Achimovicova M, Balaz P. Kinetics of the leaching of mechanically activated berthierite, boulangerite and franckeite [J]. Physics and Chemistry of Minerals,2008, 35(2):95-101
    [139]曹粲.杂质、缺陷及边缘修饰对锯齿型石墨烯纳米带输运性质的影响[D].长沙:中南大学,2012
    [140]李勇.低品位氧化铅锌矿硫化-浮选工艺及理论研究[D].昆明:昆明理工大学,2009
    [141]张艳丽.TATB基PBX的量子化学和耗散粒子动力学研究[D].成都:西南交通大学,2010
    [142]朱建新.NiTi合金的第一原理研究[D].长春:吉林大学,2007
    [143]Oertzen G U V, Jones R T, Gerson A R. Electronic and optical properties of Fe, Zn and Pb sulfides [J]. Physics and Chemistry of Minerals,2005,32(4):255-268
    [144]朱宇昕.钙钦矿结构的能带计算[D].西安:西安电子科技大学,2007
    [145]Reicha M, Beckera U. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite [J]. Chemical Geology, 2006,225(3-4):278-290
    [146]孙伟.高碱石灰介质中电位调控浮选技术原理与应用[D].长沙:中南大学,2001
    [147]肖奇,邱冠周,胡岳华.黄铁矿机械化学的计算模拟—晶格畸变与化学反应活性的关系[J].中国有色金属学报,2001,11(5):900-905
    [148]Blanchard M, Alfredsson M, Brodholt J, et al. Arsenic incorporation into FeS2 pyrite and its influence on dissolution:A DFT study [J]. Geochimica et Cosmochimica Acta, 2007,71(3):624-630
    [149]李玉琼,陈建华,陈哗.空位缺陷黄铁矿的电子结构及其浮选行为[J].物理化学学报,2010,26(5):1435-1441
    [150]陈建华,王檑,陈晔,等.空位缺陷对方铅矿电子结构及浮选行为影响的密度泛函理论[J].中国有色金属学报,2010,20(4):765-771
    [151]Kano J, Mio H, Saito F. Correlation of grinding rate of gibbsite with impact energy of balls [J]. AIChE Journal,2000,46(8):1694-1697
    [152]陈广振,奚白,赵通林.抛落式磨机内钢球离心力与转速率的关系[J].鞍山钢铁学院学报,2002,25(2):81-83
    [153]Ebrahimi-Kahrizsangi R, Abbasi M H, Saidi A. Mechanochemical effects on the molybdenite roasting kinetics [J]. Chemical Engineering Journal,2006,121(2-3):65-71
    [154]Elsayed A H, Mohy El din M S, Elsyed A M, et al. Synthesis and properties of polyaniline/ferrites nanocomposites [J]. International Journal of Electrochemcal Science, 2011,6:206-221
    [155]Thosmas M, George K C. Infrared and magnetic study of nanophase zinc ferrite [J]. Indian Journal of Pure & Applied Physics,2009,47(2):81-86
    [156]Singhal S, Namgyal T, Bansal S, et al. Effect of Zn substitution on the magnetic properties of cobalt ferrite nano particles prepared via sol-gel route [J]. Journal of Electromagnetic Analysis & Applications,2010,2:376-381
    [157]Stejskal J, Trchova M, Brodinova J, et al. Coating of zinc ferrite particles with a conducting polymer, polyaniline [J]. Journal of Colloid and Interface Science,2006, 298(1):87-93
    [158]Fan G, Gu Z, Yang L, et al. Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique [J]. Chemical Engineering Journal,2009, 155(1-2):534-541
    [159]姜继森,高濂,杨燮龙,等.铁酸锌纳米晶的机械化学合成[J].高等学校化学学报,1999,20(1):1-4
    [160]Sepelak V, Steinike U, Uecker D Chr, et al. Structural disorder in mechanosynthetized zinc ferrite [J]. Journal of Solid State Chemistry,1998,135(1):52-58
    [161]Ehrhardta H, Campbell S J, Hofmann M. Structural evolution of ball-milled ZnFe2O4 [J]. Journal of Alloys and Compounds,2002,339(1-2):255-260
    [162]Sepelak V, Tkacova K, Boldyrev V V, et al. Mechanically induced cation redistribution in ZnFe2O4 and its thermal stability [J]. Physica B,1998,234-236:617-619
    [163]Anantharaman M R, Jagatheesan S, Malini K A, et al. On the magnetic properties of ultra-fine zinc ferrites [J]. Journal of Magnetism and Magnetic Materials,1998,189(1): 83-88
    [164]Lemine O M, Bououdina M, Sajieddine M, et al. Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4 [J]. Physica B,2011,406(10):1989-1994
    [165]Stewart S J, Figueroa S J A, Sturla M B, et al. Magnetic ZnFe2O4 nanoferrites studied by X-ray magnetic circular dichroism and mossbauer spectroscopy [J]. Physica B,2007, 389(1):155-158
    [166]Sepelak V, Wiβmann S, Becker K D. Magnetism of nanostructured mechanically activated and mechanosynthesized spinel ferrites [J]. Journal of Magnetism and Magnetic Materials,1999,203(1-3):135-137
    [167]Nachbaur V, Tauvel G, Verdier T, et al. Mecanosynthesis of partially inverted zinc ferrite [J]. Journal of Alloys and Compounds,2009,473(1-2):303-307
    [168]Yuan T, Cao Q, Li J. Effects of mechanical activation on physicochemical properties and alkaline leaching of hemimorphite [J]. Hydrometallurgy,2010,104(2):136-141
    [169]曾义根.磨机转速率和充填率对功耗的影响[J].矿冶工程,1988,8(2):26-28
    [170]孙军锋,董为民,张建,等.填充率与转速率对球磨机功率影响的研究[J].矿山机械,2009,37(9):76-78
    [171]郑富昭.填充率(钢球加矿浆)对球磨机动态重量的影响研究[D].昆明:昆明理工大学,2007
    [172]Sharp J H, Brindley G W, Narahari Achar B N. Numerical data for some commonly used solid state reaction equations [J]. Journal of the American Ceramic Society,1966, 49(7):379-382
    [173]Minic D, Petkovic D, Strbac N, et al. Kinetic investigations of oxidative roasting and afterwards leaching of copper-lead matte [J]. Journal of Mining and Metallurgy Section B-Metallurgy,2004,40(1):57-73
    [174]Mihajlovic I, Strbac N, Zivkovic Z, et al. Kinetics and mechanism of AS2S2 oxidation [J]. Journal of the Serbian Chemical Society,2005,70(6):869-877
    [175]Sokic M D, Markovic B, Zivkovic D. Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid [J]. Hydrometallurgy,2009,95(3-4):273-279
    [176]Lee I, Wang Y, Chern J. Extraction kinetics of heavy metal-containing sludge [J]. Journal of Hazardous Materials,2005,123, (1-3):112-119
    [177]Ucar G. Kinetics of sphalerite dissolution by sodium chlorate in hydrochloric acid [J]. Hydrometallurgy,2009,95(1-2):39-43
    [178]Elgersma F, Kamst G F, Witkamp G J, et al. Acidic dissolution of zinc ferrite [J]. Hydrometallurgy,1992,29(1-3):173-189
    [179]Yuan H, An Y, Xu G, et al. Hydriding behavior of magnesium-based hydrogen storage alloy modified by mechanical ball-milling [J]. Materials Chemistry and Physics,2004, 83(2-3):340-344
    [180]Cristobal A A, Aglietti E F, Conconi M S, et al. Structural alterations during mechanochemical activation of a titanium-magnetite mixture. Materials Chemistry and Physics,2008,111(2-3):341-345
    [181]Uzunova-Bujnova M, Dimitrov D, Radev D, et al. Effect of the mechanoactivation on the structure, sorption and photocatalytic properties of titanium dioxide [J]. Materials Chemistry and Physics,2008,110(2-3):291-298
    [182]Strbac N, Mihajlovic I, Zivkovic D, et al. Kinetics and mechanism of synthetic cos oxidation process [J]. Journal of Mining and Metallurgy,2006,42 B(1):81-91
    [183]Knezevic Z, Mojovic L, Adnadjevic B. Palm oil hydrolysis by lipase from Candida cylindracea immobilized on zeolite type Y [J]. Enzyme and Microbial Technology,1998, 22(4):275-280
    [184]Kurbatov D, Kosyak V, Opanasyuk A, et al. Native point defects in ZnS films [J]. Physica B,2009,404 (23-24):5002-5005
    [185]Chen J, Chen Y, Li Y. Effect of vacancy defects on electronic properties and activation of sphalerite (110) surface by first-principles [J]. Transactions of Nonferrous Metals Society of China,2010,20(3):502-506
    [186]Kohan A F, Ceder G, Morgan D. First-principles study of native point defects in ZnO [J]. Physical review B,61(22):15019-15027
    [187]Jug K, Geudtner G. Quantum chemical contributions on the reactivity of solids [J]. Journal of Solid State Chemistry,2003,176 (2):575-586
    [188]Li Y, Liu Y, Chen N, et al. Vacancy and copper-doping effect on superconductivity for clathrate materials [J]. Physics Letters A,2005,345 (4-6) 398-408
    [189]Liu T, Shen J, Zhang Q. First-principles study on the electronic structures and absorption spectra for the PbWO4 crystal with lead vacancy [J]. Solid State Communications,2005,135(6):382-385
    [190]Zhou X, Liu T, Zhang Q, et al. First-principles study of cadmium vacancy in CdWO4 crystal [J]. Solid State Communications,2009,11(12):2071-2074
    [191]Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code [J]. Journal of Physics:Condensed Matter,2002, 14(11):2717-2744
    [192]Yao J, Li Y, Zou Z, et al. First principles study of the electron transport through cis-polyacetylene based molecular wires [J]. Physica B,2011,406 (20):3969-3974
    [193]Stewart J C, Matthew D S, Chris J P, et al. First principles methods using CASTEP [J]. Zeitschrift fur Kristallographie,2005,22(5-6):567-570
    [194]Soliman S, Elfalaky A, Gerhard H, et al. Electronic structure calculations for ZnFe2O4 [J]. Physical Review B,2011,83(8):085205-1-085205-6
    [195]Pavese A, Hanfland M. Phase transition of synthetic zinc ferrite spinel (ZnFe2O4) at high pressure, from synchrotron X-ray powder diffraction [J]. Physics and Chemistry of Minerals,2000,27(9),638-644
    [196]马琳琳.尖晶石型软磁铁氧体电子结构及磁性质的第一性原理研究[D].哈尔滨:哈尔滨理工大学,2010
    [197]Cohen R E, Krakauer H. Lattice dynamics and origin of ferroelectricity in BaTiO3. Linearized-augmented-plane-wave total-energy calculations [J]. Physical Review B, 1990,42(10):6416-6423
    [198]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters,1996,77 (18):3865-3868
    [199]Perdew J P, Wang Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas [J]. Physical Review B,1992,45(20):12947-12954
    [200]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B,1990,41(11):7892-7895
    [201]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B,1992,45(15):13244-13249
    [202]Pack J D, Monkhorst H J. Special points for Brillouin-zone integrations-a reply [J]. Physical Review B,1977,16(4):1748-1749
    [203]Flores A G, Raposo V, Torres L, et al. Two-magnon processes and ferrimagnetic line width calculation in manganese ferrite [J]. Physical Review B,1999,59(14):9447-9453
    [204]马琳琳,姜久兴,谭昌龙,等.尖晶石型锰锌铁氧体的电子结构和磁性的计算与实验研究[J].硅酸盐学报,2010,38(8):1577-1581
    [205]Baizaee S M, Mousavi N. First-principles study of the electronic and optical properties of rutile TiO2 [J]. Physica B:Condensed Matter,2009,404(16):2111-2116
    [206]Yu Q, Jin L, Zhou C. Ab initio study of electronic structures and absorption properties of pure and Fe3+ doped anatase TiO2 [J]. Solar Energy Materials & Solar Cells,2011, 95(8):2322-2326
    [207]Anisimov V I, Aryasetiawan F, Lichtenstein A I. First-principles calculations of the electronic structure and spectra of strongly correlated systems:the LDA+U method [J]. Journal of Physics:Condensed Matter,1997,9(4):767-808
    [208]乔阳.ZnS及其掺杂的第一性原理研究[D].烟台:山东大学,2010
    [209]Mulliken R S. Electron population analysis on LCAO-MO molecular wave functions [J]. The Journal of Chemical Physics,1955,23(10):1833-1840
    [210]曾小钦.品格缺陷对闪锌矿电子结构影响的第一性原理研究[D].南宁:广西大学,2009
    [211]伊廷锋,朱彦荣,诸荣孙,等.锂离子电池镍掺杂尖晶石LiMn2O4F极材料的电子结构[J].无机化学学报,2008,24(10):1576-1581
    [212]Chen Y, Chen J, Guo J. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite [J]. Minerals Engineering,2010,23(14): 1120-1130
    [213]Cui X Y, Medvedeva J E, Delley B, et al. Role of embedded clustering in dilute magnetic semiconductors:Cr doped GaN [J]. Physical Review Letters,2005,95(25): 256404-256407
    [214]Lakshman A, Subba Rao P S V, Parvatheeswara Rao B, et al. Electrical properties of In3+ and Cr3+ substituted magnesium-manganese ferrites [J]. Journal of Physics D: Applied Physics,2005,38(5):673-678
    [215]Shirsath Sagar E, Toksha B G, Jadhav K M. Structural and magnetic properties of In3+ substituted NiFe2O4 [J]. Materials Chemistry and Physics,2009,117(1):163-168
    [216]Parvatheeswara B, Rao K H. Distribution of In3+ ions in indium-substituted Ni-Zn-Ti ferrites [J]. Journal of Magnetism and Magnetic Materials,2005,292:44-48
    [217]Maletin M, Moshopoulou Evagelia G, Kontos A G. Synthesis and structural characterization of In-doped ZnFe2O4 nanoparticles [J]. Journal of the European Ceramic Society,2007,27(13-15):4391-4394
    [218]Wang S G, Wen X D, Cao D B, et al. Formation of oxygen vacancies on the TiO2 (110) surfaces [J]. Surface Science,2005,577 (1):69-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700